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Abstract

This document encompasses a report corresponding to a presentation given in
ETHZ in the spring semester of 2014 as part of a proseminar on topological
objects in physics, directed by Dr. Philippe de Forcrand. Its purpose is to make
precise that which was shown in the presentation.

After reviewing some “toy” models in quantum mechanics which allow us
to exhibit the important concepts of instantons in a familiar environment–
essentially a tunneling description between distinct vacua–a discussion of in-
stantons in non-Abelian gauge field theory follows. Finally a brief chapter on
the consequences of instantons in QCD concludes the report.

Note that this document exists in two versions: an unabridged version which
contains all proofs with full detail and is not meant to be printed, and an
abridged version which contains no proofs. You are now reading the unabridged
version.

http://www.itp.phys.ethz.ch/education/fs14/PdF_proseminar
http://www.itp.phys.ethz.ch/education/fs14/PdF_proseminar
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Part I

Instantons in Quantum
Mechanics
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Chapter 1

The Cumbersome Harmonic
Oscillator

In this chapter we shall derive the ground state energy eigenvalue for the har-
monic oscillator in a cumbersome way, following very closely the presentation
of [12]. This way shall prove very useful for quantum field theory.

1.1 Path-Integral Formulation of Quantum Me-
chanics

A point particle of massm ≡ 1 (in properly chosen units) moves in two spacetime
dimensions. Its position, varying with time, is described by a function x ∈ RR,
and we further assume that the particle is under the influence of some potential
V [x] (t). The Lagrangian for this system is given by L [x] (t) ≡ 1

2 (ẋ (t))
2 −

V [x] (t). Let {xi, xf , ti, tf} ⊂ R.

1.1.0.1 Fact

According to Feynman’s path-integral formulation of quantum mechanics [8], if
the particle was initially at xi at time ti, the transition amplitude of the particle
to be found finally at xf at time tf–conventionally denoted by 〈xf , tf |xi, ti〉–is
given by:

(1.1)〈xf , tf |xi, ti〉 = N
∫
{x∈RR: x(tf )=xf∧x(ti)=xi}

Dx exp

{
i

∫ tf
ti
dtL [x] (t)

h̄

}

1.1.0.2 Remarks

1. N is a normalization factor which will be determined later.

2. This formulation gives a natural scale for the action, h̄. Now we can answer
what is a “large” action, whereas in classical mechanics that notion had
no meaning. From here on we shall choose our units such that h̄ !

= 1, in
order to simplify the formulas.
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3. Usually in quantum mechanics the transition amplitude 〈xf , tf |xi, ti〉
is in fact denoted by

〈
xf

∣∣∣ exp{iĤ (tf − ti)
} ∣∣∣xi〉 where Ĥ is the time-

evolution operator on the Hilbert space of states of the particle (and the
various |x〉’s are vectors in this space). However, the path-integral for-
mulation was conceived exactly in order to blur the distinction between
space and time (which is impossible in the Hamiltonian formulation of
mechanics and only possible in the Lagrangian formulation of mechanics)
and so we may operate agnostically to the existence of Ĥ and proceed
dealing only with the functional L, which is now the fundamental object
of the theory.

1.2 Imaginary Time
An invaluable tool in path integral computations is the Euclidean path integral,
which is a formal analytic continuation of the path integral to complex-valued
time 〈xf , −itf |xi, −iti〉.

1.2.1 Ground State and Energy for Large Times
1.2.1.1 Claim

limT→∞
〈
xf , −iT2

∣∣xi, iT2 〉 = limT→∞ e−E0Tψ0 (xf )ψ
∗
0 (xi) where ψ0 (x) is the

wave function corresponding to the lowest lying energy eigenstate.

Proof

• In the usual quantum mechanical notation,
〈
xf , −iT2

∣∣xi, iT2 〉 = 〈xf ∣∣∣ e−TĤ
∣∣∣xi〉.

• Let {|n〉}n∈N be a complete orthonormal set of eigenstates of Ĥ with
eigenvalues {En}n∈N. Assume that ∃E0 = min ({Ej : j ∈ N}).

• Then 〈
xf

∣∣∣ e−TĤ
∣∣∣xi〉 =

〈
xf

∣∣∣∣∣ e−TĤ

(∑
n∈N

|n〉 〈n|

)∣∣∣∣∣xi
〉

=
∑
n∈N

e−TEn 〈xf |n〉 〈n |xi〉

T→∞−→ lim
T→∞

e−TE0 〈xf | 0〉 〈0 |xi〉

�

This is half of why it is useful to work in imaginary time.

