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Part I
Statistical Mechanics: the classical O (/N) model

The main source of material for mathematical classical statistical mechanics is the Friedli and Velenik book [1]. Another
useful source is the Peled Spinka lecture notes [2].

1 The basic model

Let d, N € N>; be given (the space dimension and spin dimension). Let A = Ap := [-L, L}d N Z¢ be a finite box within
Z?. This box can also be considered as a finite graph G = (V, E) i.e. a set of vertices V = A C Z¢ and a set of edges E
which indicate who is neighbor to whom. We have |V| = (2L + 1)? and |E| = d x 2L x (2L +1)*"".

Pick some § € (0,00). We define the partition function of the d-dimensional classical O (N) model, at inverse temper-
ature (3, initially in finite volume L as:

d,O(N) . _1 —
Z80M) /w IHSN_lexp( S8 . Aw>) dpu ().

Here

MZHMO

TEA
i.e., the |A|-fold product measure all of the same copy of the measure pug. This is the a-priori measure. Naturally we
choose the (normalized) volume measure on SV~!: in the case of N = 1 this is the (normalized) counting measure on
{£1} but for N > 2 it is the natural measure which measures (normalized) area on the unit sphere.
Moreover, the symbol (¢, —At) should be understood as the number

(W, =AP) = Y (=A),, (Ve Vy)ga

z,yEA



and —A is an |A| X |A| matrix to be specified shortly.

The finite volume is a handy technical tool to avoid talking about probability measures of infinite processes. Ultimately
our aim is to derive any result (read: estimate) uniformly in L so that conclusions are made about the L — oo limit (that
limit exists, but let us avoid this question for a minute).

Let us study —A. The number of points in our box is k := [A| = (2L 4+ 1)?. Hence S¥~! is the (N — 1)-dimensional
sphere within RV, and we should view v as a map from A into RY. Le., for any = € A, ¥, € RY and ||7JJ_TH§ = 1. Thus,
with some abuse of notation, if A € Matgxy (R) then

IEY Z (V2); Aay (1),

z,yeN i=1

(Truly we should have written A ® 1y instead of A....).
The symbol —A is the discrete Laplacian. For every choice of L, it is a k X k matrix, with & = (2L + l)d7 given as
follows:
vl:vafvy (v:A—=RxeA)
Yy~

where y € A obeys y ~ z if and only if y is “adjacent” to = in A, that is, a nearest neighbor. In terms of matrices,
—-A=D-A

where A is the adjacency matrix of the graph A (i.e. it equals 1 if there is an edge between two vertices and 0 otherwise)
and D is the diagonal degree matrix of the graph (specifying the number of edges going into any vertex). Here is the point
where the discussion of boundary conditions enters: we may decide that for those vertices of A at the boundary, they have
less neighbors than those in the bulk (free boundary conditions), or we may decide to wrap A around itself, i.e., to make
a torus, to form periodic boundary conditions. Simultaneously, we may also consider other custom options, e.g., that the
boundary is pinned to a certain range of values. By the way, the values of the boundary need not necessarily be on the
sphere. In principle these choices need to be specified when —A is discussed.
For example let us illustrate this with the choice d = 1 and then, say, L =4, (so k =9). We get

1 -1
-1 2 -1
-1 2 -1
-1 2 -1
_Afree = -1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
L _1 1 .
and _ -
2 -1 -1
-1 2 -1
-1 2 -1
-1 2 -1
*Aperiodic = -1 2 -1
-1 2 -1
-1 2 -1
-1 2 -1
-1 -1 2|

It should be noted that we could also rewrite the bilinear form as follows. Assume —Aperiodic 1S used for the moment (then
2d|A| = 2 |E| where FE is the set of edges). Then

(W, =AY) = > e Yt —1hy

FISN y~x
_ Y Mz)— S o,
TEA y~x zeEN,y~x
——
deg(z)

