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3. Cross-referencing throughout the document is to be done via the

\Cref{my_label}

command, rather than ’ref’.

4. Make sure you

\cite{my_citation}

any source you follow. This means you need to add the appropriate bibtex entry in our bib file beforehand.
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8. The document must compile with no errors after you finish editing it.
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The main source of material for mathematical classical statistical mechanics is the Friedli and Velenik book [7]. Another
useful source is the Peled Spinka lecture notes [11]. One should also look up lecture notes by Roland Bauerschmidt and
Hugo Duminil-Copin.

1 The basic model
Let d,N ∈ N≥1 be given (the space dimension and spin dimension). Let Λ ≡ ΛL := [−L,L]d ∩ Zd be a finite box within
Zd. This box can also be considered as a finite graph 1G = (V,E) i.e. a set of vertices V = Λ ⊆ Zd and a set of edges E
which indicate who is neighbor to whom. We have |V | = (2L+ 1)

d and |E| = d× 2L× (2L+ 1)
d−1.

Pick some β ∈ (0,∞). We define the partition function of the d-dimensional classical O (N) model, at inverse temper-
ature β, initially in finite volume L as:

Z
d,O(N)
β,L :=

∫
ψ:Λ→SN−1

exp

(
−1

2
β ⟨ψ,−∆ψ⟩

)
dµ (ψ) .

Here
µ =

∏
x∈Λ

µ0

i.e., the |Λ|-fold product measure all of the same copy of the measure µ0, the a-priori measure. Naturally we choose the
(normalized) volume measure on SN−1: in the case of N = 1 this is the (normalized) counting measure on { ±1 } but for
N ≥ 2 it is the natural measure which measures (normalized) area on the unit sphere.

Moreover, the symbol ⟨ψ,−∆ψ⟩ is somewhat abbreviated notation for

⟨ψ,−∆ψ⟩ ≡
∑
x,y∈Λ

(−∆)xy ⟨ψx, ψy⟩RN

and −∆ is an |Λ| × |Λ| matrix to be specified shortly.
The finite volume is a handy technical tool to avoid talking about probability measures of infinite stochastic processes.

Ultimately our aim is to derive any result (read: estimate) uniformly in L so that conclusions are made about the L→ ∞
limit (that limit exists, but let us avoid this question for a minute).

The number of points in our box is k := |Λ| = (2L+ 1)
d. Hence SN−1 is the (N − 1)-dimensional sphere within RN ,

and we should view ψ as a map from Λ into RN . I.e., for any x ∈ Λ, ψx ∈ RN and ∥ψx∥22 = 1. Thus, with some abuse of
notation, if A ∈ Matk×k (R) then

⟨ψ,Aψ⟩ ≡
∑
x,y∈Λ

N∑
i=1

(ψx)iAxy (ψy)i .

(Truly we should have written A⊗ 1N instead of A....).
The symbol −∆ is the discrete Laplacian. For every choice of L, it is a k × k matrix, with k = (2L+ 1)

d, given as
follows:

(−∆v)x :=
∑
y∼x

vx − vy (v : Λ → R, x ∈ Λ)

where y ∈ Λ obeys y ∼ x if and only if y is “adjacent” to x in Λ, that is, a nearest neighbor. In terms of matrices,

−∆ = D −A

where A is the adjacency matrix of the graph Λ (i.e. it equals 1 if there is an edge between two vertices and 0 otherwise)
and D is the diagonal degree matrix of the graph (specifying the number of edges connected to a given vertex). Here is
the point where the discussion of boundary conditions enters: we may decide that for those vertices of Λ at the boundary,
they have less neighbors than those in the bulk (free boundary conditions), or we may decide to wrap Λ around itself, i.e.,
to make a torus, to form periodic boundary conditions. Simultaneously, we may also consider other custom options, e.g.,
that the boundary is pinned to a certain range of values. By the way, the values of the boundary need not necessarily be
on the sphere. In principle these choices need to be specified when −∆ is discussed.

1There is a whole direction of research to ask how does exotic properties of different graphs affect the phase transitions we are studying. We
shall not pursue this direction here and for the most part stick with finite sub-graphs of Zd.
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For example let us illustrate this with the choice d = 1 and then, say, L = 4, (so k = 9). We get

−∆free =



1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 1


and

−∆periodic =



2 −1 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 −1 2


.

It should be noted that we could also rewrite the bilinear form as follows. Assume −∆periodic is used for the moment (then
2d |Λ| = 2 |E| where E is the set of edges). Then

⟨ψ,−∆ψ⟩ =
∑
x∈Λ

ψx ·
∑
y∼x

ψx − ψy

=
∑
x∈Λ

ψx · ψx︸ ︷︷ ︸
=1

(∑
y∼x

)
︸ ︷︷ ︸
deg(x)

−
∑

x∈Λ,y∼x
ψx · ψy

= 2 |E| − 2
∑

{ x,y }∈Λ:x∼y

ψx · ψy .

However,
∥ψx − ψy∥2RN = ∥ψx∥2RN + ∥ψy∥2RN − 2ψx · ψy = 2 (1− ψx · ψy)

so
⟨ψ,−∆ψ⟩ =

∑
{ x,y }∈Λ:x∼y

∥ψx − ψy∥2RN = 2 |E| − 2
∑

{ x,y }∈Λ:x∼y

ψx · ψy .

We emphasize that constant (ψ-independent) terms in the bilinear form are irrelevant since we are only interested in
ratios. Hence we understand

⟨ψ,−∆ψ⟩

as measuring the total amount of (squared) disagreement throughout the grid Λ: Moreover, since these are unit vectors,
ψx · ψy gives the cosine of the angle between the two vectors as measured using the geodesic length on the sphere. Full
agreement is when ψx ·ψy = 1, so maximal agreement is the minimum value of ⟨ψ,−∆ψ⟩, which we call the energy usually
denoted by H and also called the Hamiltonian or the interaction. We can also consider more general energy functions

H :
(
SN−1

)Λ → R .

Hence generally

exp

(
−1

2
β ⟨ψ,−∆ψ⟩

)
= exp (−βH (ψ)) .

Since β > 0, those configurations ψ : Λ → SN−1 which minimize the energy functional H are those which maximize
agreement throughout. For this reason these models are called ferromagnetic. Anti-ferromagnetic models maximize
disagreement and may be obtained by H 7→ −H.
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Note that the matrix −∆ may be diagonalized easily (it is symmetric). E.g. for −∆periodic one may use the Fourier
series (or its discrete version on Λ). The k eigenvalues lie within the interval

[0, 4d] .

Zero is always an eigenvalue and it corresponds to the eigenvector (assuming we avoid pinning the field, described right
below) which is a constant configuration throughout: that is the energy minimizing configuration.

Pinned boundary conditions are implemented as follows. One takes −∆free or −∆periodic, but also picks some fixed
B ⊆ Λ (the boundary set, though in principle it can be any subset of Λ, also just one vertex in the middle) and a “boundary
values field” φ : B → SN−1 (actually the co-domain is allowed to even be a general RN vector) and then instead of take
the integral over all configurations Λ → SN−1, restrict to the integral over the set

Ωφ :=
{
ψ : Λ → RN

∣∣ ψ|B = φ ∧ ∥ψx∥ = 1∀x ∈ Λ \B
}
.

I.e., really, it is actually an integral over
|Λ| − |B|

spheres.
Finally, we also want to allow for an external magnetic field h : Λ → RN . It enters into the Hamiltonian as

H (ψ) =
1

2
⟨ψ,−∆ψ⟩ − ⟨h, ψ⟩ .

If we take h to be non-zero only along ∂Λ (those vertices with less than 2d degree) then achieve a similar effect to setting
the values of ψ on the boundary of a slightly large graph Λ to h.

The distinction from −∆periodic to −∆free is not terribly important for us now so going forward, unless otherwise noted,
we shall use −∆free together with some given field φ : B → SN−1 (the object φ carries the specification of its domain
automatically).

In principle the measure depends on the boundary condition φ also, so we should really denote

Z
d,O(N)
β,L,φ,h :=

∫
ψ∈Ωφ

exp

(
−1

2
β ⟨ψ,−∆ψ⟩+ β ⟨h, ψ⟩

)∏
x∈Λ

dµ0 (ψx) .

1.1 Terminology
We list some terminology from statistical mechanics:

1. The quantity Z
d,O(N)
β,L,φ,h is called the partition function. The summand within it is called the Gibbs factor and the

associated probability measure Pd,O(N)
β,L,φ,h on Ωφ is called the Gibbs measure.

2. If N = 1 we have the Ising model. If N = 2 we have the XY or O (2) model. If N = 3 we have the classical
(isotropic) Heisenberg or O (3) model. The N → ∞ is sometimes referred to as the spherical limit.

3. The L→ ∞ limit (you cannot take that limit at the level of Zd,O(N)
β,L,φ,h, you must only take it for ratios such as Pd,O(N)

β,L,φ,h

or Ed,O(N)
β,L,φ,h) is referred to as the thermodynamic or infinite volume limit. Hence for now let us take for granted that

there is some measure Pd,O(N)
β,φ,h which is to be understood as a measure on the space of functions Zd → SN−1 and is

obtained as the limit of sequence of measures
{

Pd,O(N)
β,L,φL,hL

}
L
. We will study the existence and nature of this limit

very soon. Note that some care has to be taken with the specification of the boundary conditions here because we
let φ : B → SN−1 and B ⊆ ΛL, so if L varies so does B and hence φ, in principle. Then it remains to be seen if the
infinite volume object Pd,O(N)

β,φ,h has any “memory” of φ or not and what sense does it make to keep carrying φ in the
notation. We will study this question too below.

4. Uniqueness of the Gibbs measure is the general statement that Pd,O(N)
β,φ,h does not depend on φ (for a particular class

of sequences { φL }L), i.e., there is a-posteriori only one infinite-volume Gibbs measure.

5. The two-point function is the map

Zd × Zd ∋ (x, y) 7→ Ed,O(N)
β,φ,h

[
⟨ψx, ψy⟩RN

]
∈ [−1, 1] .
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The truncated-two-point-function is

Zd × Zd ∋ (x, y) 7→
(

Ed,O(N)
β,φ,h

[
⟨ψx, ψy⟩RN

]
−
〈

Ed,O(N)
β,φ,h [ψx] ,E

d,O(N)
β,φ,h [ψy]

〉
RN

)
∈ [−1, 1] .

Measures how far away spins are correlated with each other.

6. Magnetization at a site x is Ed,O(N)
β,φ,h [ψx] and total magnetization is

m
d,O(N)
β,φ,h := lim

L→∞
Ed,N,β,φ,Λ

[
1

|Λ|
∑
x∈Λ

ψx

]
∈ RN .

7. The quantity F d,O(N)
β,L,φ,h := − 1

β log
(
Z
d,O(N)
β,L,φ,h

)
is called the free energy. Its volume-density is

f
d,O(N)
β,φ,h := lim

L→∞

1

|ΛL|
F
d,O(N)
β,L,φ,h

should this limit exist.

8. There are two main phenomena we are interested in when studying this model:

(a) Long range order (low temperatures, high β): the system has intrinsic global, collective magnetization,md,O(N)
β,φ,h ̸=

0, Ed,O(N)
β,φ,h

[
⟨ψx, ψy⟩RN

]
does not decay as ∥x− y∥ → ∞.

(b) Disordered phase (high temperatures, low β): the system is does not show preference to any particular direction,
m
d,O(N)
β,φ,h = 0, Ed,O(N)

β,φ,h

[
⟨ψx, ψy⟩RN

]
decays as ∥x− y∥ → ∞ (however slowly). Correlation length is the rate of

exponential decay.

(c) Phase transition: the shift of the system from one type of the above behavior to another type of the above
behavior as a continuous parameter (usually the inverse temperature) is varied.

(d) Criticality or critical point : The set of parameters of the system on the boundary between two phases, i.e. the
point (or line, or manifold) of phase transition, Ed,O(N)

β,φ,h

[
⟨ψx, ψy⟩RN

]
decays but polynomially.

9. Universality refers to a type of behavior of certain quantities, usually asymptotically, usually near the critical point.

10. Gaussianity, free-field, or spin-wave behavior is the phenomenon that the random field ψ : Λ → RN behaves as if
it had a Gaussian measure (it does not due to the a-priori measure µ0). Gaussian upper bounds are upper bounds
(e.g., on the two point function) in terms of the two-point function of the Gaussian field or the Gaussian free field.

11. By symmetry we refer to the operation of rotating a vector in RN from one direction to another, and observing that
something remains the same. For example, the inner product

⟨ψx, ψy⟩

is invariant if we apply an orthogonal (rotation) matrix on both vectors simultaneously. The group of N × N
orthogonal matrices, O (N), is the main group of symmetries of our model, since Zd,N,β,L,φ=0 possesses a global
O (N) symmetry, in the sense that the probability density (or the push forward of the probability measure if you
wish) remains the same if we apply a global M ∈ O (N) matrix to the magentization vector on all vertices of Λ.
There is a slight issue here with boundary conditions which would spoil that, so in principle if φ ̸= 0 then we have
to rotate the boundary conditions too.

(a) Continuous symmetry means that the group of symmetries is a smooth manifold as opposed to a discrete finite
group. Compare the discontinuous case N = 1 (whence O (1) = { ±1 } ∼= Z2) with the continuous case N ≥ 2
(O (2) ∼= S1). It turns out that discrete versus continuous symmetry plays a role.

(b) Symmetry breaking or spontaneous symmetry breaking is the situation where the finite volume Gibbs factor
is invariant under some symmetry (for any given finite volume) yet the infinite volume measure is not. This
phenomenon is of utmost interest to us and will have parallels in quantum mechanics as well. Long-range order
from above is an example of such symmetry breaking whereas the disordered phase is the absence of symmetry
breaking.
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(c) Mermin–Wagner (sometimes Mermin–Wagner–Hohenberg) is the general result that there is no continuous
symmetry breaking if d ≤ 2.

12. Kosterlitz–Thouless or Berezinskii-Kosterlitz–Thouless is a phenomenon of a whole critical interval of temperatures,
usually [βc,∞).

13. Mass gap or massive field is a field whose two-point function decays exponentially in ∥x− y∥. This is called in this
way because in a Gaussian free field, if we replace the Laplacian

−∆

with a massive Laplacian
−∆+m21

then we indeed get exponentially decay of the two point function with rate m.

1.2 The phases of the classical O(N) model

"All happy families are alike, each unhappy family
is unhappy in its own fashion." This observation
from the opening lines of Leo Tolstoy Anna Karenin
can well serve as an epigraph to the family of
papers that includes the present one. The main goal
of these paper is to demonstrate that, contrary to
the richness of the behavior exhibited by Gibbs
fields at low temperatures, their properties outside
the phase transition region are quite uniform.

– Dobrushin and Shlosman in [4].

We will see in Section 7 that all systems we consider are "boring", i.e., disordered if the temperature is sufficiently
high (dependent on d and N of course). For the most part this motivates focusing on either low temperatures or studying
what happens near the (if there is a single) critical temperature.

N

d
1 2 3 4 ≥ 5

1

disordered
2
3
4

≥ 5

Table 1: Low β (high temperature): all entries are disordered for generic reasons.

N
d

1 2 ≥ 3

1 disordered
(transfer matrix)

LRO (Peierls)
2 BKT (vortex binding) LRO (SSB; infrared bounds)≥ 3 disordered? (Polyakov conjecture)

Table 2: High β (low temperature): phases by (N, d) and indicative mechanisms. LRO = long-range order; BKT =
Berezinskii–Kosterlitz–Thouless; SSB = spontaneous symmetry breaking.
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2 The Gaussian free field (GFF)
The Gaussian free field is defined in almost identical way to the O (N) model, with the exception of replacing the a-priori
measure µ0 from the volume measure on SN−1 by the Lebesgue measure on RN . This can be risky because now we run
the risk of integrals not converging. This danger can be mitigated in various different ways, either through boundary
conditions or the addition of a mass to the Laplacian.

Let us study the model whose partition function is

Zd,GFFN

β,L,m :=

∫
ψ:Λ→RN

exp

(
−1

2
β
〈
ψ,
(
−∆+m21

)
ψ
〉)

dψ

where by dψ we mean the Lebesgue measure on
(
RN
)Λ. Because m ̸= 0 then all Gaussian integrals converge regardless of

the spectrum of −∆ (whether it has eigenvalue zero or not; with Dirichlet boundary conditions for example −∆ anyway
has no zero mode and then the integral converges even with m = 0). We then have

Zd,GFFN

β,L,m =

∫
ψ:Λ→RN

exp

(
−1

2
β
〈
ψ,
(
−∆+m21

)
ψ
〉)

dψ =
(2π)

N
|Λ|
2 β−N|Λ|

2√
detΛ (−∆+m21)

N

and ∫
ψ:Λ→RN

exp

(
−1

2
β
〈
ψ,
(
−∆+m21

)
ψ
〉
+ ⟨J, ψ⟩

)
dψ = Zd,GFFN

β,L,m exp

(
1

2β

〈
J,
(
−∆+m21

)−1
J
〉)

so that
E [ψx · ψy] =

N

β

[(
−∆+m21

)−1
]
xy

(x, y ∈ Λ) .

First note that beyond the overall constant outside,
[(
−∆+m21

)−1
]
xy

is independent of β. In particular the fate of

exponential decay or not of the two-point function is independent of β and hence the GFF has no phase transitions. This
is also clear by looking at the integral and making a change of variable ψx 7→

√
βψx.

Note that for ∥x∥ ≫ 1
m , we have[(

−∆+m21
)−1
]
0,x

∼ cd (m) ∥x∥−
d−1
2 exp

(
− 1

m
∥x∥
)
.

However, if we’re really interested in the m = 0 case, then we have the following behavior (m → 0+ asymptotics at
fixed large ∥x∥):

[(
−∆+m21

)−1
]
0,x

=


1

2m − ∥x∥
2 +O (m) d = 1

1
2π log

(
1
m

)
− 2

π log (∥x∥) + C + o (1) d = 2
Γ( d

2−1)

4π
d
2

∥x∥2−d d ≥ 3

.

We see that in d ≤ 2 this limit m→ 0+ does not exist. One way to cure this is to always consider differences:

[(
−∆+m21

)−1
]
0,x

−
[(
−∆+m21

)−1
]
0,1

=


−∥x∥

2 + 1
2 d = 1

− 2
π log (∥x∥) + o (1) d = 2

Γ( d
2−1)

4π
d
2

(
∥x∥2−d − 1

)
d ≥ 3

.

This suggests that objects like
E
[
∥ψx − ψ0∥2

]
are more appropriate than

E [ψx · ψ0]

where studying d ≤ 2 massless Gaussian fields, i.e., it is the difference field x 7→ ψx − ψ0 or (x, y) 7→ ψx − ψy which is
finite no matter what.
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3 Olivia: The existence of the infinite volume Gibbs measure and the DLR
conditions

In this section, we assume basic measure theory. If necessary, one can refer to, for example, [13, 6, 15]. In addition, we
assume basic point set topology (refer to, for instance, [10]). Moreover, we assume that readers are familiar with conditional
probability. The preliminaries about conditional probability can be found in Appendix A. Moreover, we assume that the
readers are familiar with concepts of probability kernel, specifications, and how they relate to conditional probability. One
can read about this in Appendix B.

The goal of this section is to convey to readers that there exists an infinite-volume Gibbs measure for the classical
O(N) model. This section mostly follows ideas [7, Chapter 6]. However, we will prove the existence of an infinite-volume
Gibbs measure for the general O(N) model, contrary to [7], which proves only for the Ising (N = 1) model. To do
this, we appeal to functional analysis (especially the Banach-Alaoglu Theorem!). While we will not give proof of the
Banach-Alaoglu Theorem, we will state it when we use it, to make this section more self-contained.

3.1 Notations and Introduction to Infinite-Volume Gibbs Measure
We stay consistent with notations from Section 1. To summarize, we denote by ΛL ≡ [−L,L]d ⊂ Zd; ψ : ΛL → SN−1

is the random spin field; φ : B ⊂ ΛL → SN−1 is the deterministic field specifying the boundary conditions; and ΩΛL,φ

to be set of all spins configurations ψ on ΛL with boundary condition φ. Lastly, we denote the space of all possible spin
configuration in infinite volume (with no pinning) by Ω ≡ {ψ : Zd → SN−1} =×i∈Zd SN−1. To be clear, we will not allow
pinning in the infinite volume measures.

Remark 3.1. We defined ΛL to be a finite box of side length 2L + 1. However, we really just needed ΛL to be a
finite subset of Zd. One can check that there will be nothing dependent on the fact that ΛL is a box, except for ease of
notation. From what follows, we will denote by Λ ⋐ Zd a finite subset of Zd.

We moreover introduce convenient notation. Given ψ ∈ Ω, we denote by ψΛ ∈ ΩΛ the restriction of ψ to the coordinates
of Λ.

Now, let us start discussing the Gibbs measure. Let us start with the finite case. Here, we denote by β > 0 the
inverse temperature; h : ΛL → RN is the external magnetic field; HΛ : ΩΛ,φ → R≥0 is the Hamiltonian defined by
H(ψ) = 1

2 ⟨ψ,−∆ψ⟩ − ⟨h, ψ⟩ where the discrete Laplacian −∆ is the finite |Λ| × |Λ| matrix which acts on sites in or
connected to Λ; Zd,Nβ,L,φ is the corresponding partition function with boundary condition φ. All these are consistent with
notations from Section 1. In the finite case, the definition of the Gibbs measure is clear.

Definition 3.2. Given ΛL ⊂ Zd, let us define FΛ as the Borel σ-algebra of ΩΛ w.r.t. the product topology. Given
boundary conditions φ, we define the finite Gibbs measure, a probability measure on (Ω,FΛ), by

Pd,Nβ,h,L,φ(A) :=
∫
ψ∈A

exp (−βHΛ(ψ))

Zd,Nβ,h,L,φ
d

(∏
i∈ΛL

σ

)
ψ (A ∈ FΛ) . (1)

Here µ =
(∏

i∈ΛL
µ0

)
where µ0 is the volume measure on SN−1. In the case when N = 1, µ0 would just be the

counting measure.

Now, let us start talking about the infinite-volume Gibbs measure. First, what do we mean by an infinite-volume
Gibbs measure? It does not make sense to simply replace Λ with Zd in Definition 3.2, since then: while −∆ becomes an
operator instead of a matrix, HZd does not make sense: it will not converge.

So without direct reference to HZd , we want to somehow take a limit and define infinite-volume Gibbs measure as

µβ,h “ = " lim
L→∞

µβ,h,L,φ.

However, we will have to address some questions such as:

1. Which σ-algebra F on Ω are we considering?

2. As L→ ∞, Hamiltonian and Partition Function are not well defined. Also, each spin configuration ψ has probability
0 of happening as L→ ∞. How should we get away with this?

3. Is the limit dependent on the boundary condition φ we pick, or the sequence of boxes ΛL which we take?
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Out of the above three questions, we can only answer the first immediately: we take for F the Borel σ-algebra on
Ω. By definition of the product topology, F is the σ-algebra generated by sets which are inverse images of finite-subset
projections, i.e.

F = σ

ρ−1
Λ (A) : Λ ⋐ Zd, A ∈ P

 ∏
i∈Λ⋐Zd

SN−1


where ρΛ : Ω →

∏
i∈Λ⋐Zd SN−1 is defined as the projection onto the coordinates within Λ. We want our infinite-volume

Gibbs measure, when we construct it, to be a measure on (Ω,F). Moreover, we will use M1(Ω) to denote set of all
probability measures on (Ω,F).

In addition, for every finite subset Λ ⋐ Zd, we will denote by the σ-algebra

FΛ = σ

ρ−1
Λ (A) : A ∈ P

 ∏
i∈Λ⋐Zd

SN−1

 .

Notice that FΛ is a sub-σ algebra of F.
As we describe the σ-algebra on Ω, let us also introduce an essential vocabulary that will be crucial in constructing an

infinite-Gibbs measure.

Definition 3.3 (Local Function). Given f : Ω → R bounded, we say that f is local on Λ ⋐ Zd iff f(ψ) = f(ψ̃) for
every ψ, ψ̃ ∈ Ω such that ψΛ = ψ̃Λ. In other words, f is local if it only depends on the ΩΛ components.

We remark that all bounded local functions are measurable in F; what’s more, they are also FΛ-measurable by definition.
We now go back to the questions proposed above. Unfortunately, the next two questions are hard to answer; therefore,

we avoid answering this question and rather try to define an infinite-volume Gibbs measure with no reference to a limit.
As we will see, the DLR Condition, which ensures compatibility with the finite volume measures, is the characterization
of infinite-volume Gibbs measure that we will use to define infinite-volume Gibbs measure without reference to a limit.

3.2 The DLR Condition
In this section, we introduce DLR condition in the theorem below, which holds for every finite-volume Gibbs mea-
sure.

Theorem 3.4 (Dobrushin, Lanford, and Ruelle). For every f : Ω → R measurable and bounded and for all B ⊂ Λ ⋐
Zd,

EΛ,φ [f ] = EΛ,φ [EB,· [f ])] . (2)

Proof. We start at the right-hand side.

EΛ,φ[E∆,·(f))] =

∫
ψ∈ΩΛ

E∆,ψΛφΛc [f ]
exp (−βHΛ(ψΛφΛc))

ZΛ,ψΛφΛc

(∏
i∈Λ

σ

)
(dψ). (3)

Similarly,

E∆,ψΛφΛc [f ] =

∫
η∈Ω∆

f(η∆ψΛ−∆φΛc)
exp (−βH∆(η∆ψΛ−∆φΛc))

Zη∆ψΛ−∆φΛc

(∏
i∈∆

σ

)
(dη). (4)

Observe further that because HΛ only depends on ΩΛ components of the spins and the boundary, we have that

HΛ(ψΛφΛc)−H∆(ψΛφΛc) = HΛ(ψ∆ψΛ−∆φΛc)−H∆(ψ∆ψΛ−∆φΛc)

= HΛ(η∆ψΛ−∆φΛc)−H∆(η∆ψΛ−∆φΛc). (5)

Therefore, we substitute (4) into (3) and use (5). For the sake of brevity, we write dψΛ instead of
(∏

i∈Λ σ
)
(dψΛ)
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because it is clear we are taking an integral with respect to the Haar measure. Then, we get that

EΛ,φ[E∆,·(f))]

=

∫
ψΛ−∆∈ΩΛ−∆

∫
ψ∆∈Ω∆

∫
η∆∈Ω∆

f(η∆ψΛ−∆φΛc)
exp(−β(H∆(η∆ψΛ−∆φΛc) +HΛ(ψ∆ψΛ−∆φΛc)))

Z∆,η∆ψΛ−∆φΛcZΛ,ψ∆ψΛ−∆φΛc

dη∆dψ∆dψΛ−∆

=

∫
ψΛ−∆∈ΩΛ−∆

∫
η∆∈Ω∆

∫
ψ∆∈Ω∆

f(η∆ψΛ−∆φΛc)
exp(−β(H∆(ψ∆ψΛ−∆φΛc) +HΛ(η∆ψΛ−∆φΛc)))

Z∆,η∆ψΛ−∆φΛcZΛ,ψ∆ψΛ−∆φΛc

dψ∆dη∆dψΛ−∆

=

∫
ψΛ−∆∈ΩΛ−∆

∫
η∆∈Ω∆

f(η∆ψΛ−∆φΛc)
exp(−βH∆(η∆ψΛ−∆φΛc))

ZΛ,η∆ψΛ−∆φΛc

∫
ψ∆∈Ω∆

exp(−βHΛ(ψ∆ψΛ−∆φΛc))dψ∆

Z∆,ψ∆ψΛ−∆φΛc︸ ︷︷ ︸
=1

dη∆dψΛ−∆

=

∫
ψΛ∈ΩΛ

f(ψΛφΛc)
exp(−βHΛ(ψΛφΛc))

ZΛ,ψΛφΛc

dψΛ (∵ Let ψΛ = η∆ψΛ−∆)

= EΛ,φ[f ].

Of course, if we were to take the ‘limit’ as Λ ↗ Zd after taking expectation, by DLR Condition, we will have that the
resulting infinite-volume measure µ satisfies

Eµ[f ] = Eµ[EΛ,·(f)] (6)

for every bounded and measurable function f. However, it turns out that DLR Condition also gives us a way to define
infinite-volume Gibbs measure without reference to limits.

To do this, we first notice that for every fixed f continuous, the function

ψ 7→ EΛ,ψ[f ]

is a continuous, bounded, local function on Λ as a function of ψ and hence measurable. Now, we are ready to define
the infinite-volume Gibbs measure indeed without reference to limits. In the definition below, we make strong use of the
Kakutani-Markov-Riesz Theorem, whose statement we recall first.

Theorem 3.5 (Kakutani-Markov-Riesz). Let Ω be a locally compact Hausdorff space and T a positive linear functional
on Cc(Ω → C). Then, there exists a unique positive measure µ such that for every f ∈ Cc(Ω → C)

T (f) =

∫
Ω

f(ψ)µ(dψ).

For the proof of it, please refer to [15, 6, 13].
Using this theorem, we may now make the

Definition 3.6 (Infinite-Volume Gibbs Measure). Suppose we have a positive linear functional T : Cc(Ω) → R such
that

T (f) = T (EΛ,·[f ])

for every Λ ⋐ Zd. Consider µ measure corresponing to T given via Riesz–Markov–Kakutani Theorem. We call this µ
an infinite-volume Gibbs measure. Note that this µ will satisfy the DLR condition.

Remark 3.7. Notice that this definition does not make reference to limits because the function T does not need to
come from a limit.

While readers familiar with conditional probability will smell that the DLR condition has something to do with conditional
probability, it is a little tricky to write it in the language of conditional probability just yet. To do this formally, we appeal
to the language of probability kernels and specifications. We kindly refer readers unfamiliar with these concepts to
Appendix B below‘.
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3.3 Gibbsian Specification
Consider the collection of probability kernel {πΛ}Λ⋐Zd where each πΛ : F × Ω → [0, 1] is defined by:

πΛ(A|ψ) ≡
∫
ψ∈A

exp (−βHΛ(ψ))

ZΛ,φ
d

(∏
i∈Λ

σ

)
(ψ) = µΛ,φ(A). (7)

It is visible from the definition that it is a probability kernel.
We claim that this family is a specification.

Theorem 3.8. π = {πΛ}Λ⋐Zd is a specification.

Proof. We need to check two things: that each πΛ is a proper probability kernel and that for every ∆ ⊂ Λ ⋐ Zd,
πΛπ∆ = πΛ.

To first show that each πΛ is proper, fix a finite subset Λ ⋐ Zd and show that for every B ∈ FΛc, πΛ(B|ψ) = 1B(ψ).
This is very easy to see because

πΛ(B|ψ) = µd,Nβ,h,L,φ(B)

=

∫
ηΛ∈ΩΛ

1B(ηΛψΛc)
exp (−βHΛ(η))

Zd,Nβ,h,L,φ

(∏
i∈Λ

σ

)
(dη)

= 1B(ψ)

∫
ηΛ∈ΩΛ

exp (−βHΛ(η))

Zd,Nβ,h,L,φ

(∏
i∈Λ

σ

)
(dη)

= 1B(ψ)

where the second equality follows from the fact that B ∈ FΛc .
Next, we show that for every ∆ ⊂ Λ ⋐ Zd, πΛπ∆ = πΛ. However, this is just the same as DLR condition applied

to indicator functions.