1.2.2 Euclidean Time Path Integral
1.2.2.1 Claim〈
xf , −iT2

∣∣xi, iT2 〉 = N
∫{

x∈RR: x
(
T
2

)
=xf∧x

(
−T

2

)
=xi

}Dx exp{− ∫ T
2

−T
2

dt
[
1
2 (ẋ (t))

2
+ V [x] (t)

]}
for any T ∈ R.
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Proof

• We start with the technical definition of the symbolic expression 〈xf , tf |xi, ti〉 =

N
∫
{x∈RR: x(tf )=xf∧x(ti)=xi}Dx exp

{
i
∫ tf
ti

dtL[x](t)

h̄

}
:

– We know that〈
xf ,

ε

2

∣∣∣xi, −ε
2

〉
≡

〈
xf

∣∣∣ e−iĤε
∣∣∣xi〉

≈
√

m

2πiε
exp

{
iε

[
m

2

(
xf − xi

ε

)2

− V (xf )

]}
+O

(
ε2
)

In the derivation of this formula (expanding the exponent, inserting∫
dp |p〉 〈p| and solving

∫
dp
2π e
−i ε

2mp2

=
√

m
2πiε ), ε is used as a param-

eter whose character (real or imaginary) is not important. Thus this
formula is valid (up to O

(
ε2
)
) for ε ∈ C as well.

– The general limit formula for the transition amplitude, which is,〈
xf

∣∣∣ e−iĤT
∣∣∣xi〉 = limn→∞

(
mn
2πiT

)n
2
∫
dx1 . . .

∫
dxn−1 exp

{
i
∑n

j=1
T
n

[
m
2

(
xj−xj−1

T/n

)2
− V (xj)

]}
where xn ≡ xf and x0 ≡ xi, is derived from the formula for infinites-
imal times, and should thus stay valid also for imaginary values of
T .

– We identify limn→∞
∑n

j=1
T
n

[
m
2

(
xj−xj−1

T/n

)2
− V (xj)

]
as being equal

to
∫ T

2

−T
2

dt
[
m
2 ẋ (t)

2 − V (x (t))
]
, where x (t) is some integrable func-

tion in RR which interpolates between the fixed points {xj}nj=0, that

is, x
(
−T

2 + j Tn
) !
= xj for all j ∈ {0, . . . , n}.

– The n integrals over xj are interpreted as spanning the space of
all paths x (t) which have their end points fixed at xi and xf and
this is written symbolically as limn→∞

(
mn
2πiT

)n
2
∫
dx1 . . .

∫
dxn−1 =

N
∫{

x∈RR: x
(
T
2

)
=xf∧x

(
−T

2

)
=xi

}Dx.
• When going to Euclidean spacetime, we plug into the path integral formula
−iT instead of T and obtain:〈
xf , −i

T

2

∣∣∣∣xi, iT2
〉

=
〈
xf

∣∣∣ e−ĤT
∣∣∣xi〉

= lim
n→∞

( mn
2πT

)n
2

∫
dx1 . . .

∫
dxn−1e

{∑n
j=1

T
n

[
m
2

(
xj−xj−1
−iT/n

)2
−V (xj)

]}

= lim
n→∞

( mn
2πT

)n
2

∫
dx1 . . .

∫
dxn−1e

{
−
∑n

j=1
T
n

[
m
2

(
xj−xj−1

T/n

)2
+V (xj)

]}

• The identification for the expression in the exponent is still valid, in fact,
the only thing that is different about it is the sign of the potential. x (t)
is still an integrable function in RR defined in the very same way. So we
have:〈
xf , −i

T

2

∣∣∣∣xi, iT2
〉

= N ′
∫
{
x∈RR: x

(
T
2

)
=xf∧x

(
−T

2

)
=xi

}Dx exp

{
−
∫ T

2

−T
2

dt
[m
2
ẋ (t)

2
+ V (x (t))

]}
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• In conclusion when going to Euclidean spacetime, we have three differ-
ences:

1. The i in the exponent becomes −1.

2. There is an extra −1 multiplying the potential in the action integral.

3. The normalization constant is different: limn→∞
(

mn
2πiT

)n
2 7→ limn→∞

(
mn
2πT

)n
2 .

�

1.2.2.2 Remarks

The effect of Euclidean time on the path integral is two fold:

1. The exponent in the path integral is now real. If we assume that min ({V [x] |x}) =
0 (and we may do that without loss of generality by choosing the energy
scale appropriately) , then the exponent is always negative, which means
we may be more optimistic about the convergence of the path integral.

2. It turns out that to calculate path-integrals it is worthwhile to investigate
the classical paths of the action first (as we shall see soon). In classical
mechanics, what we have achieved by the complex-valued time is equiv-
alently an inverted potential: V [x] 7→ −V [x]. This identification will
help us “read off” classical paths using preexisting intutition in classical
mechanics (although now we shall employ it on inverted potentials).