= 20E[-2 ) iy

{zy }eAix~y



However, , , ,
192 = Yyllan = Yallry + 1dyllgy = 2002 - 0y = 2(1 = ta - 1by)
SO

W =AP) = > e —tyllan =21B1 =2 Y Y-ty

{z,y}eAhiz~y {z,y }eAix~y

We emphasize that constant (¢-independent) terms in the bilinear form are irrelevant since we are only interested in
ratios. Hence we understand

as measuring the total amount of (squared) disagreement throughout the grid A: Moreover, since these are unit vectors,
Yy - 1y gives the cosine of the angle between the two vectors as measured using the geodesic length on the sphere. Full
agreement is when . - ¢, = 1, so maximal agreement is the minimum value of (1), —A), which we call the energy usually
denoted by H and also called the Hamiltonian or the interaction. We can also consider more general energy functions

H:(s¥ )" 5R.

Hence generally

exp (5 6,-80) ) = exp (-1 (1)
Since B > 0, those configurations 1) : A — SV~! which minimize the energy functional H are those which maximize
agreement throughout. For this reason these models are called ferromagnetic. Anti-ferromagnetic models maximize
disagreement and may be obtained by H — —H.

Note that the matrix —A may be diagonalized easily (it is symmetric). E.g. for —Aperioaic One may use the Fourier
series (or its discrete version on A). The k eigenvalues lie within the interval

[0, 4d) .

Zero is always an eigenvalue and it corresponds to the eigenvector (assuming we avoid pinning the field, described right
below) which is a constant configuration throughout: that is the energy minimizing configuration.

Pinned boundary conditions are implemented as follows. One takes —Agee OF —Aperiodic, but also picks some fixed
B C A (the boundary set, though in principle it can be any subset of A, also just one vertex in the middle) and a “boundary
values field” ¢ : B — S¥~! (actually the co-domain is allowed to even be a general RY vector) and then instead of take
the integral over all configurations A — SV~ restrict to the integral over the set

Qo ={v: ARV | Ylg=0A |t =1Vz €A\ B} .

ILe., really, it is actually an integral over
|Al - B

spheres.
Finally, we also want to allow for an external magnetic field h : A — RY. It enters into the Hamiltonian as

H () = 3 (6, ~00) — {(h,)

If we take h to be non-zero only along OA (those vertices with less than 2d degree) then achieve a similar effect to setting
the values of ¥ on the boundary of a slightly large graph A to h.

The distinction from —Aperiodic t0 —Afree is Dot terribly important for us now so going forward, unless otherwise noted,
we shall use —Agee together with some given field ¢ : B — SV~! (the object ¢ carries the specification of its domain
automatically).

In principle the measure depends on the boundary condition ¢ also, so we should really denote

Zanowon = [ exw (=500 =80)+500) ) TT o ().
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1.1

Terminology

We list some terminology from statistical mechanics:

1.

10.

The quantity Zg n g,1,, is called the partition function. The summand within it is called the Gibbs factor and the
associated probability measure Py n 5,1, on ,, is called the Gibbs measure.

If N =1 we have the Ising model. If N = 2 we have the XY or O(2) model. If N = 3 we have the classical
(isotropic) Heisenberg or O (3) model. The N — oo is sometimes referred to as the spherical limit.

The L — oo limit (you cannot take that limit at the level of Zg n ,1,,, you must only take it for ratios such as
Pan,g,L,0 OF Eqng.L,p) is referred to as the thermodynamic or infinite volume limit. Hence for now let us take
for granted that there is some measure Py n 3, which is to be understood as a measure on the space of functions
Z? — SN~ and is obtained as the limit of sequence of measures { P n g1, };. We will study the existence and
nature of this limit very soon. Note that some care has to be taken with the specification of the boundary conditions
here because we let ¢ : B — S¥~1 and B C Ay, so if L varies so does B and hence ¢, in principle. Then it remains
to be seen if the infinite volume object Py n g, has any “memory” of ¢ or not and what sense does it make to keep
carrying ¢ in the notation. We will study this question too below.

Uniqueness of the Gibbs measure is the general statement that Py x 5,, does not depend on ¢, i.e., there is a-posteriori
only one infinite-volume Gibbs measure.