This theorem above, along with Theorem B.8, allows us to relate the finite Gibbs measure to conditional probability.
Moreover, this above theorem allows us to define infinite-volume Gibbs measure in even more abstract language.

Definition 3.9 (Infinite-Volume Gibbs Measure). We call probability measure µ ∈ M1(Ω) an infinite-volume Gibbs
measure if it is compatible with specification given above {πΛ}Λ⋐Zd , i.e. for every Λ ⋐ Zd, µπΛ = µ.

Remark 3.10. It is easy to check that definition above corresponds to Definition 3.6.

Using notation from Definition B.7, Let us denote set of all infinite-volume Gibbs measures via G(π). Then, proving
existence of infinite-volumes Gibbs measure can be rephrased to showing that G(π) ̸= ∅ and showing the uniqueness can
be rephrased to showing that |G(π)| = 1.

Since our goal is to prove the existence of an infinite-volume Gibbs measure, we show that G(π) ̸= ∅. However, to do
this, we first need to deal with a bit of topology.

3.4 Topology of Ω and M1(Ω).
From the very beginning, we gave product topology on Ω. Because each SN−1 is compact, by Tychonoff’s theorem, we
know that Ω is a compact space.

Lemma 3.11. Ω is metrizable with distance function given by

d(x, y) =
∑
i∈N

∥xi − yi∥
2i+1

(8)

where we enumerate Zd. One can trivially check that the d indeed is a distance function.

14



It turns out that thinking of continuous functions in terms of ϵ− δ definition using this metric is much simpler. We will
use this metric on Ω to prove Lemma 3.13 and Theorem 3.21.

Remark 3.12. Consider N = 1 case. This is a fun mental exercise that I really enjoyed doing (and is not relevant to
the rest of the section). Notice that Ω in this case is homeomorphic to the Cantor set in [0, 1]. Therefore, the pullback
of the Gibbs measure we give on Ω to the Cantor set and trivially embedding it to [0, 1] will generate a singular
continuous measure with respect to the Lebesgue measure on [0, 1].

Now, before we define topology on M1(Ω), the set of all measures on (Ω,F), we prove a lemma. Before that, however,
let us denote set of all continuous functions on Ω by C(Ω). Because Ω is compact, we know that C(Ω) = Cc(Ω) = C0(Ω),
i.e. all continuous functions on Ω are bounded and have compact support.

Lemma 3.13. Local functions are dense in C(Ω) equipped with the sup norm.

Proof. Given ϵ > 0 and g ∈ C(Ω), one can find Λ ⋐ Zd such that for every ψ,φ ∈ Ω with ψΛ = φΛ, |g(ψ)−g(φ)| < ϵ.
We can find such a Λ because g is continuous and because the metric on Ω is defined such that for big enough index
(so outside of some finite set) whether or not two configurations differ on that coordinate is negligible.

Now pick your favorite ψ̃ ∈ Ω. Define f(ψ) = g(ψΛψ̃Λc). By construction, f is local and for every ψ ∈ Ω,

|f(ψ)− g(ψ)| < ϵ.

Therefore, we have that
||f − g||∞ < ϵ,

proving the lemma.

We also prove a lemma about measures in M1(Ω).

Lemma 3.14. Given µ, ν ∈M1(Ω), the following are equivalent.

• µ = ν,

• Eµ(f) = Eν(f) for every f local,

• and Eµ(g) = Eν(g) for every g ∈ C(Ω) .

The proof is immediate from the Lemma 3.13.
Now we endow a topology on M1(Ω). We define the topology by specifying the mode of convergence.

Definition 3.15. We say µn → µ in M1(Ω) if for every A ∈ F, µn(A) → µ(A).

This topology is exactly the weak topology, i.e., integrals of continuous functions converge; Below we characterize equivalent
ways to define convergence on M1(Ω).

Lemma 3.16. Suppose {µn} ⊂M1(Ω) and µ ∈M1(Ω). Then, the following are equivalent.

• µn → µ,

• Eµn
(f) → Eµ(f) for every f local function,

• Eµn
(g) → Eµ(g) for every g ∈ C(Ω).

The proof again is immediate from the Lemma 3.13.
Now, we show that M1(Ω) is compact in this topology, and hence sequentially compact thanks to the space being

metrizable. To do this, we appeal to the Banach-Alaoglu theorem, a classical theorem from functional analysis.
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Theorem 3.17 (Banach-Alaoglu). Suppose X is a Banach space. Then the closed unit ball on X∗ under weak-∗
topology is compact.

For the proof of it, we refer the readers to [12] or [14]. Now, we prove that M1(Ω) is compact.

Theorem 3.18. M1(Ω) is compact under the topology specified via Definition 3.15.

Proof. Identify every µ ∈ M1(Ω) with functional Tµ ∈ C(Ω)∗ such that Tµ(f) =
∫
Ω
f(ψ)dµ(ψ) using KMR, i.e.

Theorem 3.5. Observe that C(Ω) is a Banach space and that µn → µ iff Tµn
→ Tµ in weak-∗ topology, thanks to

Lemma 3.16. This shows that identification that KMR is in fact a homeomorphism.
Moreover, notice that because every µ ∈ M1(Ω) is a probability measure, M1(Ω) ⊂ B̄∗

1 , i.e. M1(Ω) can be
identified with a subset of the closed unit ball in C(Ω)∗. Since the limit of a linear functionals (hence in particular
those of the form Tµn

) is a functional, and since by KMR we can identify the limit with an element in M1(Ω), we
have that M1(Ω) identifies with a closed subset of B̄∗

1 . Now, using Banach-Alaoglu and the fact that a closed subset
of every compact set is compact, we have that M1(Ω) is compact, as desired.

Now, we go on to prove the existence of an infinite-volume Gibbs measure.

3.5 Existence of Infinite-Volume Gibbs Measure
First, a definition.

Definition 3.19 (Quasilocal Specification). We say that a specification π = {πΛ}Λ⋐Zd is quasilocal if for every
Λ ⋐ Zd and A ∈ F, the map ψ 7→ πΛ(A|ψ) is continuous.

The reason why we call these specifications quasilocal is because they are continuous and as seen in Lemma 3.13, local
functions are dense in the set of continuous functions, thus ‘quasilocal’.

We now prove a small fact about quasilocal specifications.

Lemma 3.20 (Feller Property). Let π = {πΛ}Λ⋐Zd be a quasi-local specifications. Then, for every Λ ⋐ Zd and for
every f ∈ C(Ω) , πΛf ∈ C(Ω) where πΛf is defined in (78).

Proof. It is visible that for every A ∈ F and α ∈ R, πΛ(α1A)(ψ) =
∫
Ω
α1A(η)πΛ(dη|ψ) is continuous. Therefore,

a linear combination of indicator functions applied to πΛ is continuous. Now given f ∈ C(Ω), approximate f with
linear combinations of indicator functions, say fn. Then,

||πΛ(fn)− πΛ(f)||∞ = sup
ψ∈Ω

|
∫
Ω

(fn(η)− f(η))πΛ(dη|ψ)|

≤ ||fn − f ||∞ sup
ψ∈Ω

|
∫
Ω

πΛ(dη|ψ)|

= ||fn − f ||∞.

Thus πΛfn → πΛf uniformly. Since uniform limit of continuous functions is continuous, we have that πΛf ∈
C(Ω).

We now show that the specification associated with each finite-volume Gibbs measure is quasilocal.

Theorem 3.21. Specification π = {πΛ}Λ⋐Zd defined via πΛ(A|ψ) = µd,Nβ,h,L,φ(A) is a quasilocal specification.
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Proof. Given Λ ⋐ Zd, let us enumerate Zd and find M for every i ∈ ∂Λ, i < M in the enumeration of Zd. Now given
ϵ > 0, let δ = ϵ/22M . Then, for every ψ,φ ∈ Ω such that d(ψ,φ) < δ, we know that the first M coordinates of ψ and
φ must be the same by definition of distance on Ω as in (8). Therefore, ψ∂Λ = φ∂Λ by choice of M and this means
|πΛ(A|ψ)− πΛ(A|φ)| = 0 < ϵ. Therefore, we have proved that π = {πΛ}Λ⋐Zd is quasi-local. This proof works for all
O(N) model.

Theorem 3.22. If π = {πΛ}Λ⋐Zd is quasi-local, then G(π) ̸= ∅. This implies that infinite-volume Gibbs measure
exists.

Proof. Fix your favorite φ ∈ Ω. Define measures µn(·) = πΛn(·|φ) where Λn ≡ [−n, n]d. Given Λ ⋐ Zd since Λ
is finite, there exists some n0 such that for every n ≥ n0, Λ ⊂ Λn. Therefore, we have thanks to the consistency
condition (part of the definition of specification)

µnπΛ(·) = πΛnπΛ(·|φ) = πΛn(·|φ) = µn. (9)

By Theorem 3.18, we have that M1(Ω) is sequentially compact and hence we can find subsequence (µnk
)k∈N such

that µnk
→ µ for some µ ∈M1(Ω). We claim that µ ∈ π and hence is an infinite Gibbs measure.

First, since π is quasilocal, we know that for every Λ ⋐ Zd and f ∈ C(Ω), by Lemma 3.20, πΛf ∈ C(Ω). Then,
we get that

EµπΛ
[f ] = Eµ[πΛf ] = lim

k→∞
Eµnk

[πΛf ] = lim
k→∞

Eµnk
πΛ

[f ] = lim
k→∞

Eµnk
[f ] = Eµ[f ].

Above, the first and the third equality follow from Lemma B.6; the second and the last equality follow from
Lemma 3.16 and that µmk

→ µ; while the fourth equality follows from (9). We remark that in the second equality
is where we needed πΛf ∈ C(Ω). With this, we have shown that µπΛ = µ for every Λ ⋐ Zd thanks to Lemma 3.14.
This means µ ∈ G(π) and hence µ is an infinite-volume Gibbs measure.

3.6 Why not Kolmogorov’s Extension Theorem?
Now that we have shown the existence of an infinite-volume Gibbs measure, let us meditate on whether all of our hard
work was actually necessary. One way to reflect on our hard work is by testing whether ‘easy’ extensions succeed or not in
giving what we wanted. One of the easy and well-known extension techniques is Kolmogorov’s Extension Theorem, also
known as Kolmogorov existence theorem, the Kolmogorov consistency theorem, or the Daniell-Kolmogorov theorem. The
theorem goes as follows in this context.

Theorem 3.23 (Kolmogorov’s Extension Theorem). Let {µΛ}Λ⋐Zd such that each µΛ is a probility measure on
(ΩΛ,FΛ). Moreover, suppose they satisfy the consistency condition in the sense that for every Λ ⋐ Zd and for every
∆ ⊂ Λ,

µ∆ = µΛ · (ρ∆)−1

where ρ∆ : ΩΛ → Ω∆ is the natural projection map. Then, there exists a unique µ ∈ M1(Ω) such that µ | Λ = µΛ for
every Λ ⋐ Zd.

The reason why we cannot use this extension theorem simply is that the finite-volume Gibbs measures do not satisfy
the assumption that Kolmogorov’s Extension Theorem requires. For a concrete example, we refer the readers to Example
7.72 of [15].

3.7 Remark on Uniqueness
Let us wrap up this section with a remark on the uniqueness of the infinite-volume Gibbs measure. It is important to
observe that a priori, we do not know whether an infinite-volume Gibbs measure is unique. In particular, the part in the
construction that introduces potential non-uniqueness is when we fix ‘our favorite boundary condition φ’ in the proof of
Theorem 3.22.

Over the years, people have come up with a uniqueness criterion that tells us when we have the uniqueness of an
infinite-volume Gibbs measure. One of them is Dobrushin’s Uniqueness Theorem, which can be found in Section 6.5 of
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[7]. The proof includes looking at total variation distance on M1(Ω), or equivalently, thanks to Theorem 3.5, operator
norm on C(Ω)∗.

With this, we end our discussion on the existence of an infinite-volume Gibbs measure in O(N) model setting.
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4 Zach: Correlation inequalities: Ginibre, FKG, GHS

4.1 Griffiths inequality

4.2 FKG inequality

19



5 Kashti: Full solution in d = 1 via transfer matrices

5.1 The Ising Model, A Primer (FV 1.4.2) [7]
The general theory of the Ising model was developed by Wilhelm Lenz in 1920 in response to he question of weather phase
transitions could be described within statistical mechanics. It ended up being the first system of locally interacting units
where it was possible to prove the existence of phase transitions.

We can model the crystalline structure corresponding to atoms in a magnet using a finite non-oriented graph G(Λ),
whose of set of vertices Λ is a subset of Zn. An example is the box of radius 2, where a box is defined B(n) = {−n, ..., n}d,
shown in Figure 1.1. We will consider the edge between two vertices i, j with ||j − i||1 = 1 where we define the norm as
||i||1 =

∑k
d=1 |ik|. We use i ∽ j to denote two edges as nearest neighbors. Thus, the set of edges in a box are denoted by

{{i, j} ⊂ B(n) : i ∽ j}.

A key point of the Ising model is that it assumes a spin is located at each vertex of the graph G, where the spins are
restricted to one direction +1 for up and −1 for down at each vertex i. A configuration is denoted by ω ∈ ΩΛ where

ΩΛ = {−1,+1}Λ.

5.1.1 Finite Volume Gibbs Distributions (FV 3.1) [7]

For a finite volume Λ ⊂ Zd the configurations of the Ising model are given by elements of the set

ΩΛ = {SN−1}Λ.

Definition 5.1. At a vertex i ∈ Zd, spin is the basic random variable associated to the model. More generally it is
the random variable σi : ΩΛ → SN where we define σi(ψ) = ψi.
Concretely think of it as taking a configuration of the spins for a given box and outputting the spin for a given vertex
i.

We identify a finite set Λ with a graph containing all edges by the nearest neighbor pairs of the vertices of Λ. Here we
denote the set of edges by

EΛ = {{i, j} ⊂ Λ : i ∽ j}

For each configuration ψ ∈ ΩΛ we can associate an energy.

Definition 5.2.
H(ψ) =

1

2
⟨ψ,−∆ψ⟩ − ⟨h, ψ⟩

where h ∈ R is the magnetic field.

Moving forward, we will assume there is no magnetic field meaning that the h term is 0. Thus:

H(ψ) =
1

2
⟨ψ,−∆ψ⟩

Now we define having periodic boundary conditions.
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Definition 5.3. The Gibbs distribution of the Ising model in a torus with n vertices denoted Vn with periodic boundary
condition at parameter inverse temperature β ∈ R+ on {−1, 1}Vn defined by

µ(ψ) =
1

Z
exp(−βH(ψ))

The normalization constant
Z =

∑
ψ∈ΩΛ

exp(−βH)

is called the partition function in Λ with periodic boundary condition.

More generally, we define the partition function as

Z =

∫
ψ→SN−1

exp(−βH)dν(ψ) =

∫
ΩΛ

exp(−βH)dν(ψ)

We note that our measure ν is usually just the uniform product measure on SN−1 (ie uniform measure on the
circle, sphere,...), but we then take the product over all vertices |Λ|, and that is our new measure (the product measure
over all the uniform measures). Thus

dν(ψ) = ⊗i∈|Λ|dνSN−1ψi.

To see this agrees with the Ising measure version, note that in that case we simply that ν to be the counting
measure.

The partition function “adds up” the Boltzmann weights exp(−βH) for every possible spin configuration across all
vertices of the lattice.

5.1.2 Deriving The Two Point Function and Transfer Matrix

At each site j ∈ {1, ..., n} configuration ω = (s1, ..., sn) ∈ ΩΛ = (SN−1)n. We note the Gibbs weight of our configuration
is

exp(−βH(ω)) =

n∏
j=1

eβsj ·sj+1

with our defined product measure. Then the partition function can be written as

Zn(β) =

∫
ΩΛ

e−βH(ω)dν(ω) =

∫
(SN−1)n

n∏
j=1

eβsj ·sj+1

n∏
j=1

dνSN−1(sj)

Now we define the bond kernel K : SN−1 × SN−1 → R, where explicitly

K(s, s′) := eβs·s
′

Then we have that the nearest-neighbor Boltzmann factors as

n∏
j=1

eβsj ·sj+1 =

n∏
j=1

K(sj , sj+1)

This is the key point: the Gibbs weight is a product of identical two-site kernels which dependent ONLY on adjacent
spins. In a single dimension, this factorization is exactly what allows up to define the full transfer operator (in higher
dimension there is no single linear ordering which gives us this kind of single chain factorization of the full Gibbs weight).

Now we define the transfer operator T on L2(SN−1, dνSN+1) using the integral kernel:

(Tf)(s) =

∫
SN−1

K(s, s′)f(s′)dνSN−1(s′)

Equivalently, T is the integral operator with kernel K(s, s′). In the discrete Ising case (N = 1), T simply reduces to
the finite matrix with entries Tss′ = K(s, s′).

Now we compute Tn kernel iteratively. We use Km(x, y) to be the kernel of Tm. Then :
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K(m)(x, y) =

∫
(SN−1)m−1

K(x, x1)K(x1, x2)...K(xm−1, y)

m−1∏
i=1

dνSN−1(xi)

This gives us

Zn(β) =

∫
(SN−1)n

n∏
j=1

K(sj , sj+1)

n∏
j=1

dνSN−1(sj)

=

∫
SN−1

Kn(x, x)dνSN−1(x) = Tr(Tn)

Note that for finite SN−1 this is the matrix identity Tr(Tn) =
∑
i(T

n)ii.

Now we fix two sites 0 and r where r is the distance between them. The two point function is just then simply

E[s0 · sr] =
1

Zn

∫
(SN−1)n

(s0 · sr)
n∏
j=1

K(sj , sj+1)

n∏
j=1

dνSν−1(sj)

Now we partition the product of kernels into three blocks (two below and one which is the (s0 · sr)):

(K(s0, s1)...K(sr−1, sr))(K(sr, sr+1)...K(sn, s0))

and integrate over the intermediate spins. This gives the multiplication operator A on L2(SN−1) given by

(Af)(s) = Ψ(s)f(s)

where Ψ(s) for Ψ : SN−1 → R is a scalar function representing the component of spin )(the component of the spin at site s).

For the dot product observable, we write

s0 · sr =
N∑
a=1

Ψa(s0)Ψa(sr)

Now we compute the numerator of E[s0 · sr]. The argument below works for a fixed component Ψ and extends by
linearity to the sum.

N =

∫
SN−1

∫
SN−1

Ψ(s0)Ψ(sr)K
(r)(s0, sr)K

(n−r)(sr, s0)dν(s0)dν(sr)

Now consider the product operator T rA which has kernel L(r)(x, y) that

(T rAf)(x) =

∫
SN−1

K(r)(x, y)(Af)(y)dν(y) =

∫
SN−1

K(r)(x, y)Ψ(y)f(y)dν(y)

Thus the kernel is of the form
L(r)(x, y) = K(r)(x, y)Ψ(y)

Now we take the next form Tn−rA = Tn−r ◦A. The kernel of Tn−rA by the same reasoning is.

L̃(n−r)(x, y) = K(n−r)Ψ(y)

Now we compute the kernel of the full product (Tn−rA) ◦ (T rA) is given by the usual kernel composition formula

(Tn−rAT rA)(x, y) =

∫
SN−1

L̃(n−r)(x, z)L(r)(z, y)dν(z)

=

∫
SN−1

(K(n−1)(x, z)Ψ(z))(K(r)(z, y)Ψ(y))dν(z)

= Ψ(y)

∫
SN−1

K(n−r)(x, z)K(r)(z, y)Ψ(z)dν(z)
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Now finally, we take the trace

Tr(Tn−rAT rA) =
∫
SN−1

Ψ(x)(

∫
SN−1

K(n−r)(x, z)K(r)(z, x)Ψ(z)dν(z))dν(x)

Then we swap the order of integration by Fubini and we rename our dummy variables (x 7→ s0, z 7→ sr)

Tr(Tn−rAT rA) =
∫∫

SN−1×SN−1

Ψ(s0)Ψ(sr)K
(n−r)(s0, sr)K

r(sr, s0)dν(sr)dν(s0)

Now we note that scalar product commutes so we have

Tr(Tn−rAT rA) =
∫∫

Ψ(s0)Ψ(sr)K
(r)(s0, sr)K

(n−r)(sr, s0)dν(s0)dν(sr) = N

Finally, we divide by Z = Tr(Tn).
Therefore the two-point function equals the trace-with-insertions divided by the partition function:

E[s0 ·sr] =
Tr
(
T N−rAT rA

)
Tr
(
T N

)
5.1.3 Essential Background

If we suppose λ0 > λ1 ≥ λ2 ≥ λ3 ≥ ... are the eigenvalues of T , by the positivity of the kernel, λ0 is strictly larger than
the next eigenvalue in magnitude for β > 0. Note such λ0 must exist as the transfer operator is compact, self-adjoint, and
positivity improving as its kernel eβψ·ψ

′
is strictly positive. Thus by Perron–Frobenius, such a unique largest eigenvalue

must exist.
Then we diagonalize and insert resolutions of the identity into the two point function

E[s0 · sr] =
Tr(ST rSTN−r)

Tr(Tn)

In the limit as N → ∞, this sum becomes proportional to (λ1

λ0
)r. The leading nontrivial contribution for a seperation

r large comes from the first sub-leading eigenvalue

E[s0 · s1] ∼ C(
λ1
λ2

)r

as r → ∞. Thus the correlations decay exponentially giving us the decay rate (which we call the inverse correlation
length):

ζ−1 = log
λ0
λ1

5.1.4 N=1 (Ising Spins ±1)

For the 1-D periodic chain having L vertices i = 1, .., L and edges E = {|[i, i+ 1} : i = 1, ..., L} where i+ 1 is taken mod
L. Our spins are given by ψi ∈ {±1}. Now we use the discrete Laplacian Convention

(−∆ψ)i =
∑

j:|{i,j}∈E

(ψi − ψj)

Then we compute the quadratic form

⟨ψ,−∆ψ⟩ =
∑
i

ψi
∑
j∼i

(ψi − ψj) =
∑

{i,j}∈E

(ψi(ψi − ψj) + ψj(ψj − ψi))

we simplify the inside terms

ψi(ψi − ψj) + ψj(ψj − ψi) = ψ2
i + ψ2

j − 2ψiψj = 2− 2ψiψj

Thus we obtain
1

2
⟨ψ,−∆ψ⟩ =

∑
{i,j}∈E

(1− ψiψj) = |E| −
∑

{i,j}∈E

ψiψj
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. This means that in a uniform magnetic field h, our Hamiltonian is of the form

H(ψ) =
1

2
⟨ψ,−∆ψ⟩ = L−

L∑
i=1

ψiψi+1

and the partition function at inverse temperature β is

ZL(β) =
∑

ψ∈{±1}L

e−βH(ψ) = e−βL
∑
ψ

exp(β
L∑
i=1

ψiψi+1)

Now using the indices s, s′ ∈ {−1,+1} we defined the transfer matrix

Ts,s′ = exp(βss′)

Then the sum over spins factorizes into a product of T entries and we get the matrix[
eβ e−β

e−β eβ

]
Note that going forward we will keep the multiplicative e−βL constant in mind but drop it in calculations as it does

not effect the ratio λ0

λ1
.

Now we compute the eigenvalues of T . Let us denote eβ = a and e−β = b.
Then

det(T − λI) = (a− λ)(a− λ)− b2 = 0

so

λ2 − (2a)λ+ (a2 − b2) = 0

. We then compute

2a = eβ + eβ = 2eβ

and
a− a = 0

additionally with b2 = e−2β and a2 = e2β . Now we introduce a term

∆ =

√
(
a− a

2
)2 + b2 =

√
e−2β = e−β

giving us our eigenvalues

λ± = eβ ±∆ = eβ ± e−β

and finally, we order them by λ0 = λ+ and λ1 = λ− for β > 0, λ0 > λ1 > 0

Now let S = diag(1,−1). The two point function is given by

E[s0 · sr]L =
Tr(ST rSTL−r)

Tr(TL)

Now we diagonalize the sum T =
∑
k=0,1 λkΠk (Πk being the rank 1 projectors). Now expand the numerator and

denominator giving a finite sum of terms of the form λriλ
L−r
j . Thus concretely we get

E[s0 · sr]L =

∑
i,j∈{0,1} cijλ

r
iλ
L−r
j

λL0 + λL1

for some constants cji independent of L, r. Now we take the limit L → ∞. First divide the numerator and denominator
by λL0 Since |λ0/λ1| > 1 for β > 0, all terms with a factor (λ1/λ0)

L vanish in the limit. The surviving leading L → ∞
contribution for a fixed r is

E[s0 · sr] = c(
λ1
λ0

)r
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where c is a nonzero amplitude coming for eigenvector overlaps. In particular, we have

E[s0 · sr] ∝ (
λ1
λ0

)r.

Thus the exponential decay is proven and the decay factor per step is the eigenvalue ratio λ1/λ0.
Now, the decay ratio explicity can be given by

λ1
λ0

=
eβ − e−β

eβ + e−β
=

2 sinhβ

2 coshβ
= tanhβ

.
Now we take β → ∞ to get

λ1
λ0

→ 1

From below, which means for any given temperature, this decays exponentially.

5.2 N=2 (XY)
In the XY model, spins are unit vectors in the plane, where we will denote as ψj = eiθj . Here the discrete Laplacian acts
as

(∆ψ)j = ψj+1 + ψj−1 − 2ψj

Thus we have
1

2
⟨ψ,−∆ψ⟩ = 1

2

∑
j

ψj(2ψj − ψj+1 − ψj−1)

=
∑
j

|ψj |2 −
1

2

∑
j

(ψjψj+1 + ψj+1ψj)

=
∑
j

|ψj |2 −
∑
j

Re(ψjψj+1])

If |ψj | = 1, our first term
∑
j |ψj |2 will simply be a constant independent of the confirmation; drop constants in the

Gibbs weight. Thus up to a constant, we have

H({θj}) = −
∑
j

Re(ψjψj+1) = −
∑
j

cos(θj+1 − θj)

Note that when h = 0 the magnetization vanishes because of symmetry and so the full two point function equals the
connected piece. Now we provide more detail:

Now our Hamiltonian is of the form
H(ψ) =

1

2
⟨ψ,−∆ψ⟩

As we have seen for spins ψj = eiθj ∈ S1, that

H({θj}) + constant = −
n∑
j=1

cos(θj+1 − θj)

But we drop the constant so we get with periodic boundary

H({θj}) = −
n∑
j=1

cos(θj+1 − θj)

Now the Gibbs measure at inverse temperature β is

µ({θj}) ∝ exp(β
n∑
j=1

cos(θj+1 − θj))
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thus the partition function is

Zn =

∫
[0,2π]n

n∏
j=1

dθj

n∏
j=1

eβ cos(θj+1−θj)

Now the transfer operator acting on functions f ∈ L2([0, 2π]) we define as

(Tf)(θ) =

∫ 2π

0

K(θ, θ′)f(θ′)dθ

where the kernel is K(θ, θ′) = eβ cos(θ−θ′) and we note that K is only dependent on θ − θ′. Thus the partition function
can simply be written as the trace

Zn = Tr(Tn)

Now we commute the eigen-functions and eigenvalues. Since K(θ, θ′) is only dependent on θ − θ′, T is simply the
convolution operator on the circle meaning it can be diagonalized by the Fourier basis.

Take em(θ) = eimθ for m ∈ Z. We compute

(Tem)(θ) =

∫ 2π

0

eβ cos(θ−θ′)eimθ
′
dθ′

Now we do a change of variables and let γ = θ − θ′ so we have θ′ = θ − γ so dθ′ = −dγ. Thus the integral becomes

(Tem)(θ) =

∫ 2π

0

eβ cos γeim(θ−γ)dγ

and we factor out eimθ getting

(Tem)(θ) = eimθ
∫ 2π

0

eb cos γe−imγdγ

So we have em is an eigenfunction with eigenvalue

λm =

∫ 2π

0

eb cos γe−inγdγ

This is exactly the modified Bessel function
1

2π

∫ 2π

0

eb cos γe−inγdγ

so we have
γm = 2πIm(β)

meaning we have an eigenbasis {em} with eigen values {2πIm(β)}, with the largest value being the expected λ0.

Now using transform operator formalism we have

E[ei(θ0−θr)] =
1

Zn
Tr(Tn−rA†T rA)

where A is the multiplicative operator (Af)(θ) = eiθf(θ). Thus

Aem(θ) = eiθeimθ = ei(m+1)θ = em+1(θ)

and A raises the Fourier index by 1 while A† lowers it.

Thus A maps gm 7→ gm+1 for gm = eimθ Now use the spectral resolution of T ,

Tgm = λm gm.

Then
Tr
(
Tn−rA†T rA

)
=
∑
m

E[gm, T
n−rA†T rAgm].
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Since Agm = gm+1 and Tgm+1 = λm+1gm+1, we obtain

E[gm, T
n−rA†T rAgm] = λn−rm λ rm+1.

Therefore,
Tr
(
Tn−rA†T rA

)
=
∑
m

λn−rm λ rm+1.

Thus we have
Tr(Tn−rA†T rA) =

∑
m∈Z

λn−rm λrm+1

and then we divide by partition function
Zn =

∑
m∈Z

λnm

Finally in the limit n→ ∞. the sum is dominated by the largest eigenvalue λ0 os

E[ei(θ0−θr)] ∼ λn−r0 λr1
λn0

= (
λ1
λ0

)r

Note the cosine term is simply the real part so we obtain

E[cos(θ0 − θr)] = (
λ1
λ0

)r = (
I1(β)

I0(β)
)r = e−r/ζ

where ζ = 1

− log(
I1(β)

I0(β)
)

as needed.

Now we study β → ∞. Make the e:

λ1(β)

λ0(β)
≈ I1(β)

I0(β)
=

eβ√
2πβ

(1− 3
8β )

eβ√
2πβ

(1 + 3
8β )

Now we take the limit as β → ∞:
eβ√
2πβ

(1− 3
8β )

eβ√
2πβ

(1 + 3
8β )

→ 1

from below, so we have exponential decay.