1.3 Approximating the Path Integral

In a crude way, assume that for our problem at hand
∫ T

2

−T
2

dt
{

1
2 (ẋ (t))

2
+ V [x] (t)]

}
�

1 ∀ paths to be integrated on. This corresponds to the semiclassical approx-
imation where we assume h̄ is very small compared to the action. Then it is
clear that most of the contribution to the path integral will come from those
paths which minimize the Euclidean action. This is exactly the definition of
the classical paths with potential (−V [x]). If there is only one such extremum
path for the action, which we denote by xcl (t) (that is, we assume that ẍcl (t) =
V ′ [x]), then we can estimate N

∫{
x∈RR: x

(
T
2

)
=xf∧x

(
−T

2

)
=xi

}Dx exp {−S [x]} ∼
exp {−S [xcl]} (by using the symbol S we really mean SE–this will be true till
the end of this text).

If ∃ more than one such extremal path, then we would make a reasonable
approximation by summing over the contribution from each path, assuming
these extremum points are well separated in function space.

An analogy can be made to integrating over two Gaussians which are well
separated (see Figure 1.1).

For our V [x], the inverted harmonic oscillator, we know that there exists only
one solution to the equation of motion which has finite action (infinite action
doesn’t interest us because its contribution would be zero anyway): xcl (t) = 0,
with boundary conditions xcl

(
±T

2

)
= 0.
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Figure 1.1: The volume under the curve can be approximated as the sum of two
separate Gaussian integrals.

1.3.1 Taylor Expanding the Action
Pick some ε ∈ (0, 1). Define η (t) := 1

ε [x (t)− xcl (t)], where x (t) ∈
{
x ∈ RR : x

(
T
2

)
= xf ∧ x

(
−T

2

)
= xi

}
is the set of paths we would be integrating over. Because xcl (t) is a solution
to the classical equation of motion with the same boundary conditions, we have
that η

(
±T

2

)
= 0.

1.3.1.1 Claim

The action can be approximated as S [xcl + εη] ≈ S [xcl]+
1
2

∑
n∈N c

2
n

((
πn
T

)2
+ ∂2V [xcl, ẋcl]

∂x2

)
+

O
(
ε3
)

where cn are expansion coefficients of εη in a complete set of eigenfunc-
tions of the differential operator − d2

dt2 + ∂2V [xcl, ẋcl]
∂x2 .

Proof

• We have that x (t) = xcl (t) + εη (t).

• Treat S [x] as an analytic function of ε to make a Taylor expansion of it
around ε = 0. Thus formally we have:
S [x] = S [xcl + εη] ≈ S [xcl]+

d
dεS [xcl + εη]

∣∣
ε=0

ε+ 1
2

d2

dε2S [xcl + εη]
∣∣∣
ε=0

ε2+

O
(
ε3
)

• Observe that d
dεS [xcl + εη]

∣∣
ε=0

= 0 by definition. Verification:
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d

dε
S [xcl + εη]

∣∣∣∣
ε=0

=
d

dε
S [xcl + εη]

∣∣∣∣
ε=0

=

∫ T
2

−T
2

dt
d

dε
L [x+ εη, ẋ+ εη̇]

∣∣∣∣∣
ε=0

=

=

∫ T
2

−T
2

dt

(
∂L

∂x
[x+ εη, ẋ+ εη̇] η +

∂L

∂ẋ
[x+ εη, ẋ+ εη̇] η̇

)∣∣∣∣∣
ε=0

=

=

(
∂L

∂ẋ
η

)T
2

−T
2︸ ︷︷ ︸

=0 because η
(
±T

2

)
=0

+

∫ T
2

−T
2

dt

(
∂L

∂x
− d

dt

∂L

∂ẋ

)
η =

=

∫ T
2

−T
2

dt

(
∂L

∂x
[xcl, ẋcl]−

d

dt

∂L

∂ẋ
[xcl, ẋcl]

)
η

Since η was arbitrary we get the classical equation of motion, ∂L
∂x [xcl, ẋcl]−

d
dt

∂L
∂ẋ [xcl, ẋcl] = 0.

• d2

dε2S [xcl + εη]
∣∣∣
ε=0

is slightly more involved:

d2

dε2
S [xcl + εη]

∣∣∣∣
ε=0

=
d

dε

∫ T
2

−T
2

dt

(
∂L

∂x
[xcl + εη, ẋcl + εη̇] η +

∂L

∂ẋ
[xcl + εη, ẋcl + εη̇] η̇

)∣∣∣∣∣
ε=0

=

=

∫ T
2

−T
2

dt

(
∂2L

∂x2
η2 + 2

∂2L

∂ẋ∂x
ηη̇ +

∂2L

∂ẋ2
η̇2
)

– For most Lagrangians (including the harmonic oscillator) ∂2L
∂ẋ∂x = 0.