The two-point function is the map
Zd X Zd B (‘T7y) = Ed,N,ﬁ,gﬂ |:<¢:C7wy>RN} € [_17 1] .
The truncated-two-point-function is

Z'x 2% (2,y) = (Ean g [(Vos Vy)rn | — (Ban,p Vel . Ean s [1by]) € [-1,1] .

Measures how far away spins are correlated with each other.

Magnetization at a site = is Eq n g, [5] and total magnetization is

) 1 N
MaNBe = Hm Eangean lw ;\%] eR™.
x

. The quantity Fy n g1, = —% log (Za,n,1,e) is called the free energy. Its volume-density is

L—oo

. 1
fd,N.ﬂ,@ = lim mFd,N,B,L,go

should this limit exist.

. There are two main phenomena we are interested in when studying this model:

(a) Long range order (low temperatures, high 3): the system has intrinsic global, collective magnetization, mq n,g,, 7
0, Eq,n 8,4 [(Va; hy)gn ] does not decay as ||z — y| — oc.

(b) Disordered phase (high temperatures, low 3): the system is does not show preference to any particular direction,
ma,N,gp =0, EaN.g.p [ (Ve ¥y)gn ] decays as |lz — y|| — oo (however slowly). Correlation length is the rate of
exponential decay.

(c) Phase transition: the shift of the system from one type of the above behavior to another type of the above
behavior as a continuous parameter (usually the inverse temperature) is varied.

(d) Criticality or critical point: The set of parameters of the system on the boundary between two phases, i.e. the
point (or line, or manifold) of phase transition, Eq x5, [(¥s,1y)gn | decays but polynomially.

. Universality refers to a type of behavior of certain quantities, usually asymptotically, usually near the critical point.

Gaussianity, free-field, or spin-wave behavior is the phenomenon that the random field 1 : A — R behaves as if it
had a Gaussian measure (it does not). Gaussian upper bounds are upper bounds (e.g., on the two point function)
in terms of the two-point function of the Gaussian field or the Gaussian free field.



11. By symmetry we refer to the operation of rotating a vector in R from one direction to another, and observing that
something remains the same. For example, the inner product

(V, 1y)

is invariant if we apply an orthogonal (rotation) matrix on both vectors simultaneously. The group of N x N
orthogonal matrices, O (INV), is the main group of symmetries of our model, since Zy n g,1,,—0 possesses a global
O (N) symmetry, in the sense that the probability density (or the push forward of the probability measure if you
wish) remains the same if we apply a global M € O (N) matrix to the magentization vector on all vertices of A.
There is a slight issue here with boundary conditions which would spoil that, so in principle if ¢ # 0 then we have
to rotate the boundary conditions too.

(a) Continuous symmetry means that the group of symmetries is a smooth manifold as opposed to a discrete finite
group. Compare the discontinuous case N =1 (whence O (1) = { £1 } = Z5) with the continuous case N > 2
(O (2) = S!). It turns out that discrete versus continuous symmetry plays a role.

(b) Symmetry breaking or spontaneous symmetry breaking is the situation where the finite volume Gibbs factor
is invariant under some symmetry (for any given finite volume) yet the infinite volume measure is not. This
phenomenon is of utmost interest to us and will have parallels in quantum mechanics as well. Long-range order
from above is an example of such symmetry breaking whereas the disordered phase is the absence of symmetry
breaking.

(¢) Mermin—Wagner (sometimes Mermin-Wagner-Hohenberg) is the general result that there is no continuous
symmetry breaking if d < 2.

12. Kosterlitz—Thouless or Berezinskii-Kosterlitz—Thouless is a phenomenon of a whole critical interval of temperatures,
usually [, 00).

13. Mass gap or massive field is a field whose two-point function decays exponentially in ||z — y||. This is called in this
way because in a Gaussian free field, if we replace the Laplacian

-A
with a massive Laplacian
—A +m?1

then we indeed get exponentially decay of the two point function with rate m.