5.3 N=3 [8]
We do this with the assumption that the magnetic field is 0. To do this take our Hamiltonain

H(ψ) =
1

2
⟨ψ,−∆ψ⟩

On a 1-D with nearest neighbor discrete Laplacian (∆ψ)j = ψj+1 + ψj−1 − 2ψj , so neglecting the magnetic filed term,

⟨ψ,−∆ψ⟩ =
∑
j

||ψj |2 −
∑
j

Re(ψjψj+1)

In this case the spin is constrained to a unit vector |ψj | = 1. The first term is constant and can be dropped from the
Gibbs weight. Thus our Hamilatonain is of the form

H({ψj}) = −
∑
j

ψj · ψj+1

For a unit vectors, s ∈ S2 parametrize relative angle by cos θ = s · s′. The Boltzmann weight for a bond is given by

exp(βJs · s′) = exp(E cos θ)

where E = βJ
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Now we define the transfer operator as an integral operator on L2(S2) with kernel

(Tf)(s′) =

∫
S2

eEs
′·sf(s)dω(s)

where we have dΩ the usual solid angle measure on the sphere. As the kernel depends only on s′ ·s = cos θ, it is rotationally
invariant and symmetric meaning T is self adjoint, compact (Hilbert Schmidt) and positive. The partition function is the
operator trace

Zn = Tr(Tn)

As the kernel of the function is s ·s′ the eigenfunctions are simply the spherical harmonics Yℓm(s) where the eigenvalue
depends on ℓ (with degeneracy 2ℓ+ 1). Now we expand the kernel in Legendre polynomials. This gives us

eE cos θ =

√
π

2E

∞∑
ℓ=0

(2ℓ+ 1)Iℓ+1/2(E)Pℓ(cos θ)

Since the {Pℓ} are orthogonal on [−1, 1] with∫ 1

−1

Pℓ(t)pm(t)dt =
2

2ℓ+ 1
δℓm

the coefficient aℓ in the expansion eEt =
∑
aℓPℓ(t) is

aℓ =
2ℓ+ 1

2

∫ 1

−1

eEtPℓ(t)dt

This integral is evaluated by the substitution cosϕ = t and reorganizing the standard integral version of the modified
Bessel function with half integer order. this gives us aℓ = (2ℓ+ 1)

√
π
2E Iℓ+1/2(E)

According to the addition theorem for spherical harmonics

Pℓ(s · s′) =
4π

2ℓ+ 1

ℓ∑
m=−ℓ

Yℓm(s)Yℓm(s′)

Now we insert this into our eE cos θ term to get

eEs·s
′
=

∞∑
ℓ=0

(2ℓ+ 1)

√
π

2E
Iℓ+1/2(E)Pℓ(s · s′)

=

∞∑
ℓ=0

(2ℓ+ 1)

√
π

2E
Iℓ+1/2(E)

4π

2ℓ+ 1

ℓ∑
m=−ℓ

Yℓm(s)Yℓm(s′)

= 4π

∞∑
ℓ=0

√
π

2E
Iℓ+1/2(E)

ℓ∑
m=−ℓ

Yℓm(s)Yℓm(s′)

Thus the kernel is an explicit sum over the spherical harmonics.

Take standard orthonormal spherical harmonics Yℓm with∫
S2

YℓmYℓ′m′dΩ = δℓℓ′δmm′

Now we act T on Yℓ′m′ to get

(TYℓ′m′)(s′) =

∫
S2

eEs
′·sYℓ′m′dΩ(s)

= 4π

∞∑
ℓ=0

√
π

2E
Iℓ+1/2(E)

ℓ∑
m=−ℓ

Yℓm(s′)

∫
S2

Yℓm(s)Yℓ′m′(s)dΩ(s)

= 4π

∞∑
ℓ−0

√
π

2E
Iℓ+1/2(E)

ℓ∑
m=−ℓ

Yℓm(S′)δℓℓ′δmm′
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= 4π

√
π

2E
Iℓ+1/2(E)Yℓ′m′(s′)

Thus each subspace {Yℓm : m = −ℓ, ..., ℓ} is an eigenspace with corresponding eigenvalue

λℓ = 4π

√
π

2E
Iℓ+1/2(E)

for ℓ = 0, 1, 2, ..

As T is real, symmetric, and Hilbert Schmidt, the eigenvalues are real, positive and the spectrum is discrete. The
degeneracy of λℓ is 2ℓ+ 1

From the spectral decomposition

Tr(Tn) =
∞∑
ℓ=0

(2ℓ+ 1)γnℓ =

∞∑
ℓ=0

(2ℓ+ 1)(4π

√
π

2E
Iℓ+1/2(E))n

In the thermodynamic limit n→ ∞ the ℓ = 0 term dominates as λ0 > λ1 ≥ ...

Now we want toe two point function

C(r) = ⟨s0 · sr⟩ =
1

Zn

∫
(s0 · sr)eE

∑
j sj ·sj+1

∏
j

dΩ(sj)

Evaluating this we see

Cn(r) =
Tr(Tn−r(s)T r(s))

Tr(Tm)

To evaluate this, we write the product

s0 · s− r = P1(s0 · sr) =
4π

3

1∑
m=−1

Y1m(S0)Y1m(sr)

note this just the ℓ = 1 term.

The kernel of T r

K(r)(sr, s0) = (T r)(sr, s0) =

∞∑
ℓ=0

λrℓ

ℓ∑
m=−ℓ

Yℓm(sr)Yℓm(s0)

note that here the projection kernel on the ℓ subspace is∑
m

YℓmYℓm(t)

Now the numerator of CN (r) can be written

N =

∫
S2

∫
S2

(P1(s0 · sr))K(r)(sr, s0)dΩ(s0)dΩ(sr)

As integrating out the other spins and using the transfer factorization will leave exactly the double integral (ie the left
Tn−r will contribute a factor this in the large N limit will be dominated by ℓ = 0 thus the computation below isolates the
ℓ-dependence of the r-step propagation)

Now we insert the two expansions to get

N =

∫ ∫
4π

3

1∑
m′=−1

Ylm′(s0)Y1m′(sr)

∞∑
ℓ=0

λrℓ

ℓ∑
m=−ℓ

Yℓm(sr)Yℓm(s0)dΩ(s0)dΩ(sr)

29



=
4π

3

∞∑
ℓ=0

λmℓ

1∑
m′=−1

ℓ∑
m=−ℓ

(

∫
S2

Y1m′(s0)Yℓm(s0)dΩ(s0))(

∫
S2

Y1m′(sr)Yℓm(sr)dΩ(sr))

We use orthonormality
∫
S2 YLMYL′M ′ = δLL′δMM ′ . Each of the integrals above will force ℓ = 0 amd m = m′. Thus

for all terms ℓ ̸= 1. Thus only the ℓ = 1 term survives meaning

N =
4π

3
λr1

1∑
m′=−1

(

∫
Y1m′(s0)Y1m′(s0)dΩ(s0))(

∫
Y1m′(sr)Y1m′(sr)dΩ(sr))

Each inner integral equals 1 by normalization and the sum over m′ has three terms meaning the factor 4π
3 · 3 simplifies

back to 4π. Thus we have
N = 4πλr1

Now consider the denominator in the large n limit.

Tr(Tn) =
∑
ℓ

(2ℓ+ 1)λNℓ

. as n→ ∞, this is dominated by ℓ = 0 meaning

Tr(Tn) = λn0 (1 + o(1))

We now put this together and restore the left Tn−r factor which contributes the same dominant λn−r0 -piece that cancels
with the denominator. This gives us in n→ ∞ at fixed r

E[s0 · sr] = (
λ1
λ0

)r = (

√
π
2E I3/2(E)√
π
2E I1/2(E)

)r

Using the half integer Bessel closed form

I1/2(x) =

√
2

πx
sinhx

I3/2(x) =

√
2

πx
(coshx− sinhx

x
)

Thus we have
I3/2(E)

I1/2(E)
=

cosh(E)− sinhE
E

sinhE
= cothE − 1/E

.
Thus we have

E[s0 · sr] = (cothE − 1/E)r

where E = β. This is exponential decay in r. Now we define the correlation length ζ by

E[s0 · sr] ∼ e−r/ζ

meaning we have
ζ−1 = − log(coth(β)− 1/β)

Now we will study the limit as β → ∞, First note that our ratio of

λ1
λ0

≃ cothβ − 1/β = 1 + 2e−2β + 2e−4β + O
(
e−6β

)
− 1/β = 1− 1/β → 1.

From below, again giving us exponential decay for any given β.
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6 Sonny: Dobrushin Uniqueness Criterion, Extremal Decomposition, Clus-
tering and Correlation Decay.

6.1 Motivation, Setup, and What a Gibbs Measure Is
Basic spaces and lattice setup

• Lattice. We work on the d–dimensional integer lattice Zd (d ≥ 1). Its elements are called sites.

• Spin space. Fix a compact Polish space S of spins (labels/states available at each site). Typical examples:

– Ising model: S = {±1} (two labels).

– O(N) model: S = SN−1 ⊂ RN (unit vectors).

• Configuration space. A (global) configuration is a function ω : Zd → S. The set of all configurations is

Ω := SZd

.

• Locality and finite regions. For a finite set Λ ⋐ Zd, write ωΛ for the restriction of ω to Λ and FΛ for the σ–algebra
generated by {πi : i ∈ Λ}. A local function depends only on finitely many coordinates, i.e. it is FΛ–measurable for
some finite Λ.

• Outside configuration (“boundary”). For a finite Λ, ωΛc denotes the configuration on the complement. We use
the notational shorthand ω = ωΛωΛc to emphasize “inside + outside”.

• Neighborhood graph. When needed, we view Zd as a graph (e.g. nearest-neighbor edges), which determines which
sites directly interact. None of the definitions below require a specific choice at this point.

What is a Gibbs measure, in plain language?

Think of Ω as all possible labelings of the infinite grid by symbols from S. A probability measure on (Ω,F) tells us how
likely each global labeling is.

A Gibbs measure is a special kind of probability measure that is locally consistent : if you look at any finite window
Λ and you are told everything outside the window (ωΛc), then the way the measure assigns probabilities to the patterns
inside the window is determined by a fixed, prescribed local rule (the specification). Informally:

Whatever the rest of the grid looks like, the conditional law inside any finite window follows the same local
recipe that was specified in advance.

This makes a Gibbs measure the right notion of “equilibrium” for an infinite system: it does not assert a global formula
on the entire infinite grid; instead, it enforces a consistent family of conditional rules on all finite windows.

In other words, the Gibbs measure is the mathematical compromise between order (low energy) and disorder, ENTROPY
(many possibilities). At low temperature (β large) energy dominates, and the system becomes more ordered; at high
temperature (β small) entropy dominates, and configurations become more random.

Why are Gibbs measures important?

They isolate the essential idea of local coherence: if you know the outside of a window, there is a standard, agreed-upon
way to randomize the inside. This viewpoint is powerful because it:

• focuses on finitely many labels at a time (what we can actually manipulate/prove),

• guarantees that different windows fit together consistently,

• and allows us to talk rigorously about large-scale behavior (e.g., whether there is only one macroscopic law or many).
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What is the infinite-volume Gibbs measure?

On a finite region, one can always write down an ordinary probability distribution for the labels inside that region (given
an outside labeling). On the full lattice, there is no single “global density” to write down. Instead, we say that a probability
measure µ on (Ω,F) is an infinite-volume Gibbs measure (for a given local specification) if, for every finite window
Λ,

• the conditional distribution of the labels inside Λ, given the labels outside Λ, matches the prescribed local rule for
that window.

In short: an infinite-volume Gibbs measure is any global law on labelings that respects the same local recipe in every finite
window.

Two key outcomes can happen:

• Uniqueness. There is only one such global law. Then the large system behaves in one coherent way and distant
regions are weakly related (correlations fade with distance).

• Non-uniqueness. There are multiple such global laws. Then different coherent global behaviors exist (often
reflecting different large-scale patterns), and distant regions can remain strongly related.

6.2 Review: The DLR Conditions and Existence of Infinite-Volume Gibbs Measures
Motivation: What question are we trying to answer?

In finite regions Λ ⋐ Zd, the Gibbs distribution is easy to define:

µϕΛc

Λ (dωΛ) ∝ exp[−βHΛ(ωΛϕΛc)]
∏
i∈Λ

µ0(dωi),

where HΛ is the finite-volume Hamiltonian and ϕΛc is a fixed boundary configuration. This distribution tells us how likely
each spin configuration is inside Λ, given the fixed spins outside.

But what happens when we move to the entire infinite lattice Zd? We can no longer write down a global density, because
the “total energy” HZd(ω) would be infinite and the partition function would not exist. So the question is:

How can we define a Gibbs measure for an infinite system where the Hamiltonian and partition function no longer
make sense?

The Dobrushin–Lanford–Ruelle (DLR) conditions answer this by reformulating the problem in terms of **local consis-
tency** rather than global energy. This is Olivia’s point that we only need to consider some finite site of the lattice.

Formal definition

Let FΛ be the σ–algebra generated by the spins inside Λ, and FΛc the one generated by all spins outside. For each finite
Λ, denote the finite-volume Gibbs law with boundary ωΛc by µωΛc

Λ .

Theorem 6.1 (Dobrushin, Lanford, and Ruelle). For every f : Ω → R measurable and bounded and for all B ⊂ Λ ⋐
Zd,

EΛ,φ[f ] = EΛ,φ[EB,·[f ]].

Interpretation. The DLR equations encode a simple but powerful idea:

Inside behavior = the same Gibbs rule you’d use in finite volume, given the outside.

If we know what the spins look like far away, the way the system randomizes the spins inside any finite box should still
obey the usual Gibbs rule. Nothing “new” happens when we enlarge the lattice; the local equilibrium structure remains
the same everywhere.
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Existence of an infinite-volume Gibbs measure

It is not obvious that such a global measure µ actually exists — that there is some probability law on Ω that satisfies all
these local DLR consistency conditions simultaneously.

However, Dobrushin, Lanford, and Ruelle proved that under very general assumptions on the interaction potential (such
as finite range and summable strength), the family of finite-volume Gibbs measures{

µϕΛc

Λ : Λ ⋐ Zd
}

is consistent in the sense of the Kolmogorov extension theorem. Hence, there exists at least one global measure µ on Ω
whose finite-region conditionals are exactly those Gibbs distributions.

Such a µ is called an **infinite-volume Gibbs measure** or **DLR measure**.

Summary.

• A global measure is any probability law on Ω.

• A DLR measure (or infinite-volume Gibbs measure) is a global measure that satisfies the DLR equations for all
finite regions.

• Existence means that at least one such measure µ exists for a given specification of local rules.

Next, we will re-express these DLR conditions in a more compact and abstract form using the language of specification
kernels.

6.2.1 Gibbsian Specification

Definition 6.2. (Specification and Specification Kernel) Consider the collection of probability kernel {πΛ}Λ⋐Zd where
each πΛ : F × Ω → Prob(SΛ) is defined by:

πΛ(A|ψ) ≡
∫
ψ∈A

exp (−βHΛ(ψ))

Zd,Nβ,h,L,φ

(∏
i∈Λ

σ

)
(dψ) = µd,Nβ,h,L,φ(A). (10)

Thus, {πΛ}Λ⋐Zd can effectively describe an entire model, and is thus called a specification.

Interpretation in Plain Language

This definition tells us how to construct the Gibbsian specification kernel πΛ(A|ψ), which assigns probabilities to different
configurations inside a finite region Λ, given what happens outside that region (represented by the configuration ψ).

Intuitive idea. You can think of πΛ(A|ψ) as answering the question:

“If the spins outside Λ are fixed to the configuration ψΛc , what is the probability that the spins inside Λ fall
into the set A?”

The kernel computes this by assigning each possible inside configuration ψΛ a weight proportional to exp(−βHΛ(ψ)),
where HΛ(ψ) is the total energy of the configuration (including its interactions with the fixed outside). Low-energy
configurations are exponentially more likely. The constant Zd,Nβ,h,L,φ in the denominator normalizes these weights so that
they sum to 1, ensuring a valid probability measure.

• ψ ∈ Ω: a configuration of spins across the entire lattice. The notation ψΛc refers to the spins outside the window Λ.

• A ∈ F: an event (a subset of possible spin configurations) whose probability we are evaluating.

• µd,Nβ,h,L,φ(A): the corresponding finite-volume Gibbs measure that results from this construction — it gives the
probability of event A under the Boltzmann distribution.
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Remark (parameter vs. evaluation). The specification kernel πΛ is a fixed rule determined by the model parameters;
it maps each outside configuration ωΛc to a probability measure on SΛ. When we write πΛ(· |ω) for a particular ω, we
are evaluating that rule at the specific outside environment ωΛc , obtaining a concrete inside distribution. But πΛ itself is
not fixed for one specific boundary condition; rather, it assigns a conditional law for every possible boundary condition.

With this tool, we can reformulate much of what we have before about Gibbs Measure to say, what Gibbs Measure(s)
satisfy a specification.

Definition 6.3. (Single Site Specification Kernel) Define the single-site specification kernel

π{i}(· | φ) = µφ{i}(·)

as the conditional distribution of coordinate i given the configuration outside i. In other words, "if the outside world
looks like φ : Λc → S, then this specification kernel tells us how likely the inside looks like · (In this case, we are
examining a single site).

6.2.2 Single-site Ising kernel

Fix a site i. For any outside configuration ω{i}c , define the local field

hi(ω) := H + J
∑
j∼i

ωj .

Define the (unnormalized) weights

W+(ω) := e β hi(ω), W−(ω) := e−β hi(ω).

Then the single-site specification kernel (as a rule depending on ω) is

π{i}(σi = +1 | ω) = W+(ω)

W+(ω) +W−(ω)
, π{i}(σi = −1 | ω) = W−(ω)

W+(ω) +W−(ω)
.

Equivalently, in closed form,

π{i}(σi = +1 | ω) = eβhi(ω)

eβhi(ω) + e−βhi(ω)
= 1

2

(
1 + tanh(βhi(ω))

)
, π{i}(σi = −1 | ω) = 1

2

(
1− tanh(βhi(ω))

)
.

Remark (rule vs. evaluation). The kernel is a rule defined for every outside configuration ω{i}c . If you plug in a
specific ω∗, you just evaluate the same formulas with ω = ω∗.

6.3 Convex Structure of Gibbs Measures
Having now introduced specifications and Gibbs measures, we can study their geometric structure. The set of all Gibbs
measures corresponding to a given specification π—denoted G(π)—has a convex geometry that encodes how macroscopic
phases arise and how uniqueness (or non-uniqueness) manifests.

Why this matters. Even before proving uniqueness, it is worth asking: if multiple Gibbs measures exist, how are they
related? The answer is remarkably clean—every Gibbs measure can be expressed as a mixture (convex combination) of the
most “pure” ones, called extremal measures. Hence, if uniqueness holds, the picture collapses: there is only one extremal
point, and all possible mixtures coincide with it.

Formally, let G(π) denote the set of all Gibbs measures that satisfy the DLR equations for a given specification π.

Proposition 6.1 (Convexity and compactness). The set G(π) is convex and compact in the weak topology of probability
measures on Ω.
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Sketch. Convexity follows immediately because the DLR equations are linear in the measure: if µ1, µ2 ∈ G(π), then
tµ1 + (1 − t)µ2 also satisfies the DLR equations for all t ∈ [0, 1]. Compactness results from Prohorov’s theorem:
Ω = SZd

is compact by Tychonoff’s theorem, and the set of Gibbs measures is closed under weak convergence since
the DLR relation is preserved under limits (the conditional expectations of local functions are continuous). See
Friedli–Velenik, Chapter 6.8, for full details.

Extremal measures and decomposition. Inside this convex set G(π), some elements are “pure”—they cannot be
expressed as a nontrivial convex combination of other Gibbs measures. These are called extremal Gibbs measures.

Definition 6.2 (Extremality). A measure µ ∈ G(π) is extremal if for any µ1, µ2 ∈ G(π) and t ∈ (0, 1),

µ = t µ1 + (1− t)µ2 =⇒ µ1 = µ2 = µ.

Theorem 6.3 (Choquet / extremal decomposition). Every µ ∈ G(π) admits a unique representation

µ =

∫
exG(π)

ν wµ(dν), (11)

where exG(π) denotes the set of extremal Gibbs measures, and wµ is a probability measure on that set.

Comment. This is an application of the classical Choquet–Bishop–de Leeuw theorem, which ensures that every
element of a compact convex set of probability measures admits such a unique integral representation over its extreme
points. A full proof can be found in Friedli–Velenik, subsection 6.8, or standard texts on convex analysis.

Intuition and physical meaning. Equation ((11)) tells us that every Gibbs measure is a “blend” of pure phases. Each
extremal ν represents a distinct thermodynamic phase—e.g. the “mostly +” and “mostly −” phases in the low-temperature
Ising model. A non-extremal µ then corresponds to a random mixture of these, governed by wµ.

• If the model admits multiple extremal measures (e.g. spontaneous magnetization), then G(π) is not a single point;
mixtures can reflect coexisting phases.

• If we later establish uniqueness, it means there is only one extremal measure. Then the entire convex set G(π)
collapses to a single point: every Gibbs measure is the same, and every boundary condition produces the same
infinite-volume behavior.

Summary. The convex structure of G(π) provides a geometric bridge between microscopic definitions and macroscopic
phases. Proving uniqueness therefore has a direct physical interpretation: it means there is only one “pure” equilibrium
phase, and no hidden mixtures can exist.

6.4 Clustering: Uniqueness ⇒ Decay of Correlations
In this subsection we record and prove (in the style of F&V, Ch. 6.5) that uniqueness of the infinite-volume Gibbs measure
implies clustering (vanishing of long-range correlations). Uniqueness alone does not fix the rate (it could be polynomial,
e.g. at criticality), but ensures decay to 0 as the separation grows.

Lemma 6.4 (Uniqueness ⇐⇒ boundary–insensitive convergence (F&V Lem. 6.30)). Let π = {πΛ}Λ⋐Zd be a specifi-
cation and write

πΛf(ω) :=

∫
f(η)πΛ(dη |ω), f local.

as the conditional expectation of f sampling the finite Λn. The following are equivalent:

(i) Uniqueness: G(π) = {µ} is a singleton.

(ii) Boundary–insensitive convergence: For every boundary configuration ω ∈ Ω, every increasing sequence Λn ↑ Zd,
and every local f ,

πΛn
f(ω) −→ µ(f).

Moreover, in (ii) the convergence for all ω is essential.
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Intuitive proof. If there is only one Gibbs measure µ, then any finite–volume Gibbs distribution (with any boundary
condition) must approach µ in the limit, because any weak subsequential limit of these finite–volume laws is itself
a Gibbs measure, and uniqueness forces all such limits to coincide. Conversely, if the finite–volume expectations
converge to the same limit for every boundary configuration, then the limiting measure is uniquely determined, so two
distinct infinite–volume Gibbs measures cannot exist. Hence, uniqueness ⇐⇒ boundary–insensitive convergence.

Theorem 6.4 (Clustering from uniqueness). Assume G(π) = {µ} is a singleton. Let f, g be bounded local functions with
supp(f) = A, supp(g) = B where A, B are disjoint finite subsets of Zd. Then

lim
d(A,B)→∞

Covµ(f, g) = 0.

Proof (detailed explanation). We restate what uniqueness gives us. By Lemma 6.30 of Friedli–Velenik, uniqueness
of the Gibbs measure means the following:

For every boundary condition ω ∈ Ω and every local observable h : Ω → R, the finite-volume conditional
expectations converge to the same infinite-volume value:

πΛn
h(ω) −→ µ(h) as Λn ↑ Zd.

That is, when we enlarge the finite box Λn, the conditional expectation of h inside the box (given boundary condition
ω) approaches the global Gibbs expectation µ(h). This convergence holds uniformly in the boundary ω.

Step 1. Choose two local observables and separate their supports.
Let f, g be bounded local functions. This means there exist finite subsets A,B ⊂ Zd such that f depends only

on the spins in A and g depends only on the spins in B:

supp(f) = A, supp(g) = B.

The distance between their supports is
d(A,B) := min

i∈A, j∈B
∥i− j∥.

Pick a finite region Λ containing A. Now let ΛR be a larger box containing Λ and also the “buffer” of radius R
around it, so that B lies outside ΛR. Thus the annulus between Λ and ΛR separates A and B by at least distance R.

Step 2. Write the finite-volume DLR identity.
For any boundary configuration ω, the DLR (consistency) property says:

πωΛR
(fg) = πωΛR

(
f · π·

Λ(g)
)
.

Here:

• πωΛR
is the Gibbs specification on ΛR given the boundary ωΛc

R
.

• π·
Λ(g) means we apply πΛ to g while keeping the outer spins (beyond Λ) fixed.

Step 3. Use uniqueness to replace local conditional expectations by global ones.
Now, by uniqueness, for any exterior configuration ζ,

πζΛ(g) −→ µ(g) uniformly in ζ as R = d(A,B) → ∞,

because the exterior of Λ (which fixes the boundary for g) is very far from B.
Therefore,

πωΛR
(fg) = πωΛR

(
f · µ(g)

)
+ oR(1) = µ(g)πωΛR

(f) + oR(1),

where oR(1) → 0 as R→ ∞.

Step 4. Let the box grow to the whole lattice.
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Now send ΛR ↑ Zd. By uniqueness again,

πωΛR
(f) −→ µ(f).

Plugging this limit into the previous line gives

µ(fg) = µ(f)µ(g) + oR(1),

so the covariance Covµ(f, g) tends to 0 as R = d(A,B) → ∞.

Step 5. Interpretation. This shows that when there is a unique infinite-volume Gibbs measure, local observables
depending on disjoint (and increasingly distant) regions become asymptotically independent. That is,

Covµ(f, g) −→ 0 as d(A,B) → ∞.

Uniqueness thus implies the clustering property—the mathematical statement of decay of correlations.

Intuition. Uniqueness means finite-volume expectations forget their boundaries as the volume grows. When the covari-
ance Covµ(f, g) = µ(fg)− µ(f)µ(g) equals 0, it means that knowing the outcome of f tells you nothing about g: the two
observables fluctuate completely independently under the Gibbs measure. In physical terms, there are no correlations left
between distant spins.

6.5 The Dobrushin Influence Matrix
6.5.1 Definition

Definition 6.5 (Influence coefficients). For distinct sites i, j ∈ Zd, define

cij(π) := sup
ω,ω′: ωk=ω′

k ∀k ̸=j
∥π{i}(·|ω)− π{i}(·|ω′)∥TV.

The Dobrushin constant is

c(π) = sup
i

∑
j

cij(π).

Interpretation. cij measures the maximal change in the single-site distribution at i caused by flipping site j while
keeping everything else fixed. The total influence c(π) quantifies how strongly a site’s environment controls it. If c(π) < 1,
the cumulative effect of all neighbors is less than complete control—an idea that will yield a contraction argument.

From the single-site kernel to Dobrushin coefficients. Recall the single-site specification at i (Ising, σi ∈ {±1}):

π{i}(σi = +1 | ω) = eβhi(ω)

eβhi(ω) + e−βhi(ω)
=

1 + tanh
(
βhi(ω)

)
2

, hi(ω) = H +
∑
k∼i

Jik ωk.

Dobrushin’s influence coefficient is

cij := sup
ω,ω′: ωk=ω

′
k ∀k ̸=j

dTV

(
π{i}(· | ω), π{i}(· | ω′)

)
,

i.e. the worst-case total-variation change of the law at i when only site j is altered.
Binary case simplification. Since σi ∈ {±1}, total variation equals the difference of “+1” probabilities:

dTV(Bern(p),Bern(q)) = |p− q|.

Thus
cij = sup

ω,ω′ differ only at j

∣∣∣π{i}(+1 | ω)− π{i}(+1 | ω′)
∣∣∣.
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Field shift when flipping j. If ω and ω′ differ only at j, then

hi(ω
′)− hi(ω) = Jij

(
ω′
j − ωj

)
∈ {−2Jij , 0, 2Jij}.

In the worst case (flip +1 ↔ −1), |∆h| = 2|Jij |.
Maximizing the change. Write p(h) := 1+tanh(βh)

2 . Then∣∣∣p(h)− p(h−∆h)
∣∣∣ = 1

2

∣∣∣ tanh(βh)− tanh
(
β(h−∆h)

)∣∣∣.
A standard calculation shows that the supremum over h ∈ R occurs at h = 1

2∆h and yields

sup
h

∣∣∣p(h)− p(h−∆h)
∣∣∣ = tanh

(β|∆h|
2

)
.

Plugging |∆h| = 2|Jij | gives
cij ≤ tanh

(
β|Jij |

)
.

Normalization note. Some texts (or Hamiltonian conventions) absorb a factor 2 differently in the pair interaction,
leading to |∆h| = 4|Jij | and hence the bound

cij ≤ tanh
(
2β|Jij |

)
.

Use the version that matches your Hamiltonian normalization.
Summing influences. Dobrushin’s constant is

c(π) := sup
i

∑
j ̸=i

cij .

For nearest-neighbor Ising with uniform coupling J on Zd (each i has 2d neighbors),

c(π) ≤
∑
j∼i

tanh
(
2β|J |

)
= (2d) tanh

(
2βJ

)
.

Therefore, at high temperature (small β), c(π) < 1, which is Dobrushin’s uniqueness condition.

6.6 Dobrushin Uniqueness Theorem
So we have that uniqueness is going to imply clustering - or the decay in correlations. We also have that uniqueness
informs us of our mixture, that namely it is an extremal gibbs measure of one pure state, not a mix of multiple.

How now can we come up with some convenient condition that guarantee the uniqueness of our infinite volume Gibbs
Measure for a certain specification? In answering this question, we will also find that the conveinent conditions also tell
us something about the rate at which the correlations will decay.

We now state the central result and give a proof that follows Friedli–Velenik (Ch. 6.3–6.4) in structure and notation,
with full details.

Theorem 6.5 (Dobrushin Uniqueness). Let {π{i} }i∈Zd be the single-site specification kernels associated with the model,
and let cij(π) and c(π) = supi∈Zd

∑
j∈Zd cij(π) be the Dobrushin influence coefficients and constants defined in the previous

subsection. If
c(π) < 1, (weak dependence condition)

then the set of infinite-volume Gibbs measures compatible with π is a singleton:

G(π) = {µ}.

Roadmap of the proof.

1. The Dobrushin Influence Matrix Define the tool that we will use to measure sensitivities of sites to other sites.

2. Oscillation seminorm and metric. Define the single-site oscillations δi(f) and total oscillation ∆(f) of a function f ;
prove that ∆(f) controls the total range of f and serves as a Lipschitz seminorm.

3. Dusting lemma (single-site update). Show that applying the single-site kernel π{j} “kills” the dependence of f on
site j and moves at most a cji–fraction of that dependence to other sites i.

4. One-sweep contraction. Compose single-site updates over a finite block Λ and bound the resulting total oscillation
by a factor at most c(π) < 1 times the initial oscillation.

5. Contraction of expectations and uniqueness. By DLR, Gibbs measures are invariant under πΛ; together with the
one-sweep contraction this implies a strict contraction of differences of expectations for all Lipschitz local observables,
which forces uniqueness by iteration.
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6.6.1 Oscillation seminorm / Dobrushin Metric (and coupling representation)

For a bounded measurable function f : Ω → R define the single-site oscillation at site i by

δi(f) := sup
ω,η

ωk=ηk ∀k ̸=i

|f(ω)− f(η)|. (12)

The total oscillation of f is then
∆(f) :=

∑
i∈Zd

δi(f). (13)

Following Friedli–Velenik (Def. 6.2), the oscillation seminorm on functions is given by ∆(f), and the corresponding
distance on probability measures by

∥µ− ν∥osc := sup{ |µ(f)− ν(f)| : ∆(f) ≤ 1 }. (14)

Intuition: what the oscillation seminorm measures. The quantity δi(f) measures how sensitive a function is to
single-site changes. If all δi(f) are small then changing a single spin cannot change f very much: such functions are
"smooth" or local in the sense that they do not react strongly to perturbations at any site.

This distance ∥µ − ν∥osc is called the Dobrushin (or oscillation) metric, and is a way to measure how “different” two
probability distributions over spin configurations are — not by comparing every possible detail, but by seeing how much
they disagree on local observables. It’s tuned so that convergence in this sense matches the physical idea of two states
becoming indistinguishable in all local tests (this will be proven below).

Note. Coupling Interpretation:
Optional: This is not discussed in F&V and is just included for another intuitive way of interpreting this oscillation
metric.

The oscillation distance admits a simple probabilistic interpretation: it is the smallest expected number of differing
sites between two random configurations drawn optimally from µ and ν. This provides an intuitive geometric picture
of how “far apart” the measures are in configuration space.