– For Lagrangians of the form L [x] = 1
2 ẋ

2−V [x] we have ∂2L
∂ẋ2 = 1 and

so
∫ T

2

−T
2

dt
(

∂2L
∂ẋ2 η̇

2
)
=
∫ T

2

−T
2

dtη̇η̇ = η̇η|
T
2

−T
2︸ ︷︷ ︸

0

−
∫ T

2

−T
2

dtη̈η.

– Thus we find that the second derivative with respect to ε is:∫ T
2

−T
2

dtη
(
−
(
−∂2V [xcl, ẋcl]

∂x2 η
)
− η̈
)
=
∫ T

2

−T
2

dtη
(
− d2

dt2 + ∂2V [xcl, ẋcl]
∂x2

)
η

• All together we find that:
S [xcl + εη] ≈ S [xcl] +

1
2

∫ T
2

−T
2

dtεη (t)
(
− d2

dt2 + ∂2V [xcl, ẋcl]
∂x2

)
εη (t) +O

(
ε3
)

• Let {yn}n∈N be a complete set of orthonormal functions which all vanish at

±T
2 :
∫ T

2

−T
2

dtyn (t) ym (t) = δnm, which are eigenfunctions of the differential

operator − d2

dt2 + ∂2V [xcl, ẋcl]
∂x2 . Using the boundary conditions we can find

the eigenvalues:

– Make an Ansatz with y (t) = A cos (λt) +B sin (λt)
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–
(
− d2

dt2 + ∂2V [xcl, ẋcl]
∂x2

)
y (t) =

(
λ2 + ∂2V [xcl, ẋcl]

∂x2

)
y (t). Thus the eigen-

values are λ2 + ∂2V [xcl, ẋcl]
∂x2 . But what is λ?

– Employ the boundary conditions:{
A cos

(
λT

2

)
+B sin

(
λT

2

)
= 0

A cos
(
λT

2

)
−B sin

(
λT

2

)
= 0

– The only way to get a nontrivial solution is if − cos
(
λT

2

)
sin
(
λT

2

)
−

sin
(
λT

2

)
cos
(
λT

2

) !
= 0, which means sin (λT ) !

= 0 which is true when-
ever λnT = πn for any n ∈ Z.

– Thus our eigenvalues are
(
πn
T

)2
+ ∂2V [xcl, ẋcl]

∂x2 for all n ∈ N (we don’t
need to take negatives values of n since that term is anyway squared).

• Because {yn}n∈N is a complete set, we may expand any given function
using it. In particular, write εη (t) :=

∑
n∈N cnyn (t) where {cn}n∈N are

the expansion coefficients.

• Plugging this into S [x] we get:

S [xcl + εη] ≈ S [xcl] +
1

2

∫ T
2

−T
2

dt
∑
n∈N

cnyn (t)

(
− d2

dt2
+
∂2V [xcl, ẋcl]

∂x2

)∑
l∈N

clyl (t)

= S [xcl] +
1

2

∑
n∈N

∑
l∈N

∫ T
2

−T
2

dtcnyn (t)

((
πl

T

)2

+
∂2V [xcl, ẋcl]

∂x2

)
clyl (t)

= S [xcl] +
1

2

∑
n∈N

c2n

((πn
T

)2
+
∂2V [xcl, ẋcl]

∂x2

)
�

1.3.2 Path-Integral Approximation
1.3.2.1 Claim〈
0, iT2

∣∣ 0, −iT2 〉 ≈√ 1
2π

ω
sinh(ωT ) for the simple harmonic oscillator.

Proof We have taken xf = xi = 0 in order to simplify the formulas.

• Going back to our path-integral, because we know there is only one unique
solution to the harmonic oscillator potential, we need to approximate
around only one classical path. Thus our path integral, given our ap-
proximation becomes:

〈
0, i

T

2

∣∣∣∣ 0, i− T

2

〉
≈ N

∫
{
x∈RR: x

(
T
2

)
=0∧x

(
−T

2

)
=0
}Dx×

× exp

{
−S [xcl]−

1

2

∑
n∈N

c2n

((πn
T

)2
+
∂2V [xcl, ẋcl]

∂x2

)}
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• Now we can reap the fruits of the approximation to the action which we
have made. Because S [xcl] does not depend on x, we can pull it out of the
integral (in fact it is zero but we keep writing it for a while none the less).
We may make a “change of variable” x 7→ η which is a mere “translation”
in function space, so that Dx = D (εη). But now, because εη is expanded
in terms of expansion coefficients {cn}n∈N, integrating over all possible η
is really the same as integrating over all possible values of cn, for each
n ∈ N. Thus we get now |N| ordinary integrals:

〈
0, i

T

2

∣∣∣∣ 0, −iT2
〉

≈ e−S[xcl]︸ ︷︷ ︸
1

N
∫
R
dc0

∫
R
dc1 . . . exp

{
−1

2

∑
n∈N

c2n

((πn
T

)2
+
∂2V [xcl, ẋcl]

∂x2

)}

= N
∫
R
dc0

∫
R
dc1 . . .