2 The GFF

The Gaussian free field is defined in almost identical way to the O (N) model, with the exception of replacing the a-priori
measure iy from the volume measure on SV ~! by the Lebesgue measure on R". This can be risky because now we run
the risk of integrals not converging. This danger can be mitigated in various different ways, either through boundary
conditions or the addition of a mass to the Laplacian.

Let us study the model whose partition function is

where by di) we mean the Lebesgue measure on (RN )A. Because m # 0 then all Gaussian integrals converge regardless of
the spectrum of —A (whether it has eigenvalue zero or not; with Dirichlet boundary conditions for example —A anyway
has no zero mode and then the integral converges even with m = 0). We then have

_NIA
2

(en)"* 3
\/detA (=A +m21)Y

ZiNgL = /WHRN exp (;5 (¥, (A +m?1) ¢>> dy =

and
/ exp (—1ﬂ (¢, (A +m*1) ¥) + (J, ¢>> dy = ZGR5 1 exp (1 <J, (-A+ m2]l)_1 J>)
P:A—RN 2 2ﬁ

so that
E [d’x : %} =

w|=

{(—A + m2]l)_1Ly (x,y € A) .



First note that beyond the overall constant outside, [(fA + m2]1)71} is independent of 3. In particular the fate of
zy

exponential decay or not of the two-point function is independent of 5 and hence the GFF has no phase transitions. This
is also clear by looking at the integral and making a change of variable v, — \/B1)s.
Note that for ||lz|| > -1, we have

d—

(8t ™] v eam a5 exp (<)

)

However, if we're really interested in the m = 0 case, then we have the following behavior (m — 0% asymptotics at
fixed large ||z||):

3~ 5 O (m) d=
[(—A+m2]l)_l] = {xlog (%)~ 2log(flz]) + C+o(1) d=2
0,x F(i—l) 2—d
D) g 423

We see that in d < 2 this limit m — 0™ does not exist. One way to cure this is to always consider differences:

lzll | 1 _
—5 Tt d=
(Casm)™] -~ [Carmin)] ={-Zloallal)+o) d=2
T ; r(g-1 2-d

S () 0z

This suggests that objects like
E (192 — o]

are more appropriate than

where studying d < 2 massless Gaussian fields.



3 Olivia: The existence of the infinite volume Gibbs measure and the DLR
conditions

4 Zach: Inequalities: Ginibre, FKG, GHS
5 Kashti: Full solution in d = 1 via transfer matrices

6 The Aizenman-Simon proof of the disordered phase for all small 5 and
other cluster expansions

7 The Peierls solution for N =1, d > 2

8 Mermin-Wagner (Dobrushin-Shlosman, Pfister)

9 The McBryan-Spencer upper bound for N > 2, d < 2

10 Reflection positivity and chessboard inequalities

11 The Frohlich-Simon-Spencer proof of LRO for N > 2, d >3
12 The Lee-Yang theorem

Part II
Quantum mechanics: Anderson localization and
topological insulators

References

[1] Sandro Friedli and Yvan Velenik. Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction.
Cambridge University Press, Cambridge, 2017.

[2] Ron Peled and Yinon Spinka. Lectures on the spin and loop O(n) models. arXiv preprint, arXiv:1708.00058, 2017.
Version v3, revised 3 Jul 2019.



	I Statistical Mechanics: the classical O(N) model
	The basic model
	Terminology

	The GFF
	Olivia: The existence of the infinite volume Gibbs measure and the DLR conditions
	Zach: Inequalities: Ginibre, FKG, GHS
	Kashti: Full solution in d=1 via transfer matrices
	The Aizenman-Simon proof of the disordered phase for all small  and other cluster expansions
	The Peierls solution for N=1, d2
	Mermin-Wagner (Dobrushin-Shlosman, Pfister)
	The McBryan-Spencer upper bound for N2, d2
	Reflection positivity and chessboard inequalities
	The Fröhlich-Simon-Spencer proof of LRO for N2, d3
	The Lee-Yang theorem

	II Quantum mechanics: Anderson localization and topological insulators
	References