Lemma 6.6 (Coupling representation, cf. F&V Lemma 6.3). For any probability measures µ, ν on (Ω,F),

∥µ− ν∥osc = inf
π∈C(µ,ν)

Eπ

∑
i∈Zd

1{ωi ̸= ηi}

 , (15)

where C(µ, ν) denotes the set of couplings of µ and ν.

Proof idea. The idea is to show that the oscillation distance between two measures is the smallest possible average
number of sites where two coupled configurations disagree. The proof is ommited as this is merely just to give
another intuitive understanding. The focus of this lecture is uniqueness.

Next, with this Dobrushin (or oscillation) metric, we introduce the functional spaces used throughout the proof and
establish some basic inequalities.

Definition 6.7 (Spaces of observables). Let Ω = SZd

with product σ-algebra F.

• The space of functions with finite total oscillation is
O(Ω) := { f : Ω → R measurable : ∆(f) <∞}.

• The space of continuous observables with finite oscillation is
C(Ω) ∩O(Ω) := { f ∈ C(Ω) : ∆(f) <∞}.

Lemma 6.8 (Basic oscillation bound (cf. F&V Lemma 6.32)). For any bounded function f : Ω → R,

sup
ω∈Ω

f(ω) − inf
ω∈Ω

f(ω) ≤ ∆(f).

Consequently, for any probability measures µ, ν on (Ω,F) and any f ∈ C(Ω) ∩O(Ω),

|µ(f)− ν(f)| ≤ ∆(f).
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Proof. Fix ω, η ∈ Ω and enumerate Zd as (ik)k≥1. Define intermediate configurations

ξ(0) = ω, ξ(m) agrees with η on {i1, . . . , im} and with ω elsewhere.

Then ξ(m) and ξ(m−1) differ only at site im, so by definition of the single-site oscillations∣∣f(ξ(m))− f(ξ(m−1))
∣∣ ≤ δim(f).

Let Sn :=
∑n
k=1

[
f(ξ(k))− f(ξ(k−1))

]
. Since

∑
i δi(f) = ∆(f) < ∞, we have |Sn| ≤

∑n
k=1 δik(f) ≤ ∆(f) and (Sn)n

is a Cauchy sequence. Hence Sn → f(η)− f(ω) and

|f(ω)− f(η)| = lim
n→∞

|Sn| ≤
∑
i∈Zd

δi(f) = ∆(f).

Next, fix ε > 0. By compactness of Ω and continuity of f , pick ω⋆, η⋆ ∈ Ω with

f(ω⋆) ≥ sup f − ε, f(η⋆) ≤ inf f + ε.

Then
sup f − inf f ≤

[
f(ω⋆)− f(η⋆)

]
+ 2ε ≤ ∆(f) + 2ε.

Letting ε ↓ 0 yields sup f − inf f ≤ ∆(f).

Finally, for any probability measures µ, ν on (Ω,F), since inf f ≤ f ≤ sup f pointwise, we have

inf f ≤ µ(f), ν(f) ≤ sup f,

and thus
|µ(f)− ν(f)| ≤ sup f − inf f ≤ ∆(f).

Note: Because Ω is compact and f ∈ C(Ω), the function f is automatically bounded, uniformly continuous, and
attains its supremum and infimum by the Weierstrass theorem.

Lay intuition. The quantity ∆(f) measures the maximum cumulative sensitivity of f to local spin flips. Changing
one spin can alter f by at most δi(f); summing these effects bounds the largest possible difference of f across the whole
configuration space. Hence ∆(f) acts like a Lipschitz constant for f (describing the proportional change of the output of
f given changes in the input) on the infinite product space.

So far, we’ve defined the oscillation seminorm and seen that it provides a natural way to measure how sensitive a function
is to single-site changes in the configuration.

The next step is to understand how this “sensitivity” evolves when we start updating spins according to their local con-
ditional distributions—that is, when we let the system dynamically adjust one site at a time. In other words: if we take
a function that depends on the configuration and “resample” one site according to the model’s local rule, how does the
function’s dependence on other sites change?

Answering this question leads us to the idea of the single-site update operator, which formalizes this resampling process,
and to a key technical result that describes how local updates redistribute sensitivity across the lattice—the Dusting
Lemma.

6.6.2 Single-site update on functions and the Dusting Lemma

Notation: We write
ω(j,s) := (ω1, . . . , ωj−1, s, ωj+1, . . . ) (:= s ωjc in F&V)

for the configuration obtained from ω by replacing its spin at site j with s.
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For j ∈ Zd and a bounded observable f : Ω → R, define the single-site update of f at j by

(π{j}f)(ω) :=
∑
s∈S

f
(
ω(j,s)

)
π{j}(s | ω), ω ∈ Ω, (16)

where π{j}( · | ω) is the single-site conditional distribution at site j.

Lemma 6.9 (Dusting Lemma (cf. F&V Lem. 6.34)). Fix j ∈ Zd and f ∈ C(Ω) ∩O(Ω). Then, for each i ̸= j,

δi(π{j}f) ≤ δi(f) + cji δj(f), and δj(π{j}f) = 0,

where cji is the Dobrushin influence coefficient.

Intuition. Resampling at j removes all dependence on j (so the updated function has zero sensitivity at j), while at
most a cji-fraction of that lost dependence can be redistributed to other sites i.

Proof. Fix i ̸= j and take ω, η ∈ Ω that differ only at site i. Then

(π{j}f)(ω)− (π{j}f)(η) =
∑
s∈S

(
f(ω(j,s))π{j}(s | ω)− f(η(j,s))π{j}(s | η)

)
=
∑
s∈S

[
f(ω(j,s))− f(η(j,s))

]
π{j}(s | ω)︸ ︷︷ ︸

(I)

+
∑
s∈S

f(η(j,s))
[
π{j}(s | ω)− π{j}(s | η)

]
︸ ︷︷ ︸

(II)

.

For (I): for each s, the configurations ω(j,s) and η(j,s) differ only at i, so

|f(ω(j,s))− f(η(j,s))| ≤ δi(f),

and summing against a probability measure yields |(I)| ≤ δi(f).

For (II): Set g(s) := f(η(j,s)). Then (II) =
∑
s g(s) [π{j}(s | ω) − π{j}(s | η)]. Since changing s only modifies the

spin at site j, we have
max
s
g(s)−min

s
g(s) ≤ δj(f).

For probability vectors µ, ν on the finite set S, the total variation distance is

∥µ− ν∥TV := 1
2

∑
s∈S

|µ(s)− ν(s)| .

If we set ḡ := 1
2 (maxs g(s) + mins g(s)), then∣∣∣∑

s

g(s) [µ(s)− ν(s)]
∣∣∣ = ∣∣∣∑

s

(g(s)− ḡ) [µ(s)− ν(s)]
∣∣∣

≤ sup
s

|g(s)− ḡ|
∑
s

|µ(s)− ν(s)|

=
(
max
s
g(s)−min

s
g(s)

)
∥µ− ν∥TV.

Applying this with µ = π{j}(· | ω), ν = π{j}(· | η), and using maxs g(s)−mins g(s) ≤ δj(f), we get

|(II)| ≤ δj(f)
∥∥π{j}(· | ω)− π{j}(· | η)

∥∥
TV
.

Finally, since ω, η differ only at site i, by the definition of the Dobrushin influence coefficient,∥∥π{j}(· | ω)− π{j}(· | η)
∥∥
TV

≤ cji,

and therefore
|(II)| ≤ cji δj(f).
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Taking the supremum over all such pairs (ω, η) gives

δi(π{j}f) ≤ δi(f) + cji δj(f).

Finally, for i = j: if ω and η coincide outside of site j, then ωjc = ηjc and π{j}(· | ω) = π{j}(· | η), which implies

(π{j}f)(ω) = (π{j}f)(η),

and therefore
δj(π{j}f) = 0.

6.6.3 One-sweep contraction on oscillations

Let Λ ⋐ Zd be finite and fix an order (j1, . . . , jm) of the sites in Λ. Define the sweep operator

πΛ := π{jm} ◦ · · · ◦ π{j1}.

Introduce linear maps R(j) : RZd → RZd

acting on vectors of single-site oscillations v = (vi)i∈Zd by

(R(j)v)i :=

{
vi + cji vj , i ̸= j,

0, i = j.

Equivalently, R(j) sets the j-th coordinate to zero and adds at most cji times the old j-mass to coordinate i, reflecting
Lemma Theorem 6.9.

Proposition 6.10 (Oscillation transfer under a sweep (cf. F&V Prop. 6.33)). For any bounded f : Ω → R,(
δi(πΛf)

)
i∈Zd ≤

(
R(jm) · · ·R(j1)

) (
δi(f)

)
i∈Zd coordinatewise.

In particular,
∆(πΛf) ≤

∥∥R(jm) · · ·R(j1)
∥∥
1→1

∆(f),
∥∥R(jm) · · ·R(j1)

∥∥
1→1

≤ c(π),

where c(π) := supi
∑
k cik(π) is the Dobrushin constant.

Proof. Applying Lemma Theorem 6.9 successively, each update at site jt acts linearly on the vector of single-site
oscillations via R(jt). Thus after m steps,

δ(πΛf) = δ(π{jm}· · ·π{j1}f) ≤
(
R(jm)· · ·R(j1)

)
δ(f),

which gives the coordinatewise inequality.
For the ℓ1 bound, observe that each R(j) sets its j-th entry to zero and redistributes at most a total weight

∑
i̸=j cji ≤

c(π) to other coordinates. Hence every column of R(j) has ℓ1-sum ≤ c(π), and the same holds for their product.
Therefore ∥∥R(jm) · · ·R(j1)

∥∥
1→1

≤ c(π),

yielding the claimed contraction.

Intuition. A full sweep over Λ contracts the total oscillation ∆(f) by at least the uniform factor c(π) < 1, the maximal
total incoming influence per site.

6.6.4 Contraction of expectations and proof of uniqueness

Proposition 6.11 (Contraction of differences under a sweep). Let Λ ⋐ Zd be finite and (j1, . . . , jm) any order on Λ.
Then for any probability measures µ, ν on (Ω,F) and any f ∈ C(Ω) ∩O(Ω),∣∣µ(πΛf)− ν(πΛf)

∣∣ ≤ ∆(πΛf) ≤ c(π)∆(f).
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Proof. By Lemma Theorem 6.8, |µ(g) − ν(g)| ≤ ∆(g) for any g ∈ O(Ω). Apply this to g = πΛf , then use Proposi-
tion Theorem 6.10 to get ∆(πΛf) ≤ c(π)∆(f).

Theorem 6.12 (Dobrushin Uniqueness (F&V Thm. 6.31)). Assume c(π) = supi
∑
k cik < 1. Then the set of infinite-

volume Gibbs measures compatible with π is a singleton:

G(π) = {µ}.

Proof. Let µ, ν ∈ G(π) and f ∈ C(Ω) ∩ O(Ω). With out heavy lifting above, we can simply apply Proposition 5.7
repeatedly. Hence:

|µ(f)− ν(f)| = |µ(πΛf)− ν(πΛf)| ≤ c(π)∆(f),

Replacing f by πΛf and iterating the same argument n times yields

|µ(f)− ν(f)| ≤ c(π)n∆(f) ∀n ∈ N.

Letting n → ∞ (since c(π) < 1) gives |µ(f) − ν(f)| = 0 for all f ∈ C(Ω) ∩O(Ω), a separating class of observables.
Therefore µ = ν.

6.7 Physical Interpretation and High-Temperature Regime
At small β, spins fluctuate almost independently. The Dobrushin constant c(π) becomes small, ensuring uniqueness.
Increasing β strengthens correlations, enlarging c(π), and at the critical point c(π) = 1 the system loses contractiv-
ity—correlations decay only polynomially and critical phenomena emerge.

Regime summary.

Condition Physical regime Behavior
c(π) < 1 High temperature Unique Gibbs measure; exponential decay
c(π) = 1 Critical Marginal uniqueness; polynomial decay
c(π) > 1 Low temperature Multiple Gibbs measures (phase coexistence)

Correlation decay. For local f, g supported on disjoint A,B,

|Covµ(f, g)| ≤ C(f, g) c(π)d(A,B),

which expresses exponential clustering. In the Ising model, this corresponds to a finite correlation length ξ = −1/ log c(π).

6.8 Summary and Conceptual Map
• The DLR framework formalizes local equilibrium in infinite systems.

• Single-site kernels π{i} provide a measurable description of local dependencies.

• Dobrushin coefficients cij quantify the strength of influence between sites.

• If the total influence c(π) < 1, local updates contract discrepancies, implying a unique global Gibbs measure.

• Uniqueness entails decay of correlations—physically, absence of long-range order.

• For the Ising model, this condition holds at sufficiently high temperature, matching physical intuition.
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7 Jerry: The Aizenman-Simon proof of the disordered phase for all small β
and other cluster expansions

7.1 Setup

Definition 7.1 (Space and spin dimensions). We are given d,N ∈ N as the space and spin dimensions respectively.

Definition 7.2 (Inverse temperature). β is the inverse temperature.

Definition 7.3 (Boxes). Let Λ := [−L,L]d ∩ Zd be a finite box within Zd.

Definition 7.4 (Graph, adjacency matrix). These boxes can be considered as a graph G = (V,E), with and associated
adjacency matrix A where

Axy =

{
1 x ∼ y

0 otherwise

Definition 7.5 (Spin configuration). ψ is the spin configuration, ψ : Λ → SN−1.

Definition 7.6 (Discrete Laplacian, Hamiltonian). The discrete Laplacian is defined as −∆ := D − A, where D is
the diagonal degree matrix of the graph. In our case, −∆ ≡ 2d1−A.

The Hamiltonian H : (SN−1)Λ → R is a functional that maps spin configurations to real numbers. In our case,

H =
1

2
⟨ψ,−∆ψ⟩ − ⟨h, ψ⟩

where h is the external magnetic field, which we will take to be equal to zero.

7.2 Local Ward Identities
The following proofs in this subsection are derived from [1].

Definition 7.7 (Expectation of an observable under the Gibbs measure). The expectation of the observable Q under
the Gibbs measure is defined by

E[Q(ψ)] ≡ Eβ [Q(ψ)] =
E0[e

−βH(ψ)Q(ψ)]

E0[e−βH(ψ)]

where E0 is an expectation under the a-priori measure.

Definition 7.8 (Automorphisms). Consider a family of automorphisms γt satisfying γt(QR) = γt(Q)γt(R) which
preserve the a-priori expectation values, i.e.

E0[γt(Q)] = E0[Q]

for all t. This also implies that ∂tE0[γt(Q)] = 0.

Definition 7.9. Define Q̇ = d
dtγt(Q)

∣∣
t=0
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Lemma 7.10 (Local Ward Identities).

Eβ [Q̇] = βEβ [ḢQ]

Proof. Definition 7.8 implies in particular that

∂t|t=0 E0[γt(e
−βHQ)] = 0

∂t|t=0 E0[γt(Q)e−βγt(H)] = 0

Now evaluating the t-derivatives and noting that γ0 is identity,

E0[Q̇e
−βH ]− βE0[ḢQe

−βH ] = 0

Eβ [Q̇] = βEβ [ḢQ]

7.3 Exponential decay of the two point function

Lemma 7.11 (Positive association in the Ising model). For any f : R → R which is odd and C1, and such that f ′ is
decreasing on [0,∞), we have

E

[
f

(∑
z

azψz

)
ψy

]
≤ f ′(0)

∑
z

azE[ψxψy]

where {az}z is some finite sequence of positive numbers.

Proof. Since f is odd, f(0) = 0. So we may rewrite for any s ∈ R,

f(s) =

∫ s

t=0

f ′(t) dt

= sgn(s)

∫ |s|

t=0

f ′(t) dt

= sgn(s)

∫ ∞

t=0

χ[0,|s|](t)f
′(t) dt.

Since sgn(s) = χ[0,∞)(s)− χ(−∞,0)(s) we get

f(s) = χ[0,∞)(s)

∫ ∞

t=0

χ[0,|s|](t)f
′(t) dt− χ(−∞,0)(s)

∫ ∞

t=0

χ[0,|s|](t)f
′(t) dt

= χ[0,∞)(s)

∫ ∞

t=0

χ[0,s](t)f
′(t) dt− χ(−∞,0)(s)

∫ ∞

t=0

χ[0,−s](t)f
′(t) dt.

Plug this representation of f into E[f(S(ψ))ψy] (with S(ψ) =
∑
z azψz) to get

E[f(S(ψ))ψy] = E

[(
χ[0,∞)(S(ψ))

∫ ∞

t=0

χ[0,S(ψ)](t)f
′(t) dt− χ(−∞,0)(S(ψ))

∫ ∞

t=0

χ[0,−S(ψ)](t)f
′(t) dt

)
ψy

]
=

∫ ∞

t=0

E
[
χ[0,∞)(S(ψ))χ[0,S(ψ)](t)ψy

]
f ′(t) dt−

∫ ∞

t=0

E
[
χ(−∞,0)(S(ψ))χ[0,−S(ψ)](t)ψy

]
f ′(t) dt.
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Now note that

E
[
χ[0,∞)(S(ψ))χ[0,S(ψ)](t)ψy

]
= E

[
χ[t,∞)(S(ψ))ψy

]
whereas

E
[
χ(−∞,0)(S(ψ))χ[0,−S(ψ)](t)ψy

]
= E

[
χ(−∞,−t)(S(ψ))ψy

]
= −E

[
χ[t,∞)(S(ψ))ψy

]
.

In this last equality we have used the invariance of the probability measure under ψ 7→ −ψ. We thus find the
representation

E[f(S(ψ))ψy] = 2

∫ ∞

t=0

E
[
χ[t,∞)(S(ψ))ψy

]
f ′(t) dt.

We claim that

E
[
χ[t,∞)(S(ψ))ψy

]
≥ 0.

To establish this we invoke the FKG inequality which requires the notion of functions ψ 7→ F (ψ) being increasing.
Loosely speaking this is means that if we flip any spins from −1 to +1 the function can only go up. ψ 7→ ψy is such
a function and ψ 7→ χ[t,∞)(S(ψ)) as well (using the fact az’s are positive). The FKG inequality says that if F,G are
two such increasing functions of ψ, then

E[F (ψ)G(ψ)] ≥ E[F (ψ)]E[G(ψ)].

Hence

E[χ[t,∞)(S(ψ))ψy] ≥ E[χ[t,∞)(S(ψ))]E[ψy] = 0.

In the last equality we use the fact that ψ 7→ ψy is an odd function (but E is invariant w.r.t. the flip). Hence in the
integral, ∫ ∞

t=0

E
[
χ[t,∞)(S(ψ))ψy

]
f ′(t) dt

the fact that f ′ is monotone decreasing and E
[
χ[t,∞)(S(ψ))ψy

]
≥ 0 implies∫ ∞

t=0

E
[
χ[t,∞)(S(ψ))ψy

]
f ′(t) dt ≤ f ′(0)

∫ ∞

t=0

E
[
χ[t,∞)(S(ψ))ψy

]
dt

= f ′(0)E

[∫ ∞

t=0

χ[0,S(ψ)](t)ψy dt

]
= f ′(0)E

[(∫ ∞

t=0

χ[0,S(ψ)](t) dt

)
ψy

]
= f ′(0)E [S(ψ)ψy] .

Lemma 7.12 (Non-negativity of four point correlation function).

Eβ [ψx,1ψx,2ψy,1(Aψ2)x] ≥ 0

Proof. By linearity, it suffices to show that for any sites x, y, z ∈ Λ, the four-point correlation function is non-negative:

Eβ [ψx,1ψx,2ψy,1ψz,2] ≥ 0.

We begin by writing the expectation in terms of the a priori measure E0. Let F (ψ) = ψx,1ψx,2ψy,1ψz,2.
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The expectation is

Eβ [F (ψ)] =
E0[F (ψ)e

−βH(ψ)]

E0[e−βH(ψ)]
=

E0[F (ψ)e
β
∑

i∼j ψi·ψj ]

Zβ
.

Since the partition function Zβ is positive, it suffices to show the numerator is non-negative. We expand the
Boltzmann factor as a power series:

E0

F (ψ) ∞∑
k=0

βk

k!

∑
i∼j

ψi · ψj

k
 =

∞∑
k=0

βk

k!
E0

F (ψ)
∑
i∼j

ψi · ψj

k
 .

The proof reduces to showing that each term in this series is non-negative. A generic term from the expansion of
(
∑
ψi · ψj)k is a product of spin components where each component index appears an even number of times (since

ψi ·ψj =
∑
a ψi,aψj,a). Our function F (ψ) also has this property (component 1 appears twice, component 2 appears

twice). Therefore, the entire product inside the expectation E0 consists of a product of spin components where every
component index appears an even number of times.

The non-negativity of these terms is formally guaranteed by the GKS (Griffiths-Kelly-Sherman) inequalities,
generalized for the O(N) model.

Theorem 7.13 (Subharmonicity). The O(N) model has the following subharmonicity in space

Eβ [ψx · ψy] ≤
β

N
E[(Aψ)x · ψy(1− δxy)] + δxy

Proof. Note that for x = y this follows trivially as Eβ [ψx · ψx] = Eβ [∥ψx∥2] = 1. For the N = 1, x ̸= y case, using
the law of total expectation,

Eβ [ψxψy] = Eβ [ψy · Eβ [ψx|{ψz}z ̸=x]]

The inner expectation is computed as

Eβ [ψx|{ψz}z ̸=x]] =
∑
ψx=±1 ψx exp(βψx(Aψ)x)∑
ψx=±1 exp(βψx(Aψ)x)

=
2 sinh(β(Aψ)x)

2 cosh(β(Aψ)x)
= tanh(β(Aψ)x)

And so we derive that Eβ [ψxψy] = Eβ [ψy tanh(β(Aψ)x)]. Finally, applying Lemma 7.11 with the function
f(x) = tanh(βx) and az = 1 if x ∼ z we conclude that Eβ [ψxψy] ≤ βE[(Aψ)xψy]. We next prove this for N ≥ 2,
x ̸= y. Consider the family of automorphisms

γxt : (SN−1)Λ → (SN−1)Λ

defined by

γxt (ψy,λ) =


ψy,λ y ̸= x or λ ̸= 1, 2

(cos t)ψx,1 − (sin t)ψx,2 y = x, λ = 1

(sin t)ψx,1 + (cos t)ψx,2 y = x, λ = 2

Geometrically, γxt acts on the spin ψx by a rotation by t in the 1-2 plane. Clearly, γxt obeys the constraints from
above, and so we can apply the local Ward identities. Consider the observable Q ≡ Q(ψ) = ψx,2ψy,1.

First note that Q̇ = ψx,1ψy,1. Also note that

(ψ̇)x = (−ψx,2, ψx,1, 0, . . . , 0)T .
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We know that

∂tHt =
1

2
∂t ⟨ψt,−∆ψt⟩ = ⟨ψ̇t,−∆ψt⟩

And so evaluating at t = 0, we get Ḣ = ⟨ψ̇,−∆ψ⟩
The local Ward identities therefore yield

Eβ [ψx,1ψy,1] = βEβ [ψx,2ψy,1(ψx,1(−∆ψ2)x − ψx,2(−∆ψ1)x)]

= βEβ [−ψ2
x,2ψy,1(−∆ψ1)x + ψx,1ψx,2ψy,1(−∆ψ2)x]

= −2dβEβ [ψ
2
x,2ψy,1ψx,1] + βEβ [ψ

2
x,2ψy,1(Aψ1)x]

+ 2dβEβ [ψ
2
x,2ψy,1ψx,1]− βEβ [ψx,1ψx,2ψy,1(Aψ2)x]

With Lemma 7.12, we conclude that

Eβ [ψx,1ψy,1] ≤ βEβ [ψ
2
x,2ψy,1(Aψ1)x]

=
β

N

(
NEβ [ψ

2
x,2ψy,1(Aψ1)x]

)
=

β

N

Eβ [ψ
2
x,2ψy,1(Aψ1)x] +

N∑
j=2

Eβ [ψ
2
x,jψy,1(Aψ1)x]


because we can replace the 2nd component of ψx with any component not equal to 1, by symmetry. Simon’s inequality
states that

Eβ [ψ
2
x,2ψy,1(Aψ1)x] ≤ Eβ [ψ

2
x,1ψy,1(Aψ1)x]

And so it reduces to

Eβ [ψx,1ψy,1] ≤
β

N

 N∑
j=1

Eβ [ψ
2
x,jψy,1(Aψ1)x]


Noting that ∥ψx∥2 = 1, this further reduces to

Eβ [ψx,1ψy,1] ≤
β

N
Eβ [ψy,1(Aψ1)x]

By symmetry, this holds for every other component besides 1 too, so we finally conclude that

Eβ [ψx · ψy] ≤
β

N
Eβ [(Aψ)x · ψy]

Theorem 7.14 (Exponential decay). Denote τxy = Eβ [ψx · ψy] and ϵ = β/N . For ϵ < 1
2d , we get exponential decay

τxy ≤ 1

ϵm
exp(−| log(2dϵ)|∥x− y∥1)

where m = 1
ϵ − 2d.

Proof. We know for a ferromagnetic O(N) model that τxy ≥ 0. Theorem 7.13 tells us that

[(1− ϵA)τ ]xy ≤ δxy
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This reduces to

[(−∆+m1)τ ]xy ≤ δxy
ϵ

Since the singular values of −∆ satisfy σ(−∆) ⊂ [0, 4d], and using the fact that [(−∆+m1)−1]xy ≥ 0, we deduce

τxy ≤ 1

ϵ
[(−∆+m1)−1]xy = [(1− ϵA)−1]xy

Now consider the Neumann expansion

(1− ϵA)−1 =

∞∑
n=0

ϵnAn ⇒ [(1− ϵA)−1]xy =

∞∑
n=0

ϵn(An)xy

Since Axy = 1 only if x ∼ y, even though this series seems to start at n = 0, it can only be non-zero if n is
sufficiently large. Indeed, the first positive term of the series can only start from n ≥ ∥x− y∥1, so that there are
enough steps to go from x to y. This series expansion also shows that [(1 − ϵA)−1]xy ≥ 0. As such the series
expansion reduces to

[(1− ϵA)−1]xy =

∞∑
n=∥x−y∥1

ϵn(An)xy

Noting that (An)xy ≤ (2d)n (the total number of walks from x to y has this upper bound because the degree of
each vertex is 2d at most) and ϵ < 1/2d, we can observe exponential decay.

[(1− ϵA)−1]xy ≤
∞∑

n=∥x−y∥1

(2dϵ)n =
(2dϵ)∥x−y∥1

1− 2dϵ
=

1

1− 2dϵ
exp(−| log(2dϵ)|∥x− y∥1)

Finally, conclude that

τxy ≤ 1

ϵm
exp(−| log(2dϵ)|∥x− y∥1)

Note that as m→ 0+, | log(2dϵ)| = | log(1−mϵ)| → mϵ, so the bound becomes

τxy ≤ 1

ϵm
exp(−cd(m)∥x− y∥1)

with cd(m) → m/2d as m→ 0+.

7.4 Optimal decay rate

Theorem 7.15 (Exponential decay, optimal decay rate). In fact for any m > 0 small,

τxy ≤ 1

ϵ
[(−∆+m1)−1]xy ≤ 1

ϵm
exp(−cd(m)∥x− y∥1)

with cd(m) ∼
√
m as m→ 0+.

Proof. The key is to diagonalize A. Assume periodic boundary conditions on Λ. The discrete Fourier series is given
by the following set of vectors in C|Λ|

ψm,x :=
1√
|Λ|

exp

(
2πi

2L+ 1
m · x

)
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for x,m ∈ Λ. We can compute

Aψm = 2

d∑
j=1

cos

(
2πmj

2L+ 1

)
ψm

{ψm}m forms a complete eigenbasis that is orthonormal. The discrete Fourier series is the unitary |Λ| × |Λ|
matrix whose columns are the ψms. It is defined as

(Fφ)m =
∑
x∈Λ

φxψm,x =
1√
|Λ|

∑
x∈Λ

φx exp

(
2πi

2L+ 1
m · x

)
The inverse is given by

(F∗φ̂)x =
1√
|Λ|

∑
m∈Λ

φ̂m exp

(
− 2πi

2L+ 1
m · x

)
Then

A = F∗

2
d∑
j=1

cos

(
2πmj

2L+ 1

)
m∈Λ

F.

As such clearly

(1− εA)−1 = F∗


 1

1− 2ε
∑d
j=1 cos

(
2πmj

2L+1

)

m∈Λ

F

and so

[(1− εA)−1]xy =
∑
m∈Λ

ψm(x)ψm(y)

1− 2ε
∑d
j=1 cos

(
2πmj

2L+1

)
=

1

|Λ|
∑
m∈Λ

exp
(
i 2πm
2L+1 · (x− y)

)
1− 2ε

∑d
j=1 cos

(
2πmj

2L+1

) .
Now, as L→ ∞, this becomes a Riemann sum approximation of a Riemann integral with which we may write

Gε(x− y) := lim
L→∞

[(1− εA)−1]xy =
1

(2π)d

∫
k∈[−π,π]d

dk
exp(ik · (x− y))

1− 2ε
∑d
j=1 cos(kj)

.

Let us re-interpret each kj ∈ [−π, π] integral as a complex contour integral of the unit circle, i.e., zj = eikj , so we
get

Gε(x− y) =
1

(2πi)d

∮
z1∈S1

dz1
z1

· · ·
∮
zd∈S1

dzd
zd

∏d
j=1 z

xj−yj
j

1− ε
∑d
j=1

(
zj +

1
zj

) .
We may deform the contour integrations from the circle to slightly larger or smaller radii (for each j pick if we need
to enlarge or shrink based on the sign of xj − yj). We can only change the radii as long as we don’t create zeros in
the denominator

z 7→ 1− ε

d∑
j=1

(
zj +

1

zj

)
.
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Let us choose tentatively a sequence of changes {rj}dj=1 (not change means rj = 1). If xj − yj > 0 we choose
rj ∈ (0, 1) and if xj − yj < 0 we choose rj > 1. Then, invoking Cauchy’s theorem,

Gε(x− y) =

d∏
j=1

r
xj−yj
j

1

(2πi)d

∮
z1∈S1

dz1
z1

· · ·
∮
zd∈S1

dzd
zd

∏d
j=1 z

xj−yj
j

1− ε
∑d
j=1

(
rjzj +

1
rjzj

) .
Assuming we haven’t crossed any singularities. Also note that∣∣∣∣∣∣1− ε

d∑
j=1

(
rjzj +

1

rjzj

)∣∣∣∣∣∣ ≥ 1− ε

d∑
j=1

∣∣∣∣rjzj + 1

rjzj

∣∣∣∣ = 1− ε

d∑
j=1

(
rj +

1

rj

)
.

Hence

|Gε(x− y)| ≤
∏d
j=1 r

xj−yj
j∣∣∣1− ε

∑d
j=1

(
rj +

1
rj

)∣∣∣ 1

(2π)d

∣∣∣∣∮
z1∈S1

· · ·
∮
zd∈S1

dz1 . . . dzd

∣∣∣∣
=

∏d
j=1 r

xj−yj
j

1− ε
∑d
j=1

(
rj +

1
rj

) .
Assuming we haven’t crossed any singularities. Since the denominator (for all rj = 1) is real and positive, a

sufficient condition to never cross zeros is indeed

1− ε

d∑
j=1

(
rj +

1

rj

)
> 0.