∏
n∈N

exp

{
−1

2
c2n

((πn
T

)2
+
∂2V [xcl, ẋcl]

∂x2

)}
= N

∏
n∈N

{∫
R
dcn exp

{
−1

2

((πn
T

)2
+
∂2V [xcl, ẋcl]

∂x2

)
c2n

}}

• Because we have separated our |N|-dimensional integral into a product of
|N| integrals, we may perform them one by one. They are easy, being
ordinary Gaussian integrals which we can readily solve:

= N
∏
n∈N

{
√
2π

((πn
T

)2
+
∂2V [xcl, ẋcl]

∂x2

)− 1
2

}
=

= N
∏
n∈N

√
2π

((πn
T

)2)− 1
2

(
1 +

((πn
T

)2)−1 ∂2V [xcl, ẋcl]

∂x2

)− 1
2

 =

= N
∏
n∈N

{
√
2π

((πn
T

)2)− 1
2

}∏
n∈N


(
1 +

((πn
T

)2)−1 ∂2V [xcl, ẋcl]

∂x2

)− 1
2

 =

= N
∏
n∈N

{√
2π

T

πn

}
︸ ︷︷ ︸

free particle result

{∏
n∈N

(
1 +

T 2

π2n2
∂2V [xcl, ẋcl]

∂x2

)}− 1
2

︸ ︷︷ ︸
contribution from potential

• Now we take advantage of the fact we haven’t defined N yet. Observe
that the first infinite product is the result we would have obtained for a
free particle (had V = 0). But for this case, we know how to compute〈
0, iT2

∣∣ 0, −iT2 〉, and so we can calculate what N must be:
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〈
0, i

T

2

∣∣∣∣ 0, −iT2
〉

free

=

〈
0

∣∣∣∣ exp{− p̂22 T
} ∣∣∣∣ 0〉

=

〈
0

∣∣∣∣ exp{− p̂22 T
}(∫

R
dp |p〉 〈p|

) ∣∣∣∣ 0〉
=

∫
R
dp e−

p2

2 Tψp (0)ψ
∗
p (0)

=
1

2π

∫
R
dp e−

p2

2 T

=

√
1

2πT

• Thus we define N :=

√
1

2πT∏
n∈N

{√
2π T

πn

} so that our results match in the case

of V = 0.

• Another trick is the identity:
∏

n∈N\{0}

(
1 +

(
α
πn

)2)
= sinh(α)

α which fol-
lows from Euler’s infinite product formula for sin [2].

• Thus we find that the path integral is equal to:
〈
0, iT2

∣∣ 0, −iT2 〉 ≈√ 1
2π

ω
sinh(ωT )

as desired, where ω2 = ∂2V [xcl, ẋcl]
∂x2 .

�

1.3.3 Ground State Energy for the Harmonic Oscillator
To get an actual expression for the energy eigenvalues, we take the limit T → ∞:

lim
T→∞

〈
0, i

T

2

∣∣∣∣ 0, −iT2
〉

≈ lim
T→∞

√
1

2π

ω

sinh (ωT )
=

= lim
T→∞

√
ω

π

e−ωT

1− e−2ωT

≈
√
ω

π
lim

T→∞
e−

ω
2 T

(
1 +

1

2
O
(
e−2ωT

))
• Comparing this result with the expression from usual quantum mechanics

we find: lim
T→∞

e−E0T |ψ0 (0)|2 ≈
√
ω

π
lim

T→∞
e−

ω
2 T

The sense in which this is an approximation is that higher order terms
on the left hand side will give us contributions from higher states of the
system (only n ∈ 2N though because for n ∈ 2N+ 1, ψn (0) = 0).

• Thus we deduce that E0 =
ω

2
and |ψ0 (0)|2 =

√
ω

π
, which thankfully

agrees with the usual canonical quantization computation, as in [9].
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1.4 Conclusion
In conclusion, to find the ground state energy of a system and the ground state
wave function evaluated at x = 0, we have found the formula: limT→∞ e−E0T |ψ0 (0)|2 ≈
e−S[xcl]

√
ω
π limT→∞ e−

ω
2 T where ω ≡

√
∂2V [xcl, ẋcl]

∂x2 .
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Chapter 2

The Double-Well Potential

Our setup is the same as before, however now our potential is given by V [x] =
ω2

8a2

(
x2 − a2

)2 where {a, ω} ⊂ (0, ∞).
In order to simplify the expressions to come, define λ := ω2

8a2 so that V [x] =

λ
(
x2 − a2

)2.
This is the quartic double well potential, which we study as an archetype for

tunneling phenomena in quantum mechanics. It is a prominent example for a
system where employment of perturbation theory (for example, expansion in λ)
will not reveal tunneling, and we must use another approach to see the effect.