We simplify life by choosing isotropically: rj = exp(±a) (depending on the sign of xj − yj as described above) for
some a > 0. Then

d∏
j=1

r
xj−yj
j = exp(−a∥x− y∥1)

and

1− ε

d∑
j=1

(
rj +

1

rj

)
= 1− 2dε cosh(a)

which yields the condition

cosh(a) <
1

2dε
.

|G(x− y)| ≤
exp(−a∥x− y∥1)
1− 2dε cosh(a)

(
a < arccosh

(
1

2dε

))
.

Note that

arccosh

(
1

2dε

)
=

√
2− 4dε+O

(
(1− 2dε)3/2

)
which yields the optimal square root decay rate.
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8 Joshua: The Peierls solution for N = 1, d ≥ 2

8.1 Setup
8.1.1 Objective

Let Λ = [−L,L]2 ∩ Z2 with a configuration of spins ψ = {ψx}x∈Λ ⊆ (S0)|Λ| = {±1}|Λ|. Our goal is to show that the two-
point function under free boundary conditions, Efree[ψxψy], does not decay as L→ ∞. Physically, this result demonstrates
that there is some long-range order even as the lattice grows. A crucial intermediate step is to show that the spontaneous
magnetization has a lower bound for sufficiently low temperatures, independent of L.

8.1.2 Borders

Every configuration admits a set of borders drawn along edges separating + and − spins (see Figure Figure 1). Note that
each border is oriented. Our choice of orientation follows these rules:

1. Keep the − spins on the left and the + spins on the right.

2. If there is ambiguity, always turn to the left.

Borders are always closed. In Figure Figure 1a, the top left border is open, while the bottom border is closed. In
Figure Figure 1b, there are three borders (due to the left-turn rule), each with a length of 4 unit segments. The right
diagram exhibits uniform boundary conditions, in that all spins on the outer boundary are +.

+ − + + +
− − + + +
+ + + + +
+ + + − +
+ + + + +

(a) Mixed boundaries

+ + + + +
+ + + − +
+ + − + +
+ − + + +
+ + + + +

(b) Uniform + boundaries

Figure 1: Visualizing borders in lattice configurations.

8.1.3 Energy and Probability

Recall that the Hamiltonian, or energy, can be rewritten as:

H(ψ) := −
∑
x∼y

ψxψy

Note that (up to an additive constant) the Hamiltonian is twice the sum of the lengths of all borders, since a misaligned
pair of spins (which is precisely what creates a unit of border) contributes +1 to the sum relative to −1 in the aligned
case. The probability of any configuration ψ is then:

P[{ψ}] = dP
dc

(ψ) =
exp(−βH(ψ))∑
ψ′ exp(−βH(ψ′))

where the sum is over all (finitely many) configurations, and c is the counting measure.

8.2 Long-Range Order at Low Temperature
8.2.1 Motivation

Let Λ+
ψ ,Λ

−
ψ ⊆ Λ be the vertices with positive and negative spins, respectively, in a given configuration. Then:

mΛ :=
|Λ+
ψ | − |Λ−

ψ |
|Λ|

= 1− 2 ·
|Λ−
ψ |

|Λ|
= −1 + 2 ·

|Λ+
ψ |

|Λ|

is the magnetization of the configuration, since |Λ+
ψ |+ |Λ−

ψ | = |Λ|. Peierls showed that:

1

|Λ|
E+[|Λ−

ψ |] ≤ C(β)
β→∞−→ 0
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or equivalently, that the magnitude of magnetization does not vanish. Compare this with the free boundary case, which
has:

1

|Λ|
Efree[|Λ−

ψ |] =
1

2

by symmetry.
Why is this bound important? Suppose it is true. Fix uniform + boundary conditions. We may equivalently write the

magnetization as:

E+[ψx] = P+[ψx = +1]− P+[ψx = −1] =
1

|Λ|
(E+[|Λ+

ψ | − |Λ−
ψ |])

= E+[mΛ] = 1− 2
E+[|Λ−

ψ |]
|Λ|

≥ 1− 2C(β) > 0

for β large enough, thanks to the translation-invariance of the infinite-volume Gibbs state. In this case, we have:

E+[ψxψy] ≥ E+[ψx]E+[ψy] > 0

as well, by Griffiths’ inequality. This result generalizes to free boundary conditions. For any zero external field, any
infinite-volume Gibbs state is a convex combination of the uniform + boundary case and the uniform − boundary case.
Furthermore:

Efree[ψxψy] =
1

2
E+[ψxψy] +

1

2
E−[ψxψy] > 0

where the last step follows by symmetry. Hence lim inf∥x−y∥→∞ Efree[ψxψy] > 0 as well, and the two-point function does
not decay in the free boundary case either.

8.2.2 Intuition

Why should the magnetization bound be true in d = 2? With uniform + boundary conditions, a collection of − spins in
a sea of + spins is surrounded by a closed contour.

• In 2D, the energy of such a contour grows linearly with its length, so the probability of seeing that contour is weighted
by the Boltzmann factor exp(−βE(b)) = exp(−2βb).

• Meanwhile, it turns out that the entropy (the number of such contours) grows only exponentially in the length with
rate 3, i.e., on the order of 3b up to polynomial factors.

• Hence, for β sufficiently large (low temperature), the expected “amount of border” is small, and so we will see net
magnetization.

In contrast, this argument fails in d = 1 because every “border” is just a pair of endpoints, having constant energy
which does not grow with size.

8.2.3 The Uniform Boundary Case

We consider the class of configurations Ω in which all 8L − 4 spins on the outer boundary of Λ are +. Some simple
observations we can make about configurations in Ω:

• All borders are closed, and therefore every − is enclosed by at least one closed border.

• Border lengths must be even and no less than 4, i.e., they may take values in 2N + 2.

• A border of length b encloses an area at most b2/16 (thanks to the isoperimetric inequality; see Section ?? for proof),
and thus contains at most that same number of spins.

The final observation is simply an argument for why the square offers the highest area to perimeter ratio among shapes
on the lattice, but more formally it can be shown as:

Lemma 8.1 (Isoperimetric Inequality on Z2). A closed border of length b encloses at most b2/16 vertices.
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Proof. Consider any border B. We define the bounding box of the region enclosed by B by its horizontal width
W and vertical height H. Specifically, if the vertices enclosed range from xmin to xmax and ymin to ymax, then
W = xmax − xmin and H = ymax − ymin (representing the dimensions of the dual rectangle enclosing the region).

Consider the projection of the path B onto the horizontal axis. To span the width W , the path must travel at
least W units to the right and W units to the left. Thus, the number of horizontal steps in B satisfies bhoriz ≥ 2W .
By the same logic for the vertical axis, the number of vertical steps satisfies bvert ≥ 2H.

The total length is b = bhoriz + bvert. Therefore:

b ≥ 2W + 2H =⇒ W +H ≤ b

2

The number of spins (vertices) enclosed by the border is bounded by the area of this bounding box, A ≤ W · H.
We maximize the product W ·H subject to the constraint W +H ≤ b/2. By the AM-GM inequality, the product is
maximized when W = H = b/4. Thus:

A ≤
(
b

4

)(
b

4

)
=
b2

16

as desired.

With these observations, we can bound the number of negative spins as:

|Λ−
ψ | ≤

∑
b∈2N+2

b2

16

α(b)∑
i=1

χ
(Bi)
b

where α(b) ≡ αL(b) is the number of possible borders of length b, and χ
(Bi)
b is the indicator for the ith border of length

b (according to some arbitrary indexing scheme) occurring in a configuration of Ω. We will bound this expression (in
expectation) in two steps.

Lemma 8.2 (Border Bound). The number of possible closed, oriented borders of length b contained in a configuration in
Ω is bounded by:

α(b) ≤ 16L23b

3b
∝ L2b−13b

Proof. A border is a sequence of connected line segments on the lattice that separates + sites from − sites. To
bound α(b), we make three observations:

1. To begin a path, we must first choose a starting location and direction. The lattice contains 4L2 vertices, each
with 4 adjacent edges, for 16L2 possible first choices.

2. At each subsequent step, we arrive at a new vertex from which there are four possible directions for the next
segment. However, one of those directions would simply reverse the direction just traversed, leaving at most 3
choices.

3. Every path constructed as such is overcounted by a factor of b, since it distinguishes between the b different
possible starting points.

Combining these observations, the total number of directed paths of length b is:

α(b) ≤ 16L2 × 3× 3× · · · × 3︸ ︷︷ ︸
b−1 times

×b−1 =
16L23b

3b

which is precisely the desired bound.

Lemma 8.3 (Probability Bound). For any b ∈ 2N + 2 and 1 ≤ i ≤ α(b) integer, E+χ
(Bi)
b ≤ exp(−2βb).
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Proof. If B is a (closed) border of length b and indexed by i, let ΩB ⊆ Ω be the set of configurations which contain
B. Fix ψ ∈ ΩB and observe that flipping all spins inside B yields ψ∗ ∈ Ω. Hence Ω∗

B = {ψ∗ : ψ ∈ ΩB} ⊆ Ω. By
definition:

E+χ
(Bi)
b =

∑
ψ∈ΩB

exp(−βH(ψ))∑
ψ∈Ω exp(−βH(ψ))

Then, because every misaligned spin in ψ which is on the inner boundary of B would be aligned in ψ∗ (while all
other contributions to the energy remain unchanged), flipping its contribution from −ψxψy = +1 to −ψxψy = −1,
we have:

H(ψ∗) = H(ψ)− 2b

Now, ∑
ψ∈Ω

exp(−βH(ψ)) ≥
∑

ψ∗∈ΩB

exp(−βH(ψ∗)) =
∑
ψ∈ΩB

exp(−β(H(ψ)− 2b))

= exp(2βb)
∑
ψ∈ΩB

exp(−βH(ψ))

so that from the first equation, E+χ
(Bi)
b ≤ exp(−2βb) as desired.

With these two results, we complete our argument: define κ = 3 exp(−2β), so that by linearity of expectation:

|Λ|−1E+

[
|Λ−
ψ |
]
≤ 1

(2L+ 1)2
E+

 ∑
b∈2N+2

b2

16

α(b)∑
i=1

Eχ(Bi)
b


≤ 1

4L2

∑
b∈2N+2

b2

16

(
16L23b

3b

)
(exp(−2βb))

=
1

12

∑
b∈2N+2

b exp(−b(2β − log 3)) =: C(β)

which exhibits exponential decay (thus converging) insofar as β > 2−1 log 3. In particular, C(β) → 0 as β → ∞,
independently of L as desired.
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9 Matias: Mermin-Wagner (Pfister)

9.1 Setup

Let ΛL := [−L,L]d ∩ Zd and ψ : Λ → SN−1 with N ≥ 2, be a random field distributed according to the Gibbs measure
whose partition function is

Zβ,ΛL
:=

∫
ψ:ΛL→SN−1

exp

(
−1

2
β ⟨ψ,−∆ψ⟩

)
dµ (ψ)

where µ is the a-priori measure, in this case the |Λ|-fold product of volume measures on SN−1 and

⟨ψ,−∆ψ⟩ ≡ ⟨ψ,−∆⊗ 1Nψ⟩RΛ⊗RN

=

N∑
i=1

∑
x,y∈ΛL

ψx,i (−∆)xy ψy,i .

With this setup, he goal of this section is to prove the following theorem.

Theorem 9.1 (Mermin-Wagner a la Pfister). Let N ≥ 2 and d ≤ 2. Then any infinite volume Gibbs measure is

rotation invariant. I.e., let F :
(
SN−1

)Zd

→ R be a measurable function which depends only on finitely-many spins.
Then

Eβ [F ] = Eβ [F ◦ TR] .

where TR :
(
SN−1

)Zd

→
(
SN−1

)Zd

is the global constant rotation of all spins by some R ∈ O (N).

9.2 The proof
9.2.1 A finite box and a buffer

Let such F :
(
SN−1

)Zd

→ R be a measurable function which depends only on finitely-many spins and pick L sufficiently
large so that F only depends on the spins in ΛL. Now pick some B ∈ N and consider the somewhat larger box ΛL+B . Let
R ∈ O (N) and without loss of generality assume that R only rotates within the 1−2 plane, say by some angle α ∈ [0, 2π).

Our general strategy will be to rotate the spins uniformly within ΛL, and then gradually taper off the rotation from
φ to nothing as we go from ∂ΛL to ∂ΛL+B . Let us thus define now the space dependent rotation

φ : ΛL+B → [0, 2π)

where we’ll have φx = α if x ∈ ΛL and φx → 0 as x varies from ∂ΛL to ∂ΛL+B (just how this profile is taken we’ll specify
shortly).

Let ψφ be the rotated field, so that ψφx = ψx rotated by α for all x ∈ ΛL and we simply have ψφx = ψx for all
x /∈ ΛL ∪ ΛL+B .

We will use the following

Lemma 9.2. We have

1

2
⟨ψφ,−∆ψφ⟩+ 1

2

〈
ψ−φ,−∆ψ−φ〉− 1

2
⟨φ,−∆φ⟩ ≤ ⟨ψ,−∆ψ⟩ .

Proof. We have
⟨ψ,−∆ψ⟩ =

∑
x,y∈ΛL+B

(−∆)xy ⟨ψx, ψy⟩RN

so we may write
⟨ψφ,−∆ψφ⟩ =

∑
x,y∈ΛL+B

(−∆)xy
〈
ψx, ψ

φy−φx
y

〉
RN
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and if we parametrize ψαx ≡


cos (α)ψx1 − sin (α)ψx2
sin (α)ψx1 + cos (α)ψx2

ψx3
· · ·

 (i.e. since we are just rotating in the 1− 2 plane) then

〈
ψx, ψ

α
y

〉
RN = ⟨ψx, ψy⟩ −

〈[
ψx1
ψx2

]
,

[
ψy1
ψy2

]〉
+

〈[
ψx1
ψx2

]
,

[
cos (α)ψy1 − sin (α)ψy2
sin (α)ψy1 + cos (α)ψy2

]〉
= ⟨ψx, ψy⟩+

〈[
ψx1
ψx2

]
,

[
(cos (α)− 1)ψy1 − sin (α)ψy2
sin (α)ψy1 + (cos (α)− 1)ψy2

]〉
So

1

2

〈
ψx, ψ

α
y

〉
RN +

1

2

〈
ψx, ψ

−α
y

〉
RN − ⟨ψx, ψy⟩ =

1

2

〈[
ψx1
ψx2

]
,

[
(cos (α)− 1)ψy1
(cos (α)− 1)ψy2

]〉
+

1

2

〈[
ψx1
ψx2

]
,

[
(cos (α)− 1)ψy1
(cos (α)− 1)ψy2

]〉
=

〈[
ψx1
ψx2

]
,

[
ψy1
ψy2

]〉
(cos (α)− 1)

Hence

1

2
⟨ψφ,−∆ψφ⟩+ 1

2

〈
ψ−φ,−∆ψ−φ〉− ⟨ψ,−∆ψ⟩ =

∑
x,y∈ΛL+B

(−∆)xy

〈[
ψx1
ψx2

]
,

[
ψy1
ψy2

]〉
(cos (φy − φx)− 1)

≤
∑

x,y∈ΛL+B

(−∆)xy

〈[
ψx1
ψx2

]
,

[
ψy1
ψy2

]〉
1

2
(φy − φx)

2

≤
∑

x,y∈ΛL+B :x∼y

1

2
(φy − φx)

2

=
1

2
⟨φ,−∆φ⟩ .

Lemma 9.3 (Optimal energy). In d ≤ 2 there is a choice of field φ : ΛL+B → [0, 2π) so that φ = α within ΛL, φ = 0
on ∂ΛL+B and its energy is bounded by

K :=
C

log
(
1 + B

L

) ∃ C independent of L and B.

Proof. We are trying to minimize the energy of a field which is constant within ΛL and then tapers off to zero as x
varies from ∂ΛL to ∂ΛL+B . To do so, we consider the gradual rotation:

φx ≡ φ(∥x∥) :=


α ∥x∥ ≤ L

α
log(L+B+1

∥x∥+1 )
log(L+B+1

L+1 )
L < ∥x∥ < L+B

0 ∥x∥ ≥ L+B

(x ∈ ΛL+B) .

Such a rotation causes the energy to change by:

E(φ) := H(ψφ)−H(ψ) = 1
2

(
⟨ψφ,−∆ψφ⟩ − ⟨ψ,−∆ψ⟩

)
Observe the following by our earlier lemma:

1

2
⟨ψφ,−∆ψφ⟩+ 1

2

〈
ψ−φ,−∆ψ−φ〉− ⟨ψ,−∆ψ⟩ = 1

2
(⟨ψφ,−∆ψφ⟩ − ⟨ψ,−∆ψ⟩) + 1

2

(〈
ψ−φ,−∆ψ−φ〉− ⟨ψ,−∆ψ⟩

)
≤ 1

2
⟨φ,−∆φ⟩
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Hence we get either 1
2 (⟨ψ

φ,−∆ψφ⟩ − ⟨ψ,−∆ψ⟩) = H(ψφ)−H(ψ) ≤ 1
2 ⟨φ,−∆φ⟩ or H(ψ−φ)−H(ψ) ≤ 1

2 ⟨φ,−∆φ⟩.
Below we will assume WLOG that the former is true (if the latter were instead true just replace φ by −φ below).

For any L ≤ ∥x∥ ≤ L+B, we have:

∂φx
∂∥x∥

≡ φ′(∥x∥) = − α

log
(
L+B+1
L+1

) 1

∥x∥+ 1

Thus for x ∼ y, x ∈ ΛL+B , we have the following bound by the mean value theorem:

|φx − φy| ≤ sup
t∈[∥x∥,∥y∥]

|φ′
x(t)| × |∥x∥ − ∥y∥| ≤ α

log
(
L+B+1
L+1

) 1

min{∥x∥, ∥y∥}+ 1
,

where we used the fact that x ∼ y =⇒ |∥x∥ − ∥y∥| ≤ 1. Hence we see:

E(φ) ≤ 1

2
⟨φ,−∆φ⟩ = 1

2

∑
x∼y

(φx − φy)
2 ≤ 1

2

∑
x∼y

min(∥x∥,∥y∥)∈[L,L+B]

α2(
log
(
L+B+1
L+1

))2 1

(min{∥x∥, ∥y∥}+ 1)2

= C ′ α2(
log
(
L+B+1
L+1

))2 L+B∑
r=L

rd−1

(r + 1)2
,

where in the final step we reorganized the sum by collecting all edges whose endpoint closer to the origin has distance
r = min(∥x∥, ∥y∥) from the center. For a lattice in Zd and a fixed distance from the center, r, there are O(rd−1)
points with r = min{∥x∥, ∥y∥} (this is clear from recognizing that the number of the these points is proportional to
the lattice surface area of the sphere of radius r and a sphere in dimension d has surface area O(rd−1)). Thus for
d = 2, we see that this sum behaves like a harmonic sum, i.e.:∫ L+B

L

r

(r + 1)2
dr ≲ log

L+B + 1

L+ 1
=⇒ E(φ) ≤ C̃

α2(
log
(
L+B+1
L+1

))2 log
L+B + 1

L+ 1
=

C̃α2

log
(
L+B+1
L+1

) .
So, by defining C := C̃α2, we obtain the desired inequality.

We note that this is precisely the part of the proof that relies heavily on the assumption that d ≤ 2. Following
the above analysis, one sees that for d = 1, we can get a bound C α2

B , which is a stronger bound than we had in the
d = 2 case above. On the other hand, for d ≥ 3, one sees that the above analysis fails and we instead find a bound
like α2

Ld−2 .
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Let us finish the proof the the theorem. Assume WLOG F ≥ 0 (see below for why this doesn’t lose generality). Then:

Zβ,ΛL+B
Eβ,ΛL+B

[F ◦TR] =
∫
ψ:ΛL+B→SN−1

exp
(
− 1

2β ⟨ψ,−∆ψ⟩
)
F (TR(ψ)) dµ(ψ)

≤ exp
(
1
2βK

) ∫
ψ

exp
(
− 1

2β
(

1
2 ⟨ψ

φ,−∆ψφ⟩+ 1
2 ⟨ψ

−φ,−∆ψ−φ⟩
))

F
(
ψ±φ) dµ(ψ)

= exp
(
1
2βK

) ∫
ψ

exp
(
− 1

2β
(

1
2 ⟨ψ

φ,−∆ψφ⟩+ 1
2 ⟨ψ

−φ,−∆ψ−φ⟩
))√

F (ψφ)F (ψ−φ) dµ(ψ)

C.S.
≤ exp

(
1
2βK

)√∫
ψ

exp
(
− 1

2β⟨ψφ,−∆ψφ⟩
)
F (ψφ) dµ(ψ)

×

√∫
ψ

exp
(
− 1

2β⟨ψ−φ,−∆ψ−φ⟩
)
F (ψ−φ) dµ(ψ)

= exp
(
1
2βK

)√∫
ψ

exp
(
− 1

2β⟨ψ,−∆ψ⟩
)
F (ψ) dµ(ψ−φ)×

√∫
ψ

exp
(
− 1

2β⟨ψ,−∆ψ⟩
)
F (ψ) dµ(ψφ)

dµ(ψ±φ)=dµ(ψ)
= exp

(
1
2βK

) ∫
ψ

exp
(
− 1

2β⟨ψ,−∆ψ⟩
)
F (ψ) dµ(ψ) = exp( 12βK)Zβ,ΛL+B

Eβ,ΛL+B
[F ] .

After performing the same analysis with a rotation in the other direction, we see:

exp

(
−1

2
βK

)
Eβ,ΛL+B

[F ] ≤ Eβ,ΛL+B
[F ◦ TR] ≤ exp

(
1

2
βK

)
Eβ,ΛL+B

[F ] .

Since F only depends on spins within ΛL this now implies for any infinite volume Gibbs measure that

exp

(
−1

2
βK

)
Eβ [F ] ≤ Eβ [F ◦ TR] ≤ exp

(
1

2
βK

)
Eβ [F ] . (17)

If Eβ [F ] = 0, then we immediately see by the above inequality that Eβ [F ◦TR] = 0 = Eβ [F ]. If Eβ [F ] ̸= 0, then we observe
the following:

exp

(
−1

2
βK

)
≤ Eβ [F ◦ TR]

Eβ [F ]
≤ exp

(
1

2
βK

)
→ 1 ≤ Eβ [F ◦ TR]

Eβ [F ]
≤ 1 =⇒ Eβ [F ◦ TR] = Eβ [F ],

where we used K → 0 as B → ∞. Thereby proving Theorem 9.1.
We note that assuming F ≥ 0 did not lose generality because we can always write F = F+ − F− where F+(x) :=

max{F (x), 0} & F−(x) := max{−F (x), 0} =⇒ F+, F− ≥ 0. Meaning, that by the above argument:

Eβ [F ] = Eβ [F
+]− Eβ [F

−] = Eβ [F
+ ◦ TR]− Eβ [F

− ◦ TR] = Eβ [F ◦ TR]

9.3 Consequences
One immediate consequence of the above result is that for N ≥ 2, d = 2, there is no spontaneous magnetization. This is
because by Theorem 9.1 with F = ψx (a spin state at x ∈ Λ), we must have:

Eβ [ψx] = Eβ [TR ◦ ψx] = Eβ [Rψx] = REβ [ψx] ∀ R ∈ O(N).

This implies that Eβ [ψx] = 0, which is precisely what it means for there to be no spontaneous magnetization (or in other
words there is no spontaneous breaking of continuous symmetry).

We also know that by a standard argument (refer to section 3 of [2]), we can pin down extremal Gibbs measures by
only probing events that have { 0, 1 } probability, so that the infinite volume Gibbs measures actually agree. Concretely,
two measures that agree on these events with probability { 0, 1 } for any F measurable must agree on the entire σ-algebra.
In our case, we have:

Eβ [F ] = Eβ [F ◦ TR] =⇒ EP,β [F ] = EPR,β [F ] ∀ F depending on finitely many spins and measurable =⇒ P = PR,

59



where PR and P denote the rotated and unrotated infinite-volume Gibbs measures respectively. Thus, after using this to
show that the extremal Gibbs measures are equal, we may conclude that the unrotated and rotated infinite-volume Gibbs
measures are equal, as any infinite-volume Gibbs measure is a mixture of the extremal ones.

Finally, Theorem 9.1 implies that there is no long range order (LRO) for N ≥ 2 and d = 2. Recall that we say there
is LRO if

lim
∥x−y∥→∞

Eβ [⟨ψx, ψy⟩RN ] ̸= 0 .

To show that in our case this limit = 0, fix a lattice ΛL with x at the origin and choose ∥y∥ large enough so that y /∈ ΛL.
Thus we see the following

Eβ [⟨ψx, ψy⟩RN ] = Eβ
[
Eβ
[
⟨ψx, ψy⟩RN |ΛcL

]]
= Eβ

[
⟨Eβ
[
ψx|ΛcL

]
, ψy⟩RN

]
= Eβ [⟨Eβ,ΛL

[ψx], ψy⟩RN ] ,

where in the first equality we used the law of iterated expectations, in the second we used the fact that y /∈ ΛL, and
in the third we wrote Eβ [ψx|ΛcL] ≡ Eβ,ΛL

[ψx] because Eβ,ΛL
[ψx] denotes the average of ψx in ΛL given fixed boundary

conditions, which is precisely what Eβ [ψx|ΛcL] denotes. Hence we see:

Eβ,ΛL
[ψx] → Eβ [ψx] = 0 as L→ ∞ =⇒ lim

∥x−y∥→∞
Eβ [⟨ψx, ψy⟩RN ] = 0 ,

meaning that there is no LRO for N ≥ 2, d = 2.
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10 Ken: Brydges–Fröhlich–Spencer graphical expansion of O (N) model
In this section we explain how classical lattice spin systems can be rewritten as gases of random walks or "polymers" and
how this representation gives us an upper bounds on critical temperatures. Our exposition follows the ideas of the paper
by Brydges, Fröhlich, and Spencer [3] as well as the note by Ueltschi [16].

10.1 Random Walk Representations
I will first introduce a somewhat general and truly amazing result from linear algebra: we can express a matrix inverse as
a sum over random walks, and a matrix determinant as a sum over closed random walks.

Definition 10.1 (Random walk). A (finite) random walk on a lattice Λ is a finite sequence of ordered pairs of sites

ω = {(x1, x2), (x2, x3), . . . , (xN−1, xN )}, xk ∈ Λ,

We write |ω| = N for the length. We write ω : x → y if x1 = x and xN = y. For given k ∈ Λ we can ask how many
times ω visits k; this number we denote as n(k, ω) and is just a number of elements in {x1, x2, ..., xN} that is equal to k.

Lemma 10.2 (Random walk representation of matrix inverse). Let J be a symmetric matrix whose diagnoal entries
are zero, and A be a diagonal matrix with non-zero diagonal entries. Entries of both matrices are specified by the site
index x ∈ Λ. For any x, y ∈ Λ

((A− J)−1)xy =
∑
ω:x→y

 ∏
(xi,xj)∈ω

Jxixj

(∏
k∈Λ

A
−n(k,ω)
k

)
, (18)

provided that the series converge. The first product runs over all random walks that start at x and end at y

Proof. Expand the inverse in a Neumann series,

(A− J)−1 = A−1
∑
m≥0

(JA−1)m,

and identify the matrix element (x, y) of (JA−1)m with a sum over all m-step paths from x to y. For example, the
term m = 2 gives the sum over random walks of length 2:

(
Λ−1JΛ−1JΛ−1

)
xy

=
∑

i1,i2,i3∈Λ
i1=x, i3=y

A−1
i1
Ji1i2 A

−1
i2
Ji2i3 A

−1
i3

=
∑
ω:x→y
|ω|=2

(∏
s∈ω

Js

)∏
k∈L

A
−n(k,ω)
k (19)

Summing over m gives the result.

The same combinatorial idea leads to a representation of det(A − J) as an exponential of a sum over random loops,
which are random walks that start and end at the same site, modulo cyclic permutations of the steps.

Lemma 10.3 (Random loop representation of matrix determinant).

det(A− J)−1 =
(∏
x

Ax

)−1

exp

(∑
ω∗

Jω∗

∏
x

A−n(x,ω∗)
x

)
,

provided the sum converges.
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Proof. The idea is the same as Lemma 10.2:

det(A− J)−1 = detA−1 det(1−A−1J)−1

= detA−1 exp
(
− tr log(1−A−1J)

)
= detA−1 exp

( ∞∑
k=1

1

k
tr
(
(A−1J)k

))

= detA−1 exp

 ∞∑
k=1

1

k

∑
i∈Λ

∑
ω: i→i
|ω|=k

(∏
s∈ω

Js

)∏
j∈Λ

A
−n(j,ω)
j


=
(∏
x

Ax

)−1

exp

∑
ω∗

( ∏
s∈ω∗

Js

)∏
j∈Λ

A
−n(j,ω)
j

 .

Define Jω∗ :=
∏
s∈ω∗ Js to get the result.

10.2 Symanzik’s Polymer Representation of Two-Point Correlation
At each site in lattice x ∈ Λ we place a spin ψx ∈ SN−1 ⊂ RN . We collect all spins into a configuration ψ = {ψx}x∈Λ ∈
S(N−1)|Λ|. The ferromagnetic interaction is encoded in a symmetric, zero-diagonal coupling matrix J = (Jxy)x,y∈Λ, for
example a nearest-neighbor coupling:

Jxy = Jyx = β for x ∼ y, Jxx = 0, (20)

and the Hamiltonian is

H = −1

2

∑
x,y∈L

N∑
α=1

Jxyψ
α
xψ

α
y (21)

The expectation value of an observable F : RN |Λ| → R is

E[F ] :=
1

Z

∫
ψ:Λ→SN−1

F (ψ) e−Hdµ(ψ) (22)

where Z is the partition function.

Theorem 10.4.
E[ψ(1)

x ψ(1)
y ] =

1

Z

∑
ω:x→y

Jω Z(ω),

where ω ranges over nearest–neighbour random walks from x to y, Jω =
∏

(u,v)∈ω Juv, and Z(ω) is the polymer
partition function to be defined later. Note that this result is valid for any J as long as it is symmetric and zero in
diagonal.

Proof. Step 1: Replace the Sphere Constraint by a Fourier Representation

Using the identity ∫
SN−1

dµ(ψx) =

∫
RN

dψx δ
(
|ψx|2 − 1

)
,

we rewrite the partition function as

Z =

∫ ∏
x∈Λ

dψx δ(|ψx|2 − 1) exp

(∑
x,y

Jxy ψx · ψy

)
.
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Introduce a Fourier representation of the constraint

δ(|ψx|2 − 1) =

∫
R
dax ĝ(ax) e

−iax|ψx|2 ,

where
ĝ(ax) = CN (2iax)

−N/2

for a constant CN depending only on N . Then

Z =

∫ ∏
x∈Λ

dax ĝ(ax)

∫ ∏
x

dψx exp
(
− 1

2 ⟨ψ,Mψ⟩
)
,

with
M = 2iA− J, Axx = ax, J = (Jxy).

Step 2: Gaussian Evaluation

The Gaussian integral gives

Z =

∫ ∏
x∈Λ

dax ĝ(ax) (2π)
N |Λ|/2 det(M)−N/2.

Similarly, inserting sources and differentiating, one obtains

E[ψ(1)
x ψ(1)

y ] =
1

Z

∫ ∏
z

daz ĝ(az) det(M)−N/2M−1
xy . (23)

Step 3: Random Walk Expansion for M−1

Following Lemma 10.2, decompose M = D − J with D = 2iA diagonal. Then

M−1
xy =

∑
ω:x→y

Jω
∏
k∈Λ

(2iak)
−n(k,ω),

where n(k, ω) is the number of visits of ω to site k.

Step 4: Loop Expansion for det(M)−1

Lemma 10.3 yields

det(M)−1 =

(∏
k∈Λ

(2iak)
−1

)
exp

(∑
ω∗

J∗
ω

|ω∗|
∏
k∈Λ

(2iak)
−n(k,ω∗)

)
,

where the sum is over random loops ω∗ and Jω∗ is the product of couplings along ω∗.
Raising to the power N/2 and expanding leads to

det(M)−N/2 =
∑
n≥0

(N/2)n

n!

∑
ω∗

1 ,...,ω
∗
n

Jω∗
1
· · · Jω∗

n

|ω∗
1 | · · · |ω∗

n|
∏
k∈Λ

(2iak)
−mk−N/2,

where mk = n(k, ω∗
1) + · · ·+ n(k, ω∗

n).

Step 5: Insert Random Walk expansions

Inserting this random–walk expansion, we obtain

E[ψ(1)
x ψ(1)

y ] =
1

Z

∑
ω:x→y

Jω
∑
n≥0

(N/2)n

n!

∑
ω1,...,ωn

Jω1 · · · Jωn

|ω1| · · · |ωn|

×
∏
k∈Λ

(∫
R
dak ĝ(ak) (2iak)

−mk−n(k,ω)−N/2
)
.
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Similarly, the partition function Z corresponds to the same expression but without the open walk ω (i.e., with
n(k, ω) = 0). We write the product over k ∈ Λ as∏

k∈Λ

(∫
R
dak ĝ(ak) (2iak)

−mk−n(k,ω)−N/2
)

=: exp
(
−U(ω, ω1, . . . , ωn)

)
.

In the case without the open walk ω we obtain∏
k∈Λ

(∫
R
dak ĝ(ak) (2iak)

−mk−N/2
)

=: exp
(
−U(ω1, . . . , ωn)

)
.

This somewhat brutal simplifiction in notation and artificial choice of letter U (as if it were internal energy!) will
in a minute reveal to us the reason Z(ω) is called "ploymer gas partition function." We can therefore write the
partition function as

Z =
∑
n≥0

(N/2)n

n!

∑
ω1,...,ωn

Jω1 · · · Jωn

|ω1| · · · |ωn|
e−U(ω1,...,ωn).

For a fixed open random walk ω : x→ y, we define the polymer partition function in the presence of ω by

Z(ω) :=
∑
n≥0

(N/2)n

n!

∑
ω1,...,ωn

Jω1 · · · Jωn

|ω1| · · · |ωn|
e−U(ω,ω1,...,ωn).

Voila! This is the grand partition function of polymer gas! Combining everything, we obtain

E[ψ(1)
x ψ(1)

y ] =
1

Z

∑
ω:x→y

Jω Z(ω),

10.3 Estimates on the Critical Temperature
We consider the hard–spin O(N) model on Λ ⊂ Zv with nearest–neighbour interactions:

ψx ∈ SN−1 ⊂ RN , |ψx| = 1,

HΛ(ψ) = −β
∑
⟨x,y⟩

ψx · ψy, Jxy =

{
β, x, y nearest neighbours,
0, otherwise.

Theorem 10.5 (Critical temperature bound, nearest–neighbour case). Let βc the smallest inverse temperature for
which long–range order can occur. If

β

(
2v − 1

N
+

1

N + 2

)
< 1, (24)

then there exist constants C, c > 0, independent of Λ, such that

0 ≤ E[ψ(1)
0 ψ(1)

x ] ≤ Ce−c|x| for all x ∈ Λ.

This in particular gives the lower bound for critical temperature

βc ≥ 1
2v − 1

N
+

1

N + 2

.

Proof. We start at the result 10.4 in the case of nearest neighbor coupling:

E[ψ(1)
x ψ(1)

y ] =
∑
ω:x→y

β|ω|Z(ω)

Z
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We wish to bound the ratio Z(ω)/Z. We stare at the expression for Z(ω) above, realize that the only important
factor that does not cancel is e−U(Ω), whose site-wise component, in the case of nearest neighbor coupling, is known
to be

F (my(Ω)) =
CN

N(N + 2) · · · (N + 2m− 2)

where Ω = (ω1, . . . , ωn) be a loop configuration and my(Ω) be the total number of visits of the loops in Ω to site y.
If we add an open random walk ω to Ω, the number of visits at y increases by n(y, ω). Since the single–site factor
in the loop gas isCN > 0 is independent of m, we have

F (my(Ω) + n(y, ω))

F (my(Ω))
=

n(y,ω)−1∏
r=0

1

N + 2(my(Γ) + r)
.

But each term satisfies

1

N + 2(my(Ω) + r)
≤


1

N
, for the first visit of ω at y,

1

N + 2
, for subsequent visits at y,

So define χ(y, ω) ∈ {0, 1} to be 1 if ω ever visits y and 0 otherwise. We then have

F (my(Ω) + n(y, ω))

F (my(Ω))
≤ N−χ(y,ω)(N + 2)−n(y,ω)+χ(y,ω).

Taking the product over y and noting that loop factors cancel in the ratio Z(ω)/Z, we obtain

Z(ω)

Z
=
∏
y∈Λ

F (my(Ω) + n(y, ω))

F (my(Ω))
≤
∏
y∈Λ

N−χ(y,ω)(N + 2)−n(y,ω)+χ(y,ω)

We can interpret this in terms of how much it "costs" to add one polymer to the gas. Namely, for a given random
walk ω its step can contribute a factor of either ≤ 1/(N + 2) (when it visits a site it has already been before) or
≤ 1/N (otherwise). Then we can write

Z(ω)

Z
≤ N−nnew(ω) (N + 2)−nold(ω).

This leads to
0 ≤ E[ψ(1)

x ψ(1)
y ] ≤

∑
ω:x→y

β|ω|N−nnb(ω) (N + 2)−nb(ω). (25)

Fix a length ℓ and consider all walks ω from x to y of length ℓ. At each step of a walk on Zd there are exactly 2d
possible nearest–neighbour moves, at most one of which "backtracks" the previous step and at most 2d− 1 of which
does not. Thus, if we sum the weights step by step, the total contribution of all length–ℓ walks is bounded by[

(2d− 1)
β

N
+

β

N + 2

]ℓ
.

Define
α := β

(
2v − 1

N
+

1

N + 2

)
.

Then ∑
ω:x→y
|ω|=ℓ

β|ω|N−nnew(ω) (N + 2)−nold(ω) ≤ αℓ,

and hence
∑
ℓ≥|x| α

ℓ bounds the two-point correlation if α < 1. This completes the proof.

In their original paper Brydges, Fröhlich, and Spencer [3] provide a more general result that does not require J to be
nearest-neighbor coupling.
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11 Rees: The Fröhlich-Simon-Spencer proof of LRO for N ≥ 2, d ≥ 3, chess-
board inequalities and reflection positivity

11.1 Setup

Let Λ := [−L,L]d ∩ Zd and ψ : Λ → SN−1 with N ≥ 2, be a random field distributed according to the Gibbs measure
whose partition function is

Zβ,Λ :=

∫
ψ∈Ω

exp

(
−1

2
β ⟨ψ,−∆ψ⟩

)
dµ (ψ)

where µ is the a-priori measure on Ω ≡
(
SN−1

)Λ, in this case the |Λ|-fold product of volume measures on SN−1 and

⟨ψ,−∆ψ⟩ ≡ ⟨ψ,−∆⊗ 1Nψ⟩RΛ⊗RN

=

N∑
i=1

∑
x,y∈Λ

ψx,i (−∆)xy ψy,i .

We are interested in a lower bound on
Eβ,Λ [⟨ψu, ψv⟩RN ]

for some fixed u, v ∈ Λ, for all sufficiently large β.

11.1.1 Discrete Fourier series

We take periodic boundary conditions here, so really, (−∆)xy = −1 if x ∼ y where now x ∼ y if either ∥x− y∥1 = 1 or
xj0 = −L and yj0 = −L (or reversed) for some j0 = 1, · · · , d and xj = yj for all j ∈ { 1, · · · , d } \ { j0 }.

The benefit of taking periodic boundary conditions is that now we may employ the discrete Fourier series. It should
be considered a unitary matrix F : C|Λ| → C|Λ| whose matrix elements are

(F)ξ,x ≡ 1

(2L+ 1)
d
2

exp

(
i2π

x · ξ
2L+ 1

)
(x, ξ ∈ Λ) .

Note that sometimes it is customary to take a bijective indexing set

Λ∗ ≡
{
2π

ξ

2L+ 1

∣∣∣∣ ξ ∈ Λ

}
⊆ [−π, π]d

(called the Brillouin zone) whence we have

(F)p,x ≡ 1

(2L+ 1)
d
2

exp (ix · p) (x ∈ Λ, p ∈ Λ∗) .

This does not change anything. We take the first convention.
Then note that

(F (−∆)F∗)ξ,ξ̃ = δξ,ξ̃2

d∑
j=1

(
1− cos

(
2πξj
2L+ 1

))
=: δξ,ξ̃E (ξ) .

We now define the transformed spin-field in momentum space,

ψ̂ := Fψ ∈
(
CN
)Λ

.

In particular we need to be aware that now ψ̂ξ,j ∈ C! The fact that ψ is real-valued means that ψ̂−ξ,j = ψ̂ξ,j .
We have, by unitarity of F,

⟨ψ,−∆⊗ 1Nψ⟩RΛ⊗RN =
∑
ξ∈Λ

E (ξ)
∥∥∥ψ̂ξ∥∥∥2

CN
.

Beware that even though ⟨ψ,−∆ψ⟩ becomes diagonal, the whole integral does not factorize since the volume measure
on the sphere mixes all momentum components! I.e.,

1
!
= ∥ψx∥2RN =

N∑
j=1

ψ2
x,j =

N∑
j=1

(
F∗ψ̂

)2
x,j

=

N∑
j=1

∑
ξ,ξ̃∈Λ

(F∗)x,ξ (F
∗)x,ξ̃ ψ̂ξ,jψ̂ξ̃,j

=

N∑
j=1

∑
ξ,ξ̃∈Λ

|Λ|−1
exp

(
− 2π

2L+ 1
i
(
ξ + ξ̃

)
· x
)
ψ̂ξ,jψ̂ξ̃,j
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so we see that all modes of ψ̂ are involved in the unit-vector constraint.
We now turn to the two-point function

τ : Λ2 → [0, 1]

given by

τxy := E
[
⟨ψx, ψy⟩RN

]
.

We think of τ as a matrix on C|Λ| and as such, we may be interested in τ̂ := FτF∗. First we note that thanks to our
periodic boundary conditions, τxy is only a function of x− y and not of x, y alone (i.e., it is a Toeplitz matrix). As such
we know that F diagonalizes it so that

τ̂ξ,ξ̃ ≡ (FτF∗)ξ,ξ̃ =: δξ,ξ̃σ (ξ)

for some symbol σ : Λ → C. Let us calculate σ:

τ̂ξ,ξ̃ ≡
∑
x,y∈Λ

(F)ξx τxy (F
∗)yξ̃

=
∑
x,y∈Λ

|Λ|−1
exp

(
i

2π

2L+ 1
ξ · x− i

2π

2L+ 1
ξ̃ · y

)
E

 N∑
j=1

ψx,jψy,j


=

∑
x,y∈Λ

|Λ|−1
exp

(
i

2π

2L+ 1
ξ · x− i

2π

2L+ 1
ξ̃ · y

)
E

 N∑
j=1

ψx−y,jψ0,j


z:=x−y
=

∑
z,y∈Λ

|Λ|−1
exp

(
i

2π

2L+ 1
ξ · (z + y)− i

2π

2L+ 1
ξ̃ · y

)
E

 N∑
j=1

ψz,jψ0,j


= δξ,ξ̃

∑
z∈Λ

exp

(
i

2π

2L+ 1
ξ · z

)
E

 N∑
j=1

ψz,jψ0,j

 .
Hence we identify

σ (ξ) :=
∑
z∈Λ

exp

(
i

2π

2L+ 1
ξ · z

)
E

 N∑
j=1

ψz,jψ0,j

 .
Actually the symbol may be further simplified into σ (ξ) = E

[∥∥∥ψ̂ξ∥∥∥2
CN

]
. Indeed,

σ (ξ) =
∑
z∈Λ

exp

(
i

2π

2L+ 1
ξ · z

)
E

 N∑
j=1

ψz,jψ0,j


= |Λ|−1

∑
z,y∈Λ

exp

(
i

2π

2L+ 1
ξ · z

)
E

 N∑
j=1

ψz,jψ0,j


= |Λ|−1

∑
z,y∈Λ

exp

(
i

2π

2L+ 1
ξ · (z − y)

)
E

 N∑
j=1

ψz−y,jψ0,j


= |Λ|−1

∑
z,y∈Λ

exp

(
i

2π

2L+ 1
ξ · (z − y)

)
E

 N∑
j=1

ψz,jψy,j


= E

 N∑
j=1

ψ̂ξ,jψ̂ξ,j


= E

[∥∥∥ψ̂ξ∥∥∥2
CN

]
.
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11.2 The Gaussian domination bound
11.2.1 Reflection positivity

Let R : Λ → Λ be a reflection about a plane. For example, x 7→ −x. This divides Λ into Λ± such that R yields a bijection
Λ+

∼= Λ−. Each observable F : Ω → C then has its reflected version FR := F ◦R given by

FR (ψ) ≡ F (ψ ◦R) .

Definition 11.1 (Reflection positive measures). We say that ⟨·⟩ : ΩC → C is reflection positive iff for any F,G : Ω → C
and any reflection R : Λ → Λ we have 〈

FGR
〉

=
〈
GFR

〉
and 〈

FFR
〉
≥ 0 .

Claim 11.2. The classical O(N) Gibbs measure is reflection positive.

Proof. Consider the Hamiltonian of the classical O (N) model w.r.t. any reflection R. We have

⟨ψ,−∆ψ⟩ =
∑

x,y∈Λ+:x∼y
∥ψx − ψy∥2RN +

∑
x,y∈Λ−:x∼y

∥ψx − ψy∥2RN +
∑

x∈Λ+,y∈Λ−:x∼y
∥ψx − ψy∥2RN

=: H+ (ψ+) +RH+ (ψ−) + I (ψ+)RI (ψ−) .

Then

exp

(
−1

2
β ⟨ψ,−∆ψ⟩

)
= exp

(
−1

2
βH+ (ψ+)

)(
R exp

(
−1

2
βH+ (ψ−)

))
exp

(
−1

2
βI (ψ+)RI (ψ−)

)
.

We further rewrite

exp

(
−1

2
βI (ψ+)RI (ψ−)

)
=

∞∑
n=0

1

n!

(
−1

2
β

)n
(I (ψ+)RI (ψ−))

n

so that
exp

(
−1

2
β ⟨ψ,−∆ψ⟩

)
= A (ψ+)RA (ψ−)

for some function A. However, the a-priori measure µ certainly obeys reflection positivity so the full measure Eβ,Λ
also does.

Corollary 11.3 (Cauchy-Schwarz-Reflection). For any F,G : Λ → C and any reflection R we have∣∣〈FG〉∣∣2 ≤
〈
FFR

〉 〈
GGR

〉
.

As a result, for any F± : Λ± → C we have∣∣〈F+F−
〉∣∣2 ≤

〈
F+ (F+)R

〉 〈
F− (F−)R

〉
.
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Corollary 11.4 (Chess-board inequality). Now suppose that we consider all possible reflections in Λ, and we apply
the above reflection Cauchy-Schwarz successively. Say that we for any x, y ∈ Λ, x ∼ y, we have Gxy :

(
SN−1

)2 → R
symmetric. Then successively applying the above we learn

〈∏
x∼y

exp (Gxy (ψx, ψy))

〉
≤
∏
x∼y

〈 ∏
x′∼y′

exp (Gxy (ψx′ , ψy′))

〉 1
|E|

(26)

where |E| is the number of nearest-neighbor edges in Λ.

11.2.2 The Gaussian domination bound

Theorem 11.5. We claim that
σ (ξ) ≤ 1

βE (ξ)
(ξ ∈ Λ \ { 0 }) .

Proof. We have

σ (ξ) ≡ E

[∥∥∥ψ̂ξ∥∥∥2
CN

]
so it is obvious that without the interaction-constraints

1 =

N∑
j=1

∑
ξ,ξ̃∈Λ

|Λ|−1
exp

(
− 2π

2L+ 1
i
(
ξ + ξ̃

)
· x
)
ψ̂ξ,jψ̂ξ̃,j

we would actually have an equality rather than inequality. Moreover, since
∥∥∥ψ̂ξ∥∥∥2

CN
is really a quadratic function of

ψ it is enough to prove the inequality at the level of the moment generating function, i.e., to prove

Eβ [exp (⟨u, ψ⟩)] ≤ exp

(
1

2β

〈
u,−∆−1u

〉) (
u ∈ RΛ \ ker (−∆)

)
(since we can take Hessian w.r.t. u to get an upper bound on the two point function, but if we have an upper bound
on any two point function, then we have the necessary bound). Hence our goal is to show

Eβ

[
exp (⟨u, ψ⟩) exp

(
− 1

2β

〈
u,−∆−1u

〉)]
≤ 1 .

By completing the square this is equivalent to∫
ψ∈Ω

exp

(
−1

2
β

〈(
ψ − 1

β
∆−1u

)
,−∆

(
ψ − 1

β
∆−1u

)〉)
dµ (ψ) ≤

∫
ψ∈Ω

exp

(
−1

2
β ⟨ψ,−∆ψ⟩

)
dµ (ψ) .

Let us define
Z (v) :=

∫
ψ∈Ω

exp

(
−1

2
β ⟨(ψ − v) ,−∆(ψ − v)⟩

)
dµ (ψ)

(
v ∈ RΛ

)
.

Then it would suffice to show that
Z (v) ≤ Z (0)

(
v ∈ RΛ

)
.

This however is a consequence of (26) since we would take

Gxy (ψx, ψy) := −1

2
β∥ψx − vx − ψy + vy∥2RN

but if v : Λ → RN is constant it does not influence this function and we just get Z (0).
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11.2.3 Proof of Long Range Order Given the Gaussian Domination Bound

By general arguments we know that

τ : Λ2 → [0, 1]

converges, as L→ ∞, to a function

τ∞ : Zd × Zd → [0, 1]

given by

τ∞xy := lim
L→∞

Eβ,Λ
[
⟨ψx, ψy⟩RN

]
.

As we have seen, this function actually only depends on ∥x− y∥ and not on x, y individually. Now, we define long range
order as the non-decay of that function at infinity.

Theorem 11.6. If σ obeys the Gaussian domination bound

σ (ξ) ≤ 1

βE (ξ)
(ξ ∈ Λ \ { 0 })

then τ∞xy has no off-diagonal decay, i.e.
lim inf

∥x−y∥→∞
τ∞x,y > 0 .

Proof. Our general strategy will be to study σ∞ instead of τ∞. But what is σ∞? First, we make a change of
variables. In the infinite volume limit, we rather want a function (or measure, as we will see) on Td ≡ [−π, π]d as
opposed to Λ or Zd. As such we naively would have define

σ∞ (p) := lim
L→∞

σ

(
(2L+ 1)

2π
p

) (
p ∈ Td

)
.

The problem with this definition is that σ∞ may not define a pointwise function but rather a measure. Intuitively,
what we mean is that σ∞, on top of having an L1 density on Td with respect to the Lebesgue measure, also has a
point mass at p = 0. Note that thanks to the Gaussian domination bound, this indeed may only happen at p = 0
and nowhere else. Anticipating this, we rather define σ∞ as a measure on Td via

σ∞ (A) := lim
L→∞

1

|Λ|
∑

ξ∈Λ∧ 2πξ
2L+1∈A

σ (ξ)
(
A ⊆ Td msrbl.

)
.

The right hand side is supposed to be meant as an approximation of the Riemann integral, which converges as
L → ∞. As we said, since this measure must be regular away from p = 0 (thanks to the Gaussian domination
bound) we make the Ansatz

σ∞ = m2δ0 + fdλ

where m ≥ 0, δ0 is the Dirac delta measure at p = 0 and λ is the Lebesgue measure on Td, and finally f ∈ L1
(
Td
)
.

Then we have
σ∞ (Td) ≡ ∫

Td

dσ∞ = m2 +

∫
Td

fdλ .

On the other hand, at finite volume, we have thanks to Parseval

∑
ξ∈Λ

σ (ξ) = E

∑
ξ∈Λ

∥∥∥ψ̂ξ∥∥∥2
CN

 = E

[∑
x∈Λ

∥ψx∥2CN

]
= |Λ| .

Dividing by |Λ| and taking the limit L→ ∞ we find

σ∞ (Td) = m2 +

∫
Td

fdλ = 1
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and moreover, ∫
Td

fdλ ≡ lim
L→∞

1

|Λ|
∑

ξ∈Λ:ξ ̸=0

σ (ξ) ≤ 1

2β

∫
Td

1

2
∑d
j=1 (1− cos (pj))

dp .

Hence if d ≥ 3 and β is sufficiently large, m > 0 so that indeed σ∞ has a point mass at p = 0.

Lemma 11.7 (The Riemann-Lebesgue lemma). If

σ∞ = m2δ0 + fdλ

for some m > 0 and f ∈ L1
(
Td
)

then τ∞ has no off-diagonal decay at infinity.

Proof. We have, for any x ∈ Zd,

τ∞x,0 ≡
∫
p∈Td

exp (ip · z) dσ∞ (p)

= m2 +

∫
p∈Td

exp (ip · z) f (p) dλ (p)︸ ︷︷ ︸
→0 as ∥z∥→∞

.

Indeed, to see this last implication, let us approximate f by a trigonometric polynomial f (p) =
∑
n cne

in·p and then
pass to the limit thanks to density of polynomials in L1.

11.3 The Spin-Wave Perspective
When discussing the finite-volume Gibbs states, whose infinite-volume limit is expected to be translation invariant it is
natural to start with finite systems in

Λ(L) := (−L/2,−L/2 + 1, . . . , L/2]d, (27)

under periodic boundary conditions.

11.3.1 Fourier Representation

Fourier’s representation of any function defined on Λ—in our case the spin configuration ψ = {ψx}x∈Λ—is a decomposition
into “spin waves” with amplitudes ψp:

ψx :=
1√
Ld

∑
p∈Λ∗

L

ψp e
−ip·x, (28)

where the allowed momenta are those for which the wave is periodic on Λ(L), i.e. the points of the Brillouin zone

Λ∗
L := (−π, π]d ∩ π

L
Zd. (29)

The inverse transform, by which {ψp} is computed from the spin configuration, is given by

ψp :=
1√
Ld

∑
x∈Λ(L)

eip·x ψx. (30)

Under the normalization chosen above, the Parseval–Plancherel identity takes the form of the sum rule∑
p∈Λ∗

L

|ψp|2 =
∑

x∈Λ(L)

|ψx|2 = |Λ(L)|, (31)

with the last equality holding for unit-length spins, |ψx| = 1.
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11.3.2 Hamiltonian Under Periodic Boundary Conditions

The spin-wave decomposition is particularly convenient when the Hamiltonian is taken with periodic boundary conditions.
For spins of unit length, ∥ψx∥ = 1, and pair interactions, it is convenient to shift the Hamiltonian by a constant and
symmetrize the couplings (neither affecting the Gibbs state). This allows one to present the Hamiltonian as

Hper
Λ (ψ) =

1

2

∑
{x,y}⊂Λ

Jx−y ∥ψx − ψy∥2 − h
∑
x∈Λ

ψx =
1

2

∑
x,y∈Λ

Jx−y ψxψy − h
∑
x∈Λ

ψx, (32)

with
Ju = J−u, J0 = −

∑
∥n∥=1

Jn. (33)

Formulated in this manner, the interaction energy is a non-negative quadratic form, invariant under periodic shifts,
and it possesses a family of zero-energy modes corresponding to constant spin configurations.

Since plane waves form an orthonormal basis in ℓ2(Λ) and are eigenfunctions of the shift operator (and hence also of
the convolution operator with kernel Jx−y), the Hamiltonian diagonalizes in the Fourier basis. Using either the spectral
representation of the quadratic form or the explicit Fourier transform ((30)), one finds

Hper
Λ (ψ) =

∑
p∈Λ∗

L

E(p) |ψp|2 (34)

with
E(p) :=

1

2

∑
u∈Λ(L)

eip·u Ju. (35)

11.3.3 Nearest-Neighbor Case

For the nearest-neighbor interaction,

J (n.n.)
u =


−1, ∥u∥ = 1,

2d, u = 0,

0, otherwise,

(36)

one finds

E(p) =

d∑
j=1

(
1− cos pj

)
= 2

d∑
j=1

sin2
(pj
2

)
≈ 1

2
∥p∥2 (p small). (37)

Here one can recognize the discrete Laplacian (the second-difference operator) in the small-p behavior.

11.3.4 Fourier Representation of Correlations

The change of perspective—from the spin configuration {ψx} to its plane-wave amplitudes {ψp}—is completed by noting
that the Fourier transform of the spatial spin–spin correlation function of any shift-invariant state ρ(L)Λ = ⟨·⟩Λ reappears
as the intensity of the mode p:

S(L)
ρ (p) :=

∑
x∈Λ(L)

eip·x E[ψ0ψx]Λ = E[|ψp|2
]
Λ
. (38)

Proof. Begin with the definition of variance in momentum space

ψp =
1√
Ld

∑
x∈Λ

e−ip·xψx (39)

|ψp|2 = ψpψ
∗
p =

1

Ld

∑
x,y∈Λ

e−ip·xeip·yψxψ
∗
y (40)

Taking the expectation gives

E[|ψx|2] =
1

Ld

∑
x∈Λ

∑
y−x∈Λ

eip·(y−x)E[ψ0ψy−x] (41)
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Let z = y − x ∈ Λ

E[|ψp|2] =
∑
z∈Λ

eip·zE[ψ0ψz] (42)

This identity expresses the structure factor as the expected power in each spin-wave mode.

11.4 A Criterion for Continuous Symmetry Breaking in d ≥ 3

A heuristic explanation of the possibility of continuous symmetry breaking in dimensions d ≥ 2 is provided by the
combination of:

• The equipartition law, which—while not a theorem—is presented in physics courses as a rule of thumb: each
quadratic mode is expected to carry about 1

2kT = 1
2β

−1 of energy.

• The sum rule given by the Fourier representation of the correlation function (cf. equation (8.6) in the main text).

Their combination leads to a sufficient condition for symmetry breaking in which one may discern an analogy to the
mechanism underlying the Bose–Einstein condensation phenomenon (macroscopic occupation of the ground state in a
system of bosons).

Proposition 11.1 (Condition implying symmetry breaking). Let d > 2 and consider a system of bounded spins on Zd

with the nearest–neighbor interaction (8.7). Assume that the following Gaussian domination bound holds:

S
(L)
ρ,β (p) ≤ 2

βE(p)
, (43)

and let
Cd :=

1

(2π)d

∫
[−π/2,π/2]d

dp

E(p)
. ≈ 1

|Λ|
∑
p̸=0

1

E(p)
(L→ ∞) (44)

Then for any β > Cd/2:

(1) The magnetization satisfies

lim inf
L→∞

E
[ ∣∣∣ 1

|ΛL|
∑
x∈ΛL

ψx

∣∣∣2 ] ≥ 1− Cd
2β

> 0. (45)

Note here: the expectation of the total magnetization will be zero, but the variance of the magnetization will not be
(as will be proven in a moment). Of course it is less than one, so we can write the inequality in the form of Eq. (45).

The dimension restriction d > 2 (for finite–range interactions) arises through the requirement that 1/|p|2 be locally
integrable.

Proof. We begin with the identity valid for unit spins ∥ψx∥ = 1:

1

|Λ|
|ψ̂0|2 +

1

|Λ|
∑

p∈Λ∗\{0}

|ψ̂p|2 = 1 (46)

which follows from the Parseval–Plancherel identity. The p = 0 term is singled out because:

(i) it contains the bulk magnetization,
1

|Λ|
|ψ̂0|2 =

∣∣∣ 1

|Λ|
∑
x∈Λ

ψx

∣∣∣2 (47)

(ii) the Gaussian domination bound gives no information about it since E(0) = 0.

Taking the expectation of Eq. (46) yields

E
[ ∣∣∣ 1

|ΛL|
∑
x∈ΛL

σx

∣∣∣2 ] = 1 − 1

|Λ|
∑

p∈Λ∗\{0}

E[ |ψ̂p|2 ] (48)
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Using the Gaussian domination bound Eq. (45),

E
[∣∣∣ 1

|ΛL|
∑
x∈ΛL

ψx

∣∣∣2] ≥ 1− 1

|Λ|
∑
p̸=0

2

β

1

E(p)
. (49)

For large L, the sum is a Riemann approximation to the integral defining Cd:

lim
L→∞

1

|Λ|
∑
p̸=0

1

E(p)
= Cd. (50)

Care is required here because 1/E(p) is not uniformly continuous on the Brillouin zone. One splits the sum into
|p| ≥ ε (handled by standard theorems) and |p| < ε, for which elementary bounds show that the contribution is
O(εd−2) → 0 as ε→ 0. Altogether this yields Eq. (50), completing the proof of item (1).

11.5 Reflection Positivity: Definition and Examples
The criterion for symmetry breaking stated in Proposition 8.1 is based on elementary but nontrivial considerations.
However, verifying its key assumption (8.13) is rather challenging. At present, this verification has been achieved only
for systems that possess reflection positivity. The purpose of this section is to introduce that concept and derive the
chessboard inequality that follows from it.

Reflection positivity applies to systems defined either on Rd or on a graph that is symmetric with respect to reflection
across a hyperplane (or a family of hyperplanes). Examples include the lattice Zd and the finite periodic boxes

Λ = [−L/2, L/2)d ∩ Zd,

with periodic boundary conditions. Reflections may be taken across planes passing either through midpoints of edges or
through vertices.

Let the reflection plane divide Λ, excluding the plane itself, into two regions, which we denote by Λ±. Whenever
vertices lie on the symmetry plane, we include those vertices in both Λ± for convenience.

Let
R : Λ → Λ

be the geometric reflection. This is an involution (R2 = 1). It induces an action on configurations σ ∈ Ω by

(Rσ)x := σR(x),

and hence on observables F : Ω → C by
(RF )(σ) := F (Rσ).

Definition 11.2 (Reflection Positivity). A state ⟨ · ⟩ is called reflection positive (RP) with respect to the reflection R if
for all observables F,G : Ω → C supported in Λ+,

⟨F RF ⟩ ≥ 0, ⟨F RG ⟩ = ⟨GRF ⟩. (51)

A key example is the nearest–neighbor O(N) model. On ΛL with periodic boundary conditions, the corresponding
Gibbs state is reflection positive with respect to reflections about any of the symmetry hyperplanes of the graph (whether
passing through vertices or through edges). This follows from the following structural criterion for RP.

Proposition 11.3 (Sufficient Condition for Reflection Positivity). A Gibbs state on ΛL is reflection positive with respect
to a symmetry reflection R provided its Hamiltonian can be written in the form

−H = A+RA +

k∑
j=1

Bj RBj , (52)

where A and each Bj depend only on the spins in Λ+.