2.1 Computation With Usual QM Methods
The Schroedinger equation reads (if we assume m = 1 and define h̄ ≡ 1):

(2.1)
[
d2

dx2
− 2λ

(
x2 − a2

)2
+ 2E

]
ψ (x) = 0

2.1.0.1 Claim

The two lowest energy eigenvalues of this differential equation are given by:
E0 = ω

2

[
1−

√
2ω3

πλ exp
(
− ω3

12λ

)]
E1 = ω

2

[
1 +

√
2ω3

πλ exp
(
− ω3

12λ

)]
Note: E0−E1 ∼ exp

(
− ω3

12λ

)
, which cannot be expanded in perturbation series

for small λ.

Proof

• The solution of this problem is presented in full detail in chapter 50 of [5]
page 183 problem 3.
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Figure 2.1: The double well.

Figure 2.2: In Euclidean spacetime the potential is inverted.

2.2 Computation With Euclidean Path Integral
Our strategy for the double-well is the same as the quantum harmonic oscillator:
find the classical paths (which minimize the action), and expand the action
around them. Finally plug this expansion into the path-integral. This means
that classical paths whose action is infinite will have no contribution to the path
integral. We shall now try to compute

〈
−a
∣∣∣ e−TĤ

∣∣∣ a〉 (from here on referred to

as BC1) and
〈
a
∣∣∣ e−TĤ

∣∣∣−a〉 (from here on referred to as BC2), two transitions
which we associate with quantum tunneling.

2.2.1 The Classical Euclidean Paths of Finite Action
Because we are working in Euclidean spacetime, our potential is inverted and
we are looking for solutions for the following equation of motion:

(2.2)ẍcl (t) = 4λ
[
xcl (t)

2 − a2
]
xcl (t)

2.2.1.1 Claim

The only solutions to this equation are a · tanh
(
±ω
2
(t− T )

)
for all T ∈ R,

where the + variant corresponds to BC1 and the − variant corresponds to BC2.

15



Proof

• Multiply the equation by 2ẋcl (t) to obtain a differential equation which
we integrate to get an integration constant C1:

2ẋcl (t) · ẍcl (t) = 2ẋcl (t) · 4λ
(
xcl (t)

2 − a2
)
xcl (t)

d

dt
[ẋcl (t)]

2
= 2λ

d

dt

[
xcl (t)

2 − a2
]2

[ẋcl (t)]
2

= 2λ
[
xcl (t)

2 − a2
]2

+ C1

• Determine C1 using the boundary conditions (by the way, C1 is the en-
ergy): At ±T

2 , we require that xcl = ±a and that ẋcl = 0 (asymptotically
go to ±a) and so C1 must be 0.

• Write xcl (t) := a tanh [u (t)] and plug it into the equation to get:

{
a sech [u (t)]

2
u̇ (t)

}2

= 2λ
{
a2 tanh [u (t)]

2 − a2
}2

a2
{
1− tanh [u (t)]

2
}2

[u̇ (t)]
2

= 2λa4
{
tanh [u (t)]

2 − 1
}2

[u̇ (t)]
2

= 2λa2

u̇ (t) = ±a
√
2λ = ±a

√
2
ω2

8a2
= ±ω

2

u (t) = ±ω
2
t+ C2

where C2 is some integration constant.

• Define T := 2
ωC2

• Thus we find that the most general solution is: a tanh
(
±ω

2 t+
ω
2 T
)

for
any T ∈ R.
�

2.2.1.2 Remarks

• These solutions’ boundary conditions are:

– For + version, xcl (−∞) = −a and xcl (∞) = a. This solution is
called an instanton at time T and shall be denoted from here until
the end of this chapter as IT (t).

– For the − version xcl (−∞) = a and xcl (∞) = −a. This solution is
called an anti-instanton at time T and shall be denoted AT (t).

• Thus they are only approximate solutions if our boundary conditions are
xcl
(
±T

2

)
= ±a, and become precise solutions only when T → ∞.

• These solutions, which correspond to tunneling are only made possible
by the fact we are working in the Euclidean spacetime framework. In
Minkowski spacetime @ such solutions, because classically @ tunneling!
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Figure 2.3: An instanton at T .

• Observe that limt→∞ (IT (t)− a) = limt→∞−2ae−ω(t−T ) and so we can
imagine the “width” of an (anti) instanton in time is proportional ∝ 1

ω . In
other words, it happens within a time window of width about 1

ω centered
at T , where before and after nothing happens.

2.2.1.3 Claim

Let n ∈ 2N + 1. Let T1 ∈
(
−T

2 ,
T
2

)
, T2 ∈

(
T1, T

2

)
, . . . , Tn ∈

(
Tn−1, T

2

)
. Then

a

n∏
j=1

tanh

[
±1

2
ω (t− Tj)

]
are approximate solutions to the equation of motion.

The + (−) variant corresponding to BC1 (BC2).

Proof

• Work on the + version first.

• For brevity denote τj := 1
2ω (t− Tj).

• Denote our suggested approximate solution by y (t) = a
∏n

j=1 tanh (τj).

• Then ẏ (t) = a
∑n

l=1

[∏
j 6=l tanh (τj)

1
2ω (sech (τl))

2
]

• and

ÿ (t) =
1

2
ω a

n∑
l=1

−ω∏
j

tanh (τj) (sech (τl))
2
+
∑
k 6=l

 ∏
j 6=l, j 6=k

tanh (τj)

 (sech (τk))
2


=

1

2
ω a

n∑
l=1

−ω 1

a
y (t) (sech (τl))

2
+
∑
k 6=l

 ∏
j 6=l, j 6=k

tanh (τj)

 (sech (τk))
2
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• Plugging this into the equation of motion we have:

0
?
= ÿ (t)− y (t) 4λ

(
y (t)

2 − a2
)

=
1

2
ω a

n∑
l=1

−ω 1

a
y (t) (sech (τl))

2
+
∑
k 6=l

 ∏
j 6=l, j 6=k

tanh (τj)

 (sech (τk))
2

−

−1

2
ω2y (t)


∏

j

tanh (τj)

2

− 1


1. First case, t ∈ (Tj0 − ε, Tj0 + ε, ) for some j0 ∈ {1, . . . , n} and for some
ε � 1. For such values of t, y (t) is almost zero. In addition, sech (τj) ≈
0∀j 6= j0 and 1 otherwise and so we have (neglecting already the terms
with y (t)):

≈ 1

2
ω a

n∑
l=1

∑
k 6=l

 ∏
j 6=l, j 6=k

tanh (τj)

 (sech (τk))
2


≈ 1

2
ω a

n∑
l=1

∑
k 6=l

 ∏
j 6=l, j 6=k

tanh (τj)

 δk, j0


=

1

2
ωa

n∑
l=1

{
0 l = j0(∏

j 6=l, j 6=j0
tanh (τj)

)
l 6= j0

=
1

2
ωa
∑
l 6=j0

 ∏
j 6=l, j 6=j0

tanh (τj)


≈ 0︸︷︷︸

sum of 1 and -1 even number of times

2. Second case, when |t− Tj | � 1
ω ∀j ∈ {1, . . . , n}, that is, it is “very” far

away from any instanton-event at any of the Tj ’s. Then sech (τj) ≈ 0∀j,
|tanh (τj)| ≈ 1∀j and so our equation is fulfilled.

�
We call the solution with the plus “n instantons”, denoted by InT1, ..., Tn (t).
Observe that it obeys exactly the same boundary conditions as the single in-
stanton. The solution with the minus is called “n anti-instantons”, denoted
by An

T1, ..., Tn (t), and obeys the same boundary conditions as the single anti-
instanton.

2.2.2 Features of Instanton Solutions
2.2.2.1 Claim

E [IT ] ≡ 1
2
˙IT (t)

2 − V [IT ] = 0 and the same for AT . Thus we would see that
the instantons and anti-instantons have zero total (Euclidean) energy.
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Figure 2.4: A 3-instanton.

Proof 1
2a

2
(
ω
2

)2 [
sech

(
±ω

2 (t− T )
)]4− ω2

8a2

(
−a2

[
sech

(
±ω

2 (t− T )
)]2)2

= 0.
�

2.2.2.2 Claim

S [IT ] = S [AT ] =
ω3

12λ (in particular, the action of instantons and anti-instantons
is independent of their parameter T !)

Proof

• Using the preceding claim, we can simplify the computation of the action:

S [IT ] =

∫ ∞
−∞

dt

(
1

2
˙IT (t)

2
+ V [IT ]

)
=

∫ ∞
−∞

dt ˙IT (t)
2

= = a2
(ω
2

)2 ∫ ∞
−∞

dt
[
sech

(
±ω
2
(t− T )

)]4
︸ ︷︷ ︸

4

3
(
ω
2

)

=
2

3
a2ω

=
ω3

12λ

• Because the result of the integral is independent of the plus or minus sign,
this computation holds also for AT .
�

Define S0 :=
ω3

12λ
.

2.2.2.3 Claim

S
[
InT1, ..., Tn (t)

]
= S

[
An
T1, ..., Tn (t)

]
= nS0
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Proof Using the fact that instantons have width 1
ω we may separate the

integral: S
[
InT1, ..., Tn (t)

]
=
∫∞
−∞ dt

(
1
2

(
d
dtI

n
T1, ..., Tn (t)

)2
+ V

[
InT1, ..., Tn (t)

])
=∑n

j=1

∫ tj+ε

tj−ε

(
1
2

˙ITj (t)
2
+ V

[
ITj
])

= nS0, where ε is chosen such that 1
ω < ε <

min ({|Tj − Tk| : {j, k} ⊂ {1, . . . , n}}). Later we would see that this should
always be possible for such n that we care about.
�

2.2.3 Structure of Transition Amplitude Approximation
We find that the most general classical approximate solution to the equation
of motion with either BC1 or BC2 is indexed by some odd integer n, together
with n consecutive numbers in the interval

(
−T

2 ,
T
2

)
⊂ R.