74



Proof. First note that, by independence of spins in the a priori measure, for any collection of observables A1, . . . , Am
depending only on spins in Λ+, 〈 m∏

j=1

Aj RAj

〉
0

≥ 0, (53)

where ⟨·⟩0 denotes the β = 0 Gibbs state (equivalently, the a priori product measure).
Next, from the assumed decomposition Prop. (Theorem 11.3) we have

e−βH = e βAR
(
e βA

) k∏
j=1

e βBjRBj . (54)

Expanding each factor using

e βBjRBj =

∞∑
n=0

βn

n!
(BjRBj)

n, (55)

we see that the Gibbs weight is a linear combination (with positive coefficients) of terms of the form(∏
AjRAj

)(∏
BjRBj

)
.

The positivity property Eq. (53) then implies the reflection positivity conditions ((51)).

11.6 The Chessboard Inequality
Reflection positivity leads to powerful inequalities, the first of which is a direct consequence of the Cauchy–Schwarz
inequality.

Let B denote the linear space of observables F : Ω → C. Given two observables F,G ∈ B, define

[F,G] := E[F RG] (56)

which is a nonnegative sesquilinear form by reflection positivity. By Cauchy–Schwarz,

|[F,G]|2 ≤ [F, F ] [G,G].

In our setting, this yields
|E[FG]|2 ≤ E[F RF ]E[GRG]. (57)

Factorization across a reflection plane
Let R be a reflection decomposing the domain as Λ = Λ+ ∪ Λ−. Let Bα denote the class of observables depending only
on the spins in Λα, for α ∈ {+,−}. Applying (??) to F+ ∈ B+ and F− ∈ B− gives

|E[F+F−]|2 ≤ E[F+RF+] E[F−RF−]. (58)

In integral notation the inequality becomes∣∣∣∣∫ F+(ψ
+)F−(ψ

−) ρ(dψ)

∣∣∣∣2 ≤
(∫

F+(ψ
+)F+(ψ

−) ρ(dψ)

)(∫
F−(ψ

+)F−(ψ
−) ρ(dψ)

)
(59)

Geometrically, the right-hand side involves “tiling” the domain by reflections of a single observable across the symmetry
hyperplane.

Decomposition into boxes
Consider now a spin system on ΛL whose state is invariant under periodic shifts and is reflection positive with respect to
reflections across all hyperplanes perpendicular to coordinate axes. These reflections partition Λ into K = 2d boxes

Λ =

K⋃
α=1

Λα,

with overlaps only along boundaries. Let Bα denote the observables depending on spins in Λα.
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Figure 2: Decomposition into Boxes, including reflections and complex conjugations

Theorem 11.4 (Chessboard Inequality). Let {Fα}Kα=1 be observables with Fα ∈ Bα. Assume the Gibbs state is reflection
positive with respect to each of the reflection planes defining the boxes. Then∣∣∣∣∣E

[
K∏
α=1

Fα(σ|Λα
)

]∣∣∣∣∣ ≤
K∏
α=1

E

 K∏
β=1

F #
α (σ|Λβ

)

1/K

(60)

Here F #
α denotes the function obtained by reflecting and complex conjugating Fα repeatedly in all directions with the

reflection pattern of period 2 (“the chessboard tiling”). See Figure 2

Proof. Since (59) is homogeneous of degree 1 in each Fα, it suffices to assume the normalization

E

 K∏
β=1

F #
α (σ|Λβ

)

 = 1, (61)

for each α.
With this reduction, the inequality becomes equivalent to the following:
Let S = {Fj}Kj=1 ⊂ Bα0 be a collection of functions measurable in a common box Λα0 , each normalized as in

(??). For an assignment
κ : {1, . . . ,K} −→ {1, . . . ,K},

consider

M(κ) :=

∣∣∣∣∣E
[
K∏
α=1

F #
κ(α)(σ|Λα

)

]∣∣∣∣∣ . (62)

We must show that the maximum of M(κ) is attained for an assignment κ that is constant (i.e. κ(α) is the same
for all α).

By the Cauchy–Schwarz inequality, if κ is a maximizer, then so is the assignment obtained by symmetrizing κ
with respect to any reflection plane. Such symmetrizations monotonically reduce the number of nearest–neighbor
disagreements without decreasing M(κ). Thus maximizers exist with no disagreements between neighboring boxes.
Any such configuration has κ(α) constant across all α, proving the claim.

11.7 The Gaussian Domination Bound
Armed with the chessboard inequality, we proceed toward the proof of the Gaussian domination bound (8.13), originally
due to [?]. Throughout, we consider the O(N) spin model with interaction (8.7), and we assume that the corresponding
Gibbs state is reflection positive (which is the case for the nearest–neighbor model discussed in Section 8.2).

A key step is to analyze a shifted partition function. For a field η : Λ → RN , define

Z(η) :=

∫
exp

{
−β
2

∑
x,y

Jx,y ∥(ψx + ηx)− (ψy + ηy)∥2
}∏
u∈Λ

ρ0(dψu), (63)

where ρ0 is the a priori measure.
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Lemma 11.5 (Monotonicity of the Shifted Partition Function). If the Gibbs state corresponding to the Hamiltonian (8.7)
is reflection positive, then for every field η : Λ → RN ,

Z(η) ≤ Z(0). (64)

Proof. It is convenient to present the a priori measure ρ0 (supported on the sphere) as the weak limit

ρ0(dψ) = lim
ε↓0

ρε(dψ), (65)

where ρε is a probability measure on all of RN with strictly positive smooth density gε(σ). For example,

gε(σ) = Cε exp

(
−∥σ∥2 − 1

ε

)
.

By continuity it suffices to prove that, for each ε > 0,

Zε(η) ≤ Zε(0). (66)

For ε > 0 the shift σx 7→ σx + ηx can be absorbed by a change of variables, yielding

Zε(η) = Zε(0)
〈 ∏
x∈Λ

Tηx(ψx)
〉
, Tηx(ψx) :=

gε(ψx − ηx)

gε(ψx)
. (67)

For any constant shift ηx ≡ y, the factor in brackets equals 1, because the Hamiltonian is invariant under global
spin shifts. Applying the chessboard inequality to the product

∏
x Tηx(ψx)—with the decomposition Λ =

⋃
x{x}

into singletons—implies that
E
[∏
x

Tηx(ψx)
]

≤ 1,

which gives ((66)). The claim for Z(η) follows by the limiting procedure ε ↓ 0.

Theorem 11.6 (Gaussian Domination Bound). For the O(N) spin model on Zd with interaction, whenever the Gibbs
state is reflection positive, the two–point function satisfies

S(L)
ρ (p) ≤ 1

2β E(p)
, p ̸= 0, (68)

where E(p) is the dispersion relation appearing in (8.7).

Proof. By Lemma Theorem 11.5, for any field η and any ϵ > 0,

Z(ϵη)

Z(0)
= E

[
exp

(
ϵ
∑
x,y

ψxJx,yηy −
ϵ2

2β

∑
x,y

ηxJx,yηy

)]
≤ 1. (69)

Equivalently,

E
[
exp

(
ϵ
∑
x,y

ψxJx,yηy

)]
≤ exp

(
ϵ2

2β

∑
x,y

ηxJx,yηy

)
. (70)

Expand both sides in a Taylor series in ϵ. The linear terms vanish (by symmetry), and comparing coefficients of
ϵ2 gives, for any real η,

βE
[∣∣∣∑

x,y

ψxJx,yηy

∣∣∣2] ≤
∑
x,y

ηxJx,yηy. (71)

Use the Fourier decomposition ∑
x,y

ψxJx,yηy =
∑
p∈Λ∗

ψ̂pE(p) η̂p,

and
E[ψ̂p1 ψ̂p2 ] = δp1,p2 S

(L)
ρ (p).
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Equation ((71)) becomes ∑
p

E(p)2 S(L)
ρ (p) |η̂p|2 ≤ 1

2β

∑
p

E(p) |η̂p|2.

Since this holds for every test field η, we conclude the pointwise bound

S(L)
ρ (p) ≤ 1

2β E(p)
,

which is precisely ((68)).

The implications of this bound for symmetry breaking were stated earlier in this section.
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12 Kevin: The Lee-Yang theorem a la Newman

12.1 Definitions and Notation
Let Λ be a finite set of sites, and let |Λ| = k.

A signed measure µ on a measure space (X,F) is a measure that can take positive or negative values. On R, we say
that µ is even if for all A ∈ F:

µ(A) = µ(−A), −A := {−x : x ∈ A}.

Similarly, we say µ is odd if for all A ∈ F,
µ(−A) = −µ(A).

Given a system of one-dimensional spin random variables {ψj : j ∈ [N ]} Jacob: Haven’t defined what is N . with
coupling matrix J and external field h, we define the Hamiltonian

H = H(ψ,h) = −
N∑

k≤j=1

Jkjψkψj −
N∑
j=1

hjψj .

For a vector h, we use the notation

Re(h) = (Reh1,Reh2, . . . ,RehN ) .

We define V to be a vectorization of the lower triangle of J :

V = (Jkj)
N
k≤j=1.

Conversely, we could define J from V. We also define the quadratic form

V(ψ,ψ) =

N∑
k≤j=1

Jkjψkψj .

12.2 Objective
Our goal is to prove the following theorem.

Theorem 12.1. Suppose each µi, i ∈ [N ], is a signed even or odd measure on R satisfying µi(ψ) ̸= δ(ψ). Also
suppose:

(A) ∫
exp(bψ2) d|µi(ψ)| <∞ for all b ≥ 0,

(B) For h ∈ C with Re(h) > 0: ∫
ehψ dµi(ψ) ̸= 0.

and that J satisfies Jkj ≥ 0. If β > 0 and Re(h) > 0, then the partition function

Z :=

∫
RN

e−βH dµ1(ψ1) · · · dµN (ψN )

and the correlation functions

⟨ψi1 · · ·ψim⟩ := 1

Z

∫
RN

ψi1 · · ·ψime−βH dµ1(ψ1) · · · dµN (ψN )

do not vanish.
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We define an Ising system to be a pair (N, ρN ) where N ∈ Z+ and ρN is a positive measure on RN of the form

ρN (ψ) = eV(ψ,ψ)
N∏
j=1

1

2
(δ(ψj − 1) + δ(ψj + 1)) .

Let M be a finite signed measure on R. We say that M has the Lee–Yang property if for every choice of N ∈ Z+,
nonzero measures µ1, . . . , µN ∈ M, and V ≥ 0, the following hold:

(A’) The signed measure

µN (ψ) := eV(ψ,ψ)
N∏
j=1

µj(ψj)

is finite.

(B’) When Re(h) > 0:

Z(h) :=

∫
eh·ψ dµN (ψ) ̸= 0.

A single measure µ is said to have the Lee–Yang property if {µ} does.
We define N to be the set of all even or odd signed measures on R satisfying conditions (A) and (B). To prove our goal

theorem, it suffices to prove:

Theorem 12.2. N has the Lee–Yang property.

Theorem 12.3. If each Qi(ψ) is an even or odd polynomial with only purely imaginary zeros, then when Re(h) > 0:

⟨Q1(ψ1) · · ·QN (ψN )⟩h ̸= 0.

To prove that these theorems are sufficient, suppose µi, i ∈ [N ] satisfy (A) and (B). By Theorem 12.2, N has the
Lee-Yang property, so

µN (ψ) = eβV(ψ,ψ)
N∏
j=1

µj(ψj)

is finite by (A’), and by (B’):∫
eβh·ψdµN (ψ) =

∫
eβ[V(ψ,ψ)+h·ψ]

N∏
j=1

dµj(ψj) =

∫
e−βH

N∏
j=1

dµj(ψj) ̸= 0.

If we take

Qj(ψj) =

{
ψj , j ∈ {i1, · · · , im}
1, otherwise

.

Then each Qj is an even or odd polynomial in ψ with only purely imaginary zeros (0 is purely imaginary), so by
Theorem 12.3:

⟨Q1(ψ1) · · ·QN (ψN )⟩h = ⟨ψi1 · · ·ψim⟩ ̸= 0.

12.3 V has the Lee-Yang Property
Let V be the set of signed measures µ on R such that, for some Ising system (N, ρN ), λ ∈ RN+ , n ∈ {0, 1}N , and K ∈ R:

Eµ(h) =

∫
ehψ dµ(ψ) = K exp

(
−πi

2

N∑
k=1

nk

)∫
exp

[
h(λ ·ψ) + πi

2
n ·ψ

]
dρN (ψ).

By the definition of ρN in an Ising system, ρN only puts mass on the set of points where

ψ ∈ {−1, 1}N
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which is a finite set. Hence, the RHS above is just a finite sum over those points:∑
ψ∈{−1,1}N

Aψe
h(λ·ψ).

where Aψ is the remaining factor. Since the equality holds for all h, by the linear independence of exponentials, it must
be that µ only puts mass on the finite set of points F := {λ · ψ : ψ ∈ {−1, 1}N}. Then∫

exp(bψ2)d|µ(ψ)| =
∑
ψ∈F

|µ(ψ)|ebψ
2

<∞.

So every µ ∈ V satisfies (A). To show that every µ ∈ V satisfies (B), we introduce the following:

Theorem 12.4 (Lee-Yang Theorem). If (N, ρN ) is an Ising system, then when Re(h) > 0:∫
eh·ψdρN (ψ) ̸= 0.

We use this theorem without proof. Defining hk(h) := hλk +
πi
2 nk, we can write

h(λ ·ψ) + πi

2
n ·ψ =

N∑
k=1

(
hλk +

πi

2
nk

)
ψk =

N∑
k=1

hk(h)ψk.

Note that if Re(h) > 0, since λ ∈ RN+ , for each k:

Re(hk(h)) = hλk > 0.

so by Theorem 12.4: ∫
exp

[
h(λ ·ψ) + πi

2
n ·ψ

]
dρN (ψ).

and therefore Eµ(h) ̸= 0. Hence, condition (2) is satisfied.

Lemma 12.5. V has the Lee-Yang property.

Proof. We’ve shown that every µ ∈ V satisfies (A). Let µ1, . . . , µN ∈ V. Define M := max1≤i,j≤N |Jij |. Then, for
every ψ:

V(ψ,ψ) ≤
∑
i,j

|Jij ||ψi||ψj | ≤M

(
N∑
i=1

|ψi|

)2

≤MN

N∑
i=1

ψ2
i .

Where the last inequality follows from Cauchy-Schwarz. Let b :=MN . Then∫
eV(ψ,ψ)

N∏
j=1

dµj(ψj) ≤
∫ N∏

j=1

ebψ
2
i

N∏
j=1

dµj(ψj) =

N∏
j=1

∫
ebψ

2
j dµj(ψj).

where the equality follows from Fubini’s theorem, since the integrand is non-negative. By condition (A), each factor
on the RHS is finite, so (A’) is satisfied.

By the definition of V, for each µj there exists an Ising system (Mj , ρj(ψj)) such that

Ej(hj) =

∫
ehjψdµj(ψ) = Dj

∫
exp{hj(λj ·ψj) +

iπ

2
nj ·ψj}dρj(ψj)
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where Dj is the remaining factor. We define a new Ising system (M, ρ̃M ) with M =
∑N
i=1Mi and

ρ̃M (ψ1, · · · ,ψN ) = exp


N∑

k≤j=1

Jkj(λj ·ψj)(λk ·ψk)


N∏
j=1

ρj(ψj).

Then

Z(h) =

∫
exp [h ·ψ + V(ψ,ψ)]

N∏
k=1

µk(ψk)

=

∫
eV(ψ,ψ)

N∏
k=1

[
ehkψkdµk(ψk)

]
=

(
N∏
k=1

Dk

)∫
RM

exp

{
N∑
k=1

[
hk(λk ·ψk) +

iπ

2
nk ·ψk

]}
dρ̃M

Since λk > 0 and nk ∈ {0, 1}N , if Re(h) > 0, then for all k:

Re

[
hkλk +

iπ

2
nk

]
> 0

so by Theorem 12.4 applied to (M, ρ̃M ), Z(h) ̸= 0. Therefore, condition (B’) is satisfied, which completes the
proof.

12.4 N = V

We define V as the set of signed measure on R that satisfy (A) and for which there exists a sequence µn ∈ V such that

1. With C and c independent of n:

|Eµn(h)| =
∣∣∣∣∫ ehψdµn(ψ)

∣∣∣∣ ≤ C exp{c|h|2} for all h ∈ C

2. On compact subsets of C:
Eµn

(h) → Eµ(h) uniformly

Since measures in V are even or odd, and limits of analytic functions preserve parity, the same is true for V. Consider the
following, which we use without proof.

Theorem 12.6 (Hurwitz’s Theorem). Let fn be a sequence of non-constant, analytic functions on a D ⊆ C converging
uniformly on compact sets to an analytic function f . If each fn has no zeros on D, then the limit f either has no
zeros or is identically zero.

By the condition of uniform convergence on compact sets in the definition of V, we can apply Theorem 12.6 to determine
that measure in V satisfy condition (2) of our goal theorem (Eµ cannot be identically 0 because of our definition of V).
Hence, V ⊆ N. Next, we establish several key lemmas.

Lemma 12.7. Eµ(h) can be represented as

Eµ(h) = Khm
∞∏
j=1

(
1 +

(
h

αj

)2
)

for some K ∈ R, m ∈ Z≥0, and 0 < α1 ≤ α2 ≤ . . . where
∑∞
j=1

(
1
αj

)2
<∞.
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Proof. Condition (A) restricts the growth of Eµ(h) at infinity. Since µ is even or odd, Eµn
is also even or odd, and

condition (B) states that Eµ(h) is non-zero for Re(h) > 0. Hence, the zeros of Eµ occur in conjugate pairs, and they
must be purely imaginary. Expressing the nonzero zeros as h = ±iαj with 0 < α1 ≤ α2 ≤ . . . , we use the following:

Hadamard Factorization Theorem. If f(h) is an entire function, we can write

f(h) = eP (h)
∏
j

Ep

(
h

hj

)

where P (h) is a polynomial, hj are the nonzero zeros of f(h), and Ep are correction factors to ensure convergence.
Applying this to Eµ, the terms corresponding to conjugate pairs ±iαj can be combined, and the evenness/oddness

of Eµ, as well as its controlled growth, eliminates the other factors and simplifies the factorization to

Eµ(h) = Khm
∞∏
j=1

(
1 +

(
h

αj

)2
)

where the controlled growth by (A) ensures that
∑∞
j=1

(
1
αj

)2
<∞.

Lemma 12.8. If µ1, µ2 ∈ V, then µ1 ∗ µ2 ∈ V, where µ1 ∗ µ2 denotes the convolution of µ1 and µ2:

(µ1 ∗ µ2)(A) =

∫
µ1(A− ψ)dµ2(ψ)

Proof. Convolutions have the property
Eµ1∗µ2(h) = Eµ1(h) · Eµ2(h)

Recall by our definition of V that each µi is associated with an Ising system (Ni, ρ
Ni
i ) by

Eµi(h) = K exp

(
−πi

2

Ni∑
k=1

nk

)∫
exp

[
h(λi ·ψ) +

πi

2
ni ·ψ

]
dρNi (ψ).

It is clear that by multiplying Eµ1
and Eµ2

, we would see that µ1 ∗ µ2 is similarly associated with the Ising system
(N1 +N2, ρ), where ρ is the direct product (product measure) of ρ1 and ρ2 on RN1+N2 . Hence, µ1 ∗ µ2 ∈ V.

Lemma 12.9. Consider the αj in the factorization above. For any n ∈ Z+ and any a ≥
√
2αn, there exists a measure

µn,a ∈ V such that

Eµn,a(h) = K

[
a sinh

(
h

a

)]m n∏
j=1

1

2

(
a

αj

)2 [
cosh

(
2h

a

)
−
(
1− 2

(αj
a

)2)]

Proof. We use the following measures in V. For N = 1, λ1 = 1
a , n1 = 1, there exists µ1 ∈ V such that:

Eµ1(h) = K sinh

(
h

a

)
For N = 2, λ1 = λ2 = 1

a , and n1 = n2 = 1, there exists µ2 ∈ V such that:

Eµ2(h) =
1

2
K exp(J12)

(
cosh

(
2h

a

)
− exp(−2J12)

)
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Convoluting µ1 and µ2 gives us the desired result.

Finally, we can prove the following:

Theorem 12.10. N = V.

Proof. Let µ ∈ N be arbitrary and an = sup
(
1,
√
2αn, 2n+m+ 2

)
, where m and the αj are the same those in the

expansion of Eµ from Lemma 12.7. We define En(h) as the RHS of Lemma 12.9 with a = an, and we define

Ẽn(h) = Khm
n∏
j=1

(
1 +

(
h

αj

)2
)

This is just the truncation of the factorization of Eµ in Lemma 12.7. Our goal is to show that En → Eµ in the sense
of the definition of V. By using some basic inequalities:∣∣∣∣∣∣

n∏
j=1

aj −
n∏
j=1

bj

∣∣∣∣∣∣ ≤
 n∑
j=1

|aj − bj |

 n∏
j=1

sup(1, |aj |, |bj |)

sup(1, |aj |, |bj |) ≤ (1 + |bj − 1|+ |aj − bj |)

and common estimates for trigonometric functions with a, ε ≥ 1, w = h
an

, and ε = 1
2

(
an
αj

)2
derived from series:

| sinhw − w| ≤ |w|3e|w|

| cosh(2w)− 1− 2w2| ≤ 2|w|4e2|w|

sup

(
1,

∣∣∣∣a sinh(ha
)∣∣∣∣ , |h|) ≤ e|h|+|h/a|

1 + ε|2w2|+ ε| cosh(2w)− 1− 2w2| ≤ exp{2ε|w|2 + 2|w|}

we can estimate the following bounds:

|En(h)− Ẽn(h)| ≤
∣∣∣∣Kan

∣∣∣∣2 (m|h|3 +D|h|4) exp
[
(m+ 1)|h|+D|h|2

]
|Ẽn(h)− Eµ(h)| ≤

 ∞∑
j=n+1

(
1

αj

)2
 |K||h|m+2 exp(D|h|2)

where D =
∑∞
j=1

(
1
αj

)2
. From Lemma 12.7 we also easily obtain

|Eµ(h)| ≤ |K||h|m exp[D|h|2]

Combining these three bounds, we get that for some fixed polynomial Q:

|En(h)| ≤ |En(h)− Ẽn(h)|+ |Ẽn(h)− Eµ(h)|+ |Eµ(h)|
≤ Q(|h|) exp[(m+ 1)|h|+D|h|2]

Importantly, Q, m, and D do not depend on n. Then, by taking c > D and C sufficiently large, we obtain the bound

|En(h)| ≤ C exp c|h|2
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for all h ∈ C, which is condition (1) of V. Additionally:

|En(h)− Eµ(h)| ≤ |En(h)− Ẽn(h)|+ |Ẽn(h)− Eµ(h)|
≤ Pn(|h|) exp{(m+ 1)|h|+D|h|2}

where Pn(|h|) is the polynomial

Pn(|h|) =
|K|
|an|2

(m|h|3 +D|h|4) +

 ∞∑
j=n+1

1

|αj |2

 |K||h|m+2

Let K ⊂ C be a compact set. Taking R = sup{|h| : h ∈ K}, we see that Pn(|h|) ≤ Pn(R), and Pn(R) is a constant.
Since an → ∞, we know 1

|an|2 → 0, and since D converges, the tail must vanish in the limit, i.e.
∑∞
j=n+1

1
|αj |2 → 0.

Therefore, Pn(R) → 0. Similarly, we can bound

exp{(m+ 1)|h|+D|h|2} ≤ exp{(m+ 1)R+DR2}

where the RHS is a constant. Then

|En(h)− Eµ(h)| ≤ Pn(R) exp{(m+ 1)R+DR2} → 0

and since the RHS of the inequality is a constant, this is uniform convergence, which gives us condition (2) of V.
Hence, N ⊆ V. We showed earlier that V ⊆ N, so this completes the proof.

12.5 Conclusion
First, we establish the following.

Lemma 12.11. If µ(ψ) ∈ N, then exp{bψ2}µ(ψ), Q(ψ)µ(ψ) ∈ N for any b ≥ 0 and any polynomial Q that is even or
odd and has purely imaginary zeros.

Proof. Since µ(ψ) is even or odd, ebψ
2

µ(ψ), Q(ψ)µ(ψ) are also even or odd. Additionally, satisfaction of (A) is
preserved, as the Gaussian/polynomial factor can be bounded by eb0ψ

2

for some sufficiently large b0, and∫
exp(bψ2)d|eb0ψ

2

µ(ψ)| =
∫

exp[(b+ b0)ψ
2]d|µ(ψ)|

still satisfies (A). Next we let Q(ψ) =
∑
k akψ

k and use the fact that ψkehψ = dk

dhk e
hψ to write

EQµ(h) :=

∫
Q(ψ)ehψdµ(ψ) =

∑
k

ak

∫
ψkehψdµ(ψ)

=
∑
k

ak
dk

dhk

∫
ehψdµ(ψ) = Q

(
d

dh

)
Eµ(h)

Next we recall that
Q

(
d

dh

)
Ẽn(h) → Q

(
d

dh

)
Eµ(h)

uniformly on compact sets in C. Since, using standard results on polynomials, Q( ddh )Ẽn(h) has purely imaginary
zeros, by Theorem 12.6, EQµ(h) has purely imaginary zeros, so Q(ψ)µ(ψ) satisfies (B) and hence Q(ψ)µ(ψ) ∈ N.
By this result, we know that

µn :=

(
1 +

bψ2

n

)n
µ ∈ N
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and we observe that, pointwise: (
1 +

bψ2

n

)n
→ ebψ

2

Then, letting µ′ = ebψ
2

µ:

Eµ′(h) =

∫
ehψebψ

2

dµ(ψ) =

∫
lim
n→∞

[
ehψ

(
1 +

bψ2

n

)n]
dµ(ψ)

= lim
n→∞

∫
ehψ

(
1 +

bψ2

n

)n
dµ(ψ) = lim

n→∞
Eµn(h)

where the integral and limit can be interchanged due to condition (A) and the Dominated Convergence Theorem.
On a compact set K ⊂ C, this convergence is uniform, as, letting R = sup{|h| : h ∈ K}:∣∣∣∣ehψ (1 + bψ2

n

)n∣∣∣∣ ≤ exp{R|ψ|+ bψ2}

is a uniform bound for all h ∈ K. Hence, since Eµn
(h) is non-zero on compact sets of the half-plane {Re(h) > 0},

by Theorem 12.6, Eµ′(h) ̸= 0 whenever Re(h) > 0. Thus, ebψ
2

µ(ψ) satisfies (B), and therefore ebψ
2

µ(ψ) ∈ N.

We can finally revisit Theorem 12.2.

Proof of Theorem 12.2. We choose nonzero µk ∈ V, k = 1, . . . , N and define µN (ψ) and ZN (h) as in (A’) and
(B’). By the properties of V, (A’) is already satisfied, so we seek to prove that (B’) is satisfied. We may assume
WLOG that along the diagonal of J , we have Jkk = 0. Otherwise, by Lemma 12.11, we could replace µk(ψk) with
exp(Jkkψ

2
k)µk(ψk) to absorb the nonzero diagonal term. We choose µj,i ∈ V according to the definition of V so that,

on compact sets in C:
Ej,i(h) := Eµj,i

(h) → Ej(h) := Eµj
(h)

uniformly as i→ ∞, and
|Ej,i(h)| ≤ Cec|h|

2

with C and c independent of i and j. For i = (i1, . . . , iN ), we define µi(ψ) and Zi(h) to be the same as µN and ZN
in (A’) and (B’), but with each µj replaced by µj,i. Since each µj,i ∈ V has the Lee-Yang property, by (B’), we know
Zi(h) ̸= 0 when Re(h) > 0. We also define µi,k and Zi,k to be defined analogously to µi and Zi, but with µj only
replaced for j ≥ k. For each j, we can treat Zi as an entire function of hj , so by Theorem 12.6, it suffices to show
that Zi(h) → ZN (h) uniformly on compact subsets of hj ∈ C as i → ∞ to conclude that ZN ̸= 0 when Re(h) > 0.
In other words, we want to show that on compact subsets of C:

lim
in→∞

· · · lim
i1→∞

Zi(h) = ZN (h)

uniformly. It suffices to show that for each j, k ∈ [N ]:

Zi,k(h) → Zi,k+1(h)

uniformly on compacts of hj as ik → ∞.
First, we define

ψk = (ψ1, . . . , ψk−1, ψk+1, . . . , ψN )

hk = (h1, . . . , hk−1, hk+1, . . . , hN )

Jk = (J1k, . . . , J(k−1)k, J(k+1)k, . . . , JNk)

µ̃i,k(dψk) = exp

∑
l<j
l,j ̸=k

Jlj ψlψj

∏
j ̸=k

dµj,ij (ψj).
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Then, integrating with respect to ψk:

Zi,k(h) =

∫
RN

exp{h ·ψ + ψk(Jk ·ψk)}dµk,ik(ψk) dµ̃i,k(ψk)

=

∫
RN−1

exp{hk ·ψk}Ek,ik(hk + Jk ·ψk) dµ̃i,k(ψk).

Since|Ej,i(h)| ≤ Cec|h|
2

and Ek,ik converges to Ek uniformly, we can take the limit of the RHS above as ik → ∞ for
either k = j or k ̸= j to get that, uniformly in hj :

lim
ik→∞

Zi,k(h) =

∫
RN−1

exp{hk · ψk}Ek(hk + Jk · ψk) dµ̃i,k(ψk) = Zi,k+1(h).

To summarize, j ∈ [1 : N ] indexes over the coordinates of the system, ij ∈ N indexes over the approximation level
of measure µj , and k ∈ [1 : N ] indexes which coordinate’s measure is being replaced. By taking limits to replace the
measures one-at-a-time, we eventually recover ZN .

Step k Limit Zi,k Measures (µ1, . . . , µN )

1 i1 → ∞ Zi,1 = Zi (µ1,i1 , µ2,i2 , µ3,i3 , . . . , µN,iN )

2 i2 → ∞ Zi,2 (µ1, µ2,i2 , µ3,i3 , . . . , µN,iN )

3 i3 → ∞ Zi,3 (µ1, µ2, µ3,i3 , . . . , µN,iN )

...
...

...
...

k ik → ∞ Zi,k (µ1, µ2, . . . , µk−1, µk,ik , µk+1,ik+1
, . . . , µN,iN )

...
...

...
...

N iN → ∞ Zi,N (µ1, µ2, µ3, . . . , µN−1, µN,iN )

N + 1 (end) ZN (µ1, µ2, µ3, . . . , µN )

Lastly, we revisit Theorem 12.3.

Proof of Theorem 12.3. Because each Qj is even/odd with purely imaginary zeros, by Lemma 12.11:

Qj(ψj)µj(ψj) ∈ N

Then by Theorem 12.2, we can apply (B’) from the Lee-Yang property to the correlation functions, which recovers
Theorem 12.3.
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13 Neill: The Lee-Yang theorem via Lieb-Sokal
In this section, we take a different approach from the previous considerations, as we now examine the zeros of the partition
function following the methods of [9]. To set the stage more concretely, we shall work on a finite lattice Λ ⊂ Zd with
|Λ| = n (to each site i in the lattice Λ, we associate a spin ψi), and we consider the following Ising-like partition function:

Z(h1, ..., hn) =

∫
ψ:Λ→R

exp [β(

n∑
i,j=1

Jijψiψj +

n∑
i=1

hiψi)]dµ(ψ)

Some remarks are in order for this expression for the partition function. This is a considerable generalization of the
Ising model which we have considered earlier. First, we allow each spin in the lattice ψi to take values in R, not just
±1. Correspondingly, µ is now a measure on Rn. We also allow the inter-spin interaction Jij to couple more than just
nearest neighbor spins, and the coupling strength can depend on the pair. Moreover, we have introduced a site dependent
magnetic field hi into the Hamiltonian, and we consider the partition function to be a function of this magnetic field.
We can obtain the typical Ising model partition function by letting µ(ψi) = δ(ψi − 1) + δ(ψi + 1), setting hi = 0, and
choosing Jij = J if i ∼ j and zero otherwise. As one final remark, since we will not be concerned with the explicit
temperature dependence of the system, henceforth, we will absorb β into our definition of Jij and hi. With this model in
mind, the essence of the Lee-Yang theorem is as follows: if the measure µ possesses the Lee-Yang property (we will define
this more explicitly below), then, for any collection of Jij ≥ 0 (i.e. ferromagnetic interactions), the partition function
Z(h1, ..., hn) does not vanish whenever Re(hi) > 0 for all sites i. As a further extension, in the case that µ is also an even
measure (as is the case for the typical Ising model), it follows that Z(h1, ..., hn) can only have zeros on the imaginary
axis. Thus, the Lee-Yang theorem reveals a significant amount of structure to the zeros of the partition function for very
general ferromagnetic systems. Since thermodynamic phase transitions often present themselves through singularities in
thermodynamic potentials (which are obtained through logarithms of the partition function), this study of the structure
of zeros of the partition function also sheds light on the conditions for phase transitions in this system.

To motivate our approach for proving the Lee-Yang theorem, we make the following informal observations:

Z(h1, ..., hn) = exp (
∑
i,j

Jij
∂

∂hi

∂

∂hj
)

∫
exp (

n∑
i=1

hiψi)dµ(ψ)

exp (
∑
i,j

Jijψiψj) = lim
N→∞

n∏
i,j=1

(1 +
Jijψiψj
N

)N

The idea of the above observations is to say that our desired partition function can be obtained by applying polynomial
differential operators (more precisely, it is the limit of polynomial differential operators) to the non-interacting partition
function Z0(h1, ..., hn) =

∫
exp (

∑n
i=1 hiψi)dµ(ψ). Since it is relatively straightforward to work with the non-interacting

partition function, the problem essentially boils down to understanding the behavior of the zeros of a function when it is
acted on by a polynomial differential operator.

13.1 Zeros of Polynomials
We state the following preliminary results about polynomials without proof.

Lemma 13.1. Let P0, P1 be single variable complex polynomials. Suppose P0(z)+vP1(z) ̸= 0 whenever Re(z),Re(v) ≥
0. Then P0(z) + P ′

1(z) ̸= 0 whenever Re(z) ≥ 0.

Theorem 13.2 (Hurwitz’s Theorem). Let D ⊂ Cn be open. Suppose fk : D → C is a sequence of non-vanishing
holomorphic functions which converge to f uniformly on compact subsets of D. Then, either f does not vanish in D
or f is identically zero.
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Theorem 13.3 (Grace’s Theorem). Let K ⊂ C be a closed half-plane. Let F (z) =
∑N
m=0 amz

m be a polynomial that
does not vanish for z ∈ K. Let z1, ..., zN be complex variables and define the functions E0, ..., EN according to E0 = 1
and:

Em(z1, ..., zN ) =
∑

i1<i2<...<im

zi1zi2 ...zim

for 1 ≤ m ≤ N . Then the polynomial:

F̃ (z1, ..., zN ) =

N∑
m=0

am

(
N

m

)−1

Em(z1, ..., zN )

does not vanish whenever zm ∈ K for all m.

The purpose of Grace’s theorem for our considerations is that it allows us to make a multi-variable polynomial from a
single variable one that is linear in each variable and has the same vanishing properties as the single variable polynomial.
Moreover, we can recover the original polynomial by setting all the variables in the multi-variable polynomial to be equal
to each other. Before proceeding, we introduce some convenient notation:

Definition 13.4. Let z = (z1, ..., zn) denote an n-tuple of complex variables. For λ ∈ R, we say Re(z) ≥ λ iff
Re(zk) ≥ λ for all k. We also define ∂

∂z ≡ ( ∂
∂z1

, ..., ∂
∂zn

).

Definition 13.5. For z ∈ Cn, let P (z) denote a polynomial of n complex variables. We define P ( ∂∂z ) as the differential
operator obtained by replacing each instance of zk in the definition of P (z) with ∂

∂zk
for all k.

Definition 13.6. We define the set Hn ⊂ Cn by Hn ≡ {z ∈ Cn : Re(z) ≥ 0}.

Using the above results, we prove the following property of polynomial differential operators.

Lemma 13.7. Let v,w ∈ Cn, and suppose P (v), Q(w) are polynomials. Define R(v,w) = P (v)Q(w) and S(z) =
P ( ∂∂z )Q(z). Then:

1. If R(v,w) ̸= 0 whenever v,w ∈ Hn, then S(z) ̸= 0 whenever z ∈ Hn.

2. If R(v,w) ̸= 0 whenever v,w ∈ Hn, then either S(z) ̸= 0 whenever z ∈ Hn or S(z) is identically zero.

Proof. 1. Let N denote the largest degree term of R(v,w) in the variable v. Let us focus our attention to some
vk by fixing each vj for j ̸= k in H1 and fixing w in Hn. Then we can view R as a polynomial of only vk (i.e.
R(vk) =

∑N
m=0 bmv

m
k ), and this polynomial does not vanish for vk ∈ H1. We now introduce N complex variables

v
(1)
k , ..., v

(N)
k . By Grace’s Theorem, replacing vmk →

(
N
m

)−1
Em(v

(1)
k , ..., v

(N)
k ) in the expression for R ensures that

the transformation of R(vk) → R̃(v
(1)
k , ..., v

(N)
k ) is non-vanishing when v

(j)
k ∈ H1 for all j and w ∈ Hn. Repeat

this replacement process for all k to obtain a polynomial R̃({v(j)k },w) that satisfies the following properties: it is
non-vanishing when v(j)k ∈ H1 for all k, j and w ∈ Hn, it is linear in each variable v(j)k , and setting v(j)k = vk for all
j and for each k recovers the original polynomial R(v,w) (see the remark after Grace’s theorem for why this last
property is true).

Now, for a given k, j, fix all variables of R̃ in H1 so that we can effectively view R̃ as a function of only v(j)k and
wk. By the linearity of R̃ in each variable v(j)k , we can say that R̃(v

(j)
k , wk) = T0(wk) + v

(j)
k T1(wk) where T0, T1 are

polynomials. We also know that R̃(v
(j)
k , wk) does not vanish whenever v(j)k , wk ∈ H1. According to Lemma 13.1,

we can replace v(j)k → ∂
∂wk

and the resulting polynomial of wk does not vanish whenever wk ∈ H1. Repeat this

replacement process for all v(j)k to obtain a polynomial of only w that does not vanish whenever w ∈ Hn. Notice
that, in doing all of these replacements, we have effectively made the transformation R(v,w) → R( ∂

∂w ,w) = S(w),
which concludes the proof.
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2. Let ϵ > 0, and define R(ϵ)(v,w) = R(v1 + ϵ, ..., vn + ϵ, w1 + ϵ, ..., wn + ϵ). Define S(ϵ)(z) similarly. It follows
that R(ϵ)(v,w) does not vanish whenever v,w ∈ Hn. By the above result, this implies that S(ϵ)(z) does not vanish
for z ∈ Hn. Since S(ϵ)(z) converges to S(z) uniformly on compact subsets as ϵ → 0, Hurwitz’s Theorem allows us
to conclude that either S(z) does not vanish for z ∈ Hn or S(z) is identically zero, as desired.

13.2 Extension to Entire Functions
We now aim to extend the result of Lemma 13.7 to more general entire functions. In particular, for entire functions f, g,
we wish to make sense of expressions of the form f( ∂∂z )g(z) and then study their zeros. This motivates the following
definitions.

Definition 13.8. For a multi-index m = (m1, ...,mn) ⊂ Nn and z ∈ Cn, we define zm ≡
∏n
i=1 z

mi
i and ( ∂∂z )

m ≡
( ∂
∂zi

)mi ...( ∂
∂zn

)mn .

Definition 13.9. For entire functions f, g : Cn → C, consider their power series expansions f(z) =
∑

m αmzm and
g(z) =

∑
m βmzm. Then, we interpret f( ∂∂z )g(z) as the following formal power series which may or may not converge:

f(
∂

∂z
)g(z) =

∑
k,m

αkβm(
∂

∂z
)kzm

Our goal is to find a sufficiently nice class of entire functions for which the above power series is well defined. It turns out
that the following space works.

Definition 13.10. Given an entire function f : Cn → C and λ > 0, we define

||f ||λ = sup
z∈Cn

[exp (−λ
n∑
i=1

|zi|2)|f(z)|]

Then, for a ≥ 0, we let An
a denote the space of entire functions f such that ||f ||λ <∞ for all λ > a. The topology of

this space is induced by the countable family of norms || · ||a+1/k for k ∈ N.

The Cauchy integral formula implies that An
a is closed under differentiation. Moreover, one can show that a sequence

(fk) ⊂ An
a converges in the topology of An

a iff they converge pointwise.

Lemma 13.11. Let a, b, c ≥ 0 with ab < 1
4 and c = b

1−4ab . Suppose f ∈ An
a and g ∈ An

b . Then h(z) ≡ f( ∂∂z )g(z) is
a well-defined entire function and h ∈ An

c .

Proof. We start by obtaining bounds on the power series coefficients for f and g (we follow the notation used in
Definition 13.10). By the Cauchy Integral Formula, for disks Dk ⊂ C with |∂Dk| = 2πrk, we have that:

αk =
1

(2πi)n

∫
∂D1

...

∫
∂Dn

f(z)

zk1+1
1 ...zkn+1

n

dz1...dzn

Choosing a′ > a and b′ > b, we know that ||f ||a′ <∞ and ||g||b′ <∞. This allows us to say that:

|αk| ≤ 1

rk11 ...r
kn
n

sup
z∈∂D1×...×∂Dn

|f(z)|

≤ 1

rk11 ...r
kn
n

||f ||a′
n∏
i=1

ea
′r2i

≤ ||f ||a′
n∏
i=1

(
2ae

ki
)ki/2
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where we set ri =
√

ki
2a′ to get the final inequality. Using the identity ( k2e )

k/2 ≥ CΓ((k + 1)/2) for C > 0, where Γ

is the gamma function, we can say that

|αk| ≤ C ′||f ||a′
n∏
i=1

aki/2

Ω(ki)

for some C ′ > 0, where we have defined Ω(0) = 1,Ω(2k + 1) = Ω(2k + 2) = k!.
Based on the above reasoning, we have reduced this problem to the case in which the power series coefficients are

given by αk =
∏n
i=1

a′ki/2

Ω(ki)
. One can check that these coefficients can be bounded (up to multiplicative constant) by

the power series coefficients for the entire function given by
∏n
i=1(1 + (zi + z2i )e

az2i ). Since the contributions of the
different components of z have factored like this, we can set n = 1 (we can also drop the constant term 1). Thus,
after putting everything together, we find that we only need to evaluate the case in which

f(z) = (z + z2)ea
′z2

g(z) = (z + z2)eb
′z2

and we can also take z to be real and positive. We now sketch the computation in this specific case. Using Gaussian
integration, we can write:

ea
′x2

=
1√
πa′

∫ ∞

−∞
exp (

−t2

a′
+ 2tx)dt

We also have the formal identity

exp (2t
∂

∂x
)g(x) = g(x+ 2t)

This identity comes from the fact that, if we expand the exponential as a power series, we obtain the formula for the
Taylor expansion of g around x evaluated at 2t. Therefore, we can say that:

f(
∂

∂x
)g(x) = (

∂

∂x
+

∂2

∂x2
) exp (a′

∂2

∂x2
)g(x)

= (
∂

∂x
+

∂2

∂x2
)

1√
πa′

∫ ∞

−∞
exp(− t

2

a′
) exp(2t

∂

∂x
)g(x)

= (
∂

∂x
+

∂2

∂x2
)

1√
πa′

∫ ∞

−∞
exp(− t

2

a′
)[(x+ 2t) + (x+ 2t)2] exp(b′(x+ 2t)2)dt

= (
∂

∂x
+

∂2

∂x2
)P

(1)
a′,b′(x) exp(

b′

1− 4a′b′
x2)

= P
(2)
a′,b′(x) exp(

b′

1− 4a′b′
x2)

where P
(1)
a′,b′(x), P

(2)
a′,b′(x) are a polynomials. From this, we can see that f( ∂∂z )g(z) ∈ An

c , which concludes the
proof.

While the above lemma shows that An
a is sufficiently nice class of functions so that we can define our desired entire

differential operators, this space does not make any mention to the zeros of the entire functions. We remedy this with the
following definition.

Definition 13.12. We define P(Hn) as the space of polynomials on Cn that have no zeros in Hn. Furthermore, let
Pa(H

n) denote the closure of P(Hn) in the topology of An
a .

By Hurwitz’s Theorem, we can conclude that any entire function f ∈ Pa(H
n) either does not vanish in Hn or is identically

zero. Thus, Pa(H
n) defines the space of functions we wish to work with from now on. Importantly, ferromagnetic

interactions are a part of this space.

Lemma 13.13. For z ∈ Cn, let f(z) = exp(
∑n
i,j=1 Jijzizj). Then, if Jij ≥ 0 for all i, j, it follows that f ∈ P||J||(H

n)
where ||J || refers to the operator norm of J if we view the terms Jij as defining the components of a matrix.
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Proof. Recall the identity we introduced earlier

f(z) = lim
N→∞

∏
i,j

(1 +
Jijzizj
N

)N

Due to the non-negativity of Jij , one can see that the polynomial
∏
i,j(1 +

Jijzizj
N )N for N ∈ N is non-vanishing

when z ∈ Hn. Moreover, we also have the bound

|
∏
i,j

(1 +
Ji,jzizj
N

)N | ≤ exp(
∑
i,j

|zi|Jij |zj |)

≤ exp(||J ||
∑
i

|zi|2)

This implies that f ∈ P||J||(H
n).

We now formulate Lemma 13.11 in terms of the space Pa(H
n).

Lemma 13.14. Let a, b, c ≥ 0 with ab < 1
4 and c = b

1−4ab . Suppose f ∈ Pa(H
n) and g ∈ Pb(H

n). Then h(z) ≡
f( ∂∂z )g(z) is a well-defined entire function and h ∈ Pc(H

n).

Proof. This follows from combining Lemma 13.7 and Lemma 13.11 along with the fact that there exist polynomials
fn, gn which are non-zero in Hn and fngn → fg in An

c

The above lemma concludes our investigations into the zeros of entire functions. We now turn our attention to specifying
the types of measures we wish to work with.

13.3 Specifying the Space of Measures

Definition 13.15. Let Mn denote the set of measures in the space of tempered distributions on Rn (i.e. the space of
continuous linear functionals of Schwartz functions on Rn). Given a Schwartz function f , we think of a measure in
this space as yielding the functional given by µ(f) ≡

∫
f(x)dµ(x). For a > 0, let Tn

a denote the space of µ ∈ Mn such
that

µ = exp(−a
n∑
i=1

x2i )µa

for some µa ∈ M.

The purpose for considering this space is that it behaves well under Laplace transformations.

Lemma 13.16. Let a > 0. Given a measure µ ∈ Tn
a , the Laplace transform µ, defined as the function from Cn → C

given by

µ̂(z) =

∫
ez·xdµ(x)

is well defined and an element of An
1/4a.

Proof. The key observation is that µ̂(z) = µa(fz) where µa is as defined in Definition 13.15 and fz(x) = exp(z · x−
a
∑
i |xi|2). Defining |m| =

∑
imi for any multi-index m, it is a property of any tempered distribution T and any

Schwartz function f that

|T (f)| ≤ C sup
x∈Rn

(1 + |x|M )
∑

|m|≤N

|( ∂
∂x

)mf(x)|
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for some choice of C,M,N . Using the explicit form of fz, this implies that

|µa(fz)| ≤ C ′ sup
x∈Rn

(1 + |x|M+N ) exp(
|z|2

4a
)

This proves that µ̂ ∈ An
1/4a, as desired.

The reason for looking at Laplace transforms is because µ̂(h) is precisely the non-interacting partition function in a
magnetic field h. Thus, the above lemma shows that the space of measures Tn

a yields well-behaving non-interacting
partition functions. However, as discussed above, we want these Laplace transforms to be in Pa(H

n), not just An
a . If this

is indeed the case, we get a very nice property.

Lemma 13.17. Let 0 ≤ a ≤ b, let µ ∈ Tn
b such that µ̂ ∈ P1/4b(H

n), and let f ∈ Pa(H
n). Then, the measure

fµ ∈ Tn
c for all 0 ≤ c < b− a and its Laplace transform is in P1/4c(H

n).

Proof. We first show that fµ ∈ Tn
c . Write c = b− a− ϵ for some ϵ > 0, and note that µ = exp(−b

∑
i x

2
i )µb for some

µb ∈ M. Observe that

exp(c
∑
i

x2i )fµ = exp((c− b)
∑
i

x2i )fµb

= exp(−(a+ ϵ)
∑
i

x2i )fµb

Since the growth of exp(−(a+ ϵ)
∑
i x

2
i )f(x) at infinity is bounded, one can see that exp(−(a+ ϵ)

∑
i x

2
i )fµb ∈ M,

which proves that fµ ∈ Tn
c .

To show that f̂µ ∈ P1/4b(H
n), first suppose that f is a polynomial. Much like with the Fourier transform, one

can verify that f̂µ(z) = f( ∂∂z )µ̂(z). Using Lemma 13.14 proves the result in this case. In general, since f ∈ Pa(H
n),

we can consider a sequence of polynomials fn converging to f in An
a . The result then follows from the previous

case by taking a limit (we omit some of the technicalities in comparing convergence in the space of distributions to
convergence of the Laplace transforms in An

1/4c; the interested reader can refer to the paper [9]).

13.4 The Lee-Yang Theorem
We now have all the tools we need to properly state and prove the Lee-Yang theorem. We first define what we meant by
the Lee-Yang property which we mentioned in the beginning.

Definition 13.18. A finite, positive measure µ on Rn (with µ ̸= 0) possess the Lee-Yang property with falloff γ iff
µ ∈ Tn

γ and µ̂ ∈ P1/4γ(H
n).

Theorem 13.19 (Lee-Yang Theorem). Let µ be measure possessing the Lee-Yang property with falloff γ. Let f ∈
Pσ(H

n) with σ < γ such that f ≥ 0 on the support of µ and is strictly positive on a set of non-zero µ-measure. Then,
for η < γ − σ, fµ has the Lee-Yang property with falloff η.

Proof. The conditions on f are chosen precisely to ensure that fµ ̸= 0 is a positive measure. The proof of this
theorem follows immediately from Lemma 13.17, just repackaged into more convenient language.

To more clearly elucidate why this result is exactly what we wanted, we present the following corollary.
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Corollary 13.20. Let µ be measure possessing the Lee-Yang property with falloff γ. For Jij ≥ 0 with σ = ||J || < γ
(where ||J || is the operator norm of the matrix defined by the elements Jij), the function defined by

Z(h1, ..., hn) =

∫
exp(

n∑
i,j=1

Jijψiψj +

n∑
i=1

hiψi)dµ(ψ)

does not vanish whenever h ∈ Hn.

Proof. Combining Lemma 13.13 and Theorem 13.19 tells us that f̂µ ∈ Pη(H
n) for η < γ − σ. In particular, since

this Laplace transform is not identically zero, this implies that f̂µ(h) does not vanish in Hn. Simply plugging into
the definition of the Laplace transform yields

f̂µ(h) =

∫
exp(

n∑
i,j=1

Jijψiψj +

n∑
i=1

hiψi)dµ(ψ)

This concludes the proof.

While this result is very general, it is not hard to verify that it also holds for the typical Ising model measure. In fact,
that measure possess the Lee-Yang property for any falloff γ, so we are free to choose any non-negative ferromagnetic
interaction terms Jij .
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Appendix
A Conditional Expectation and Probability
In this section, we define conditional expectation and probability, necessary in Section 3. For more details, look at the
appendices of [7] Sections B.9.5, [5] Section 4.1, as well as [15] Section 7.8. Throughout the section, Ω is the space that
we are working on, F is σ-algebra on Ω paired with the probability P.

Consider the familiar definition from elementary probability:

P(A|B) :=
P(A ∩B)

P(B)
. (72)

In school, we learned that this is the conditional probability of an event A happening with respect to an event B where
P(B) > 0.

Notice that (72) defines a new probablity meausure P(·|B), allowing us to define conditional expectation given B of
X ∈ L1(Ω,P)

E[X|B] :=
∑
ψ∈Ω

X(ψ)P(ψ|B). (73)

Remark A.1. We remark that one can generalize (72) by writing E[X|B] :=
∫
Ω
X(ψ)P(dψ|B).

Example A.2. Suppose we are rolling two dice (Random Variables X1, X2) and want to know the expectation of the
sum S = X1+X2. Suppose we are given E[X1|S > 5] and E[X1|S ≤ 5]. Then, we can naturally consider the random
variable

ψ 7→ E[X1|S > 5]1{S>5}(ψ) + E[X1|S ≤ 5]1{S≤5}(ψ).

Like this example, if (Bk) ⊂ F be countable measurable partition of Ω and suppose B ⊂ F is sub σ-algebra containing all
(Bk). Then, the occurrence of some B ∈ B provides some information on the occurrence of some events Bk i.e. if for all
P(Bk) > 0 for all k, for all X ∈ L1(P), define the random variable

E[X|B](ψ) :=
∑
k

E[X|Bk]1Bk
(ψ). (74)

Two defining characteristics of the above definition (74) is that for X ∈ L1(P):

(a) ψ 7→ E[X|B](ψ) is B-measurable function,

(b)E[E[X|B]1B ] = E[X1B ] for all B ∈ B.

In particular, letting B = Ω, we get that E[E[X|B]] = E[X]. One can easily see that part (a) follows from the fact
that Bk ∈ B and part (b) above can be proven by writing out the definition and using the countable additivity property
of measures.

However, notice that we had a big assumption in our definition: P(Bk) > 0 for all k. When defining infinite volume
Gibbs measure, for example, we condition on finite alternating configurations, and fix an infinite number of them. This
means all of our conditions (in the above case Bk’s) will happen with probability 0; this requires us to change the definition
above! But we are in luck! It turns out that (a) and (b) above are the key properties we need, and we can always find a
function Y ∈ L1(P) satisfying exactly (a) and (b). To put it formally,

Theorem A.3 (Well-definedness of Conditional Expectation). Let (Ω,F,P) be a probability space. Consider X ∈ L(P)
and a sub-σ-algebra G ⊂ F. There exists a random variable Y ∈ L1(P), unique up to measure zero sets, for which the
following conditions hold:

• Y is G-measruable.

• For all G ∈ G, E[Y 1G] = E[X1G].

Please refer to [5] for the proof.
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Definition A.4. We use E[X|G] to denote above Y .

Because we can approximate any measurable function by indicator functions, we have this theorem:

Corollary A.5. Let X ∈ L1(P) and G ⊂ F a sub-σ algebra. Then for all G-measurable Z ∈ L1(P),

E[XZ] = E[E[X|G]Z].

Remark A.6. Notice that this means E[(X − E[X|G])Z] = 0 for all G-measurable Z ∈ L1(P). So if we decide to
just stay in real L2(P) instead, we can define inner product by ⟨X,Y ⟩ := E[XY ], then it means that E[X|G] defines
the orthogonal projection of X onto the subspace {Z ∈ L2(P) : Z if G-measurable}. Below figure is from [7].

Now, we can define conditional probability with respect to a sub-σ algebra.

Definition A.7. Let G ⊂ F sub-σ algebra. The conditional probability of A ∈ F with respect to G is given by:

P(A|G)(ψ) := E[1A|G](ψ) (75)

Then, by up to measure zero equivalence, P(A|G)(ψ) is the unique function that satisfies, for every G ∈ G, the following
identity:

P(A ∩G) =
∫
G

P(A|G)(ψ)dP(ψ). (76)

Note that every fixed ψ ∈ Ω, except for a measure zero set of them, defines a probability measure by P(·|G). This leads
to a definition.

Definition A.8. We say map P̂(·|G)(·) : G×Ω → [0, 1] is called a regular conditional probability with respect to G if

1. For every fixed ψ ∈ Ω, P̂(·|G)(ψ) is a probability measure on (Ω,F).

2. For every A ∈ F, P̂(A|G)(·) is a version of P(A|G), i.e. P(A|G)(·) = E[1A|G](·) P- almost surely.

B Probability Kernel and Specification
The goal of this section is to introduce the readers to probability kernel and specification as well as to relate them to
conditional probability. The theory developed in this section is heavily used in Section 3.

In this seciton, we denote Ω =
∏
i∈N K where K ⊂ Rn is a compact set. Let us endow Ω with a product topology.

Notice that by Tychonoff’s Theorem, Ω is a compact space. Let us call F the Borel σ-algbera on Ω. By definition of
product topology, F is σ-algbera generated by sets inverse images of finite-subset projections, i.e.

F = σ

(
ρ−1
Λ (A) : A ∈ P

( ∏
i∈Λ⋐N

K

))

where ρΛ : Ω →
∏
i∈Λ⋐N K is defined by projection onto Λ coordinates.

In addition, for every S ⊂ N (here S is not necessarily fintie), we denote FS as the Borel σ-algebra on ΩS ≡
∏
i∈S K.

One can observe easily that for every S ⋐ N, FS is a sub-σ algebra of F by the definition of product topology.
Now we introduce the main definition of this section.
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Definition B.1 (Probability Kernel from FΛc to F.). Let Λ ⋐ N. A probability kernel from FΛc to F is a map
πΛ : F × Ω → [0, 1] such that

• For every ψ ∈ Ω, πΛ(·|ψ) is a probability measure on (Ω,F).

• For every A ∈ F, πΛ(A|·) is FΛc-measurable function.

One may find other texts refer to probability kernel as Markov kernel, transition kernel, or stochastic kernel.

Definition B.2 (Proper Probability Kernel). A probability kernel FΛc to F, πΛ, is said to be proper if for every
B ∈ FΛc , and for every ψ ∈ Ω,

πΛ(B|ψ) = 1B(ψ). (77)

For every measurable f : Ω → R, we can define another FΛc-function via:

πΛf(ψ) ≡
∫
Ω

f(η)πΛ(dη|ψ). (78)

Next we introduce a key fact about proper probability kernel.

Theorem B.3. If πΛ is a proper probability kernel from FΛc to F, for every A ∈ F,

πΛ(A|ψ) =
∫
ηΛ∈ΩΛ

1A(ηΛψΛc)πΛ(d(ηΛψΛc)|ψ). (79)

Consequently, if f : Ω → R is a bounded F-measurable function,

πΛf(ψ) =

∫
ηΛ∈ΩΛ

f(ηΛψΛc)πΛ(d(ηΛψΛc)|ψ). (80)

The proof follows from observing that being a proper kernel implies that πΛ is determined by {πΛ({ηΛψΛc}|ψ)}η∈ΩΛ
.

Next, we define what a specification is.

Definition B.4 (Specification). We say family π = {πΛ}Λ⋐N is a specification if

• For every Λ ⋐ N, πΛ is proper probability kernel from FΛc to F.

• For every ∆ ⊂ Λ ⋐ N, we have

πΛπ∆ = πΛ

where we define composition of probability kernels via

πΛπ∆(A|ψ) ≡
∫
Ω

π∆(A|η)πΛ(dη|ψ). (81)

One can manually for every proper probability kernel π∆ and πΛ, πΛπ∆ as defined above in (81) is a proper probability
kernel from FΛc to F. We can moreover compose a measure on (Ω,F) with a proper probability kernel.

Definition B.5. For every measure µ on (Ω,F) and probability kernel πΛ, define µπΛ via for A ∈ F,

µπΛ(A) ≡
∫
Ω

πΛ(A|ψ)µ(dψ) (82)

and one can check that µπΛ is a measure on (Ω,F) .
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Lemma B.6. For every bounded measurable function f , measure µ on (Ω,F), and proper probability kernel πΛ, we
have that

µπΛ(f) ≡
∫
Ω

f(ψ)µπΛ(dψ) =

∫
Ω

πΛf(ψ)µ(dψ) ≡ µ(πΛf). (83)

Proof. One can see that when f = 1A for some A ∈ F, above follows from the definition. Then, because each
Lebesgue integral of a bounded measurable function is given as a limit of a linear combination of indicator functions,
we have the desired equality.

Definition B.7 (Compatible Measure to a Specification). Let π = {πΛ}Λ⋐N is a specification. A measure µ on
(Ω,F) is compatible with π if for every Λ ⋐ N,

µ = µπΛ. (84)

The set of all measures compatible with π is denoted G(π).

Now, we try to relate the probability kernel to conditional probability.

Theorem B.8 (Relating Probability Kernel with Conditional Probability.). A measure µ is compatible with a spec-
ification π = {πΛ}Λ⋐N if and only if each kernel πΛ provides a regular version of µ(·|Fc), the conditional probability
with respect to FΛc , i.e. for every A ∈ F, µ(A|FΛc)(·) = πΛ(A|·) µ-almost surely.

To prove this theorem, we introduce a small lemma.

Lemma B.9. Assume that πΛ is proper. Then for every A ∈ F and for every B ∈ FΛc , we have that

πΛ(A ∩B|·) = πΛ(A|·)1B(·). (85)

Proof. We consider two cases: when ψ ∈ B and when ψ /∈ B. When ψ ∈ B, Since πΛ is proper, we have that
πΛ(B|ψ) = 1B(ψ) = 1. Then, we get that

πΛ(A ∩B|ψ) = πΛ(A|ψ)− πΛ(A ∩Bc|π) = πΛ(A|ψ) = πΛ(A|ψ)

where the first equality follows from additivity of measure and the second from the fact that πΛ(·|ψ) is a probability
measure. For the second case when ψ /∈ B, we have that πΛ(B|ψ) = 0 and thus

πΛ(A ∩B|ψ) = 0 = πΛ(A|ψ)1B(ψ)

where the first equality follows from monotonicity of measure.

Proof of Theorem B.8. First suppose µ is compatible to π = {πΛ}Λ⋐N. Then for every A ∈ FΛ and B ∈ FΛc , we
have that ∫

B

πΛ(A|ψ)µ(dψ) =
∫
Ω

πΛ(A ∩B|ψ)µ(dψ) = µψΛ(A ∩B) = µ(A ∩B).

Recall the definition of conditional expectation:

µ(A ∩B) =

∫
B

µ(A|FΛc)(ψ)µ(dψ).

By the uniqueness of conditional probability (c.f. Theorem A.3) we have that µ-almost surely, we have

µ(A|FΛc)(·) = πΛ(A|·), (86)
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showing that each kernel πΛ provides a regular version of µ(·|FΛc).
Conversely, suppose πΛ provides a regular version of µ(·|FΛc) for every Λ ⋐ N. Then, for every A ∈ F, we have

that
µπΛ(A) =

∫
Ω

πΛ(A|ψ)µ(dψ) =
∫
Ω

µ(A|FΛc)(ψ)µ(dψ) = µ(A ∩ Ω) = µ(A).

Thus, we have that µ is compatible with π.
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