As we remarked in the first chapter, if we want to make an approximation
for the path integral around stationary paths, and if ∃ more than one station-
ary path, then in general we could approximate the path integral as a sum of
approximations around the various stationary paths.

Thus we expect

(2.3)
〈
−a
∣∣∣ e−TĤ

∣∣∣ a〉
≈

∑
n∈2N+1

∫ T/2

−T/2

dT1 . . .
∫ T/2

Tn−1

dTn
[
path integral approximation around InT1, ..., Tn (t)

]
and the anti-instanton approximation for

〈
a
∣∣∣ e−TĤ

∣∣∣−a〉.
Furthermore, by similar procedures it is clear that an even number of in-

stantons or anti-instantons obey the boundary conditions of xcl
(
±T

2

)
= ±a

respectively, and thus, they form an approximate solution with these boundary
conditions, and it is also clear that ±a (the constant map sitting always at either
a or −a) is an exact solution to the classical equations of motion with zero ac-
tion. We will use these solutions to compute

〈
a
∣∣∣ e−ĤT

∣∣∣ a〉 or
〈
−a
∣∣∣ e−ĤT

∣∣∣−a〉
respectively.

2.3 Single Instanton Contributions
Our next step would be to compute the contribution of a single instanton (of
some given T ) to

〈
−a
∣∣∣ e−TĤ

∣∣∣ a〉 for which we expand the action around IT .

(Or vice versa of an anti-instanton to
〈
a
∣∣∣ e−TĤ

∣∣∣−a〉). Using our experience
with the harmonic oscillator, we can readily write down that contribution:

〈
−a
∣∣∣ e−TĤ

∣∣∣ a〉
n=1

≈ e−S[IT ]N
∏{√

2πε
− 1

2
n

}
= e−S0N ′

{∏
εn

}− 1
2

where εn are the eigenvalues of the operator − d2

dt2 +
∂2V

[
IT , İT

]
∂x2 .
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Next, to make the following expressions shorter, define det (operator) :=∏
(eigenvalues of operator). This definition is not without sense, because as

we’ve seen in the previous chapter, the product of the eigenvalues represents
the contribution to the transition amplitude of quadratic quantum fluctuations
around the classical path.

Then we can rewrite the contribution as:

〈
−a
∣∣∣ e−TĤ

∣∣∣ a〉
n=1

= e−S0N ′
det

− d2

dt2
+
∂2V

[
IT , İT

]
∂x2


− 1

2

For convenience, we take the harmonic oscillator,
{
det
(
− d2

dt2 + ω2
)}− 1

2

, as a
reference for our computations:

〈
−a
∣∣∣ e−TĤ

∣∣∣ a〉
n=1

= e−S0N ′
{
det

(
− d2

dt2
+ ω2

)}− 1
2


det

(
− d2

dt2 +
∂2V

[
IT , İT

]
∂x2

)
det
(
− d2

dt2 + ω2
)


− 1

2

= e−S0

√
1

2π

ω

sinh (ωT )


det

(
− d2

dt2 +
∂2V

[
IT , İT

]
∂x2

)
det
(
− d2

dt2 + ω2
)


− 1

2

Next, a simple calculation shows that

∂2V
[
IT , İT

]
∂x2

= 4λ
(
3x2 − a2

)∣∣
x=IT

= ω2 − 3

2

ω2{
cosh

[
1
2ω (t− T )

]}2
so we obtain finally:

〈
−a
∣∣∣ e−TĤ

∣∣∣ a〉
n=1

= e−S0

√
1

2π

ω

sinh (ωT )


det
(
− d2

dt2 + ω2 − 3
2

ω2{
cosh

[
1
2ω(t−T )

]}2

)
det
(
− d2

dt2 + ω2
)


− 1

2

where we have used our computation from the first chapter for the harmonic
oscillator operator determinant, and “all” that is left for us is to compute
det

(
− d2

dt2
+ω2− 3

2
ω2{

cosh
[
1
2
ω(t−T )

]}2
)

det
(
− d2

dt2
+ω2

) .

Thus the eigenvalue equation reads:

(
− d2

dt2
+ ω2 − 3

2

ω2{
cosh

[
1
2ω (t− T )

]}2
)
yn (t) = εnyn (t) .

It is clear that as ω2−εn > 0 we will have a discrete set of eigenvalues and when
ω2 − εn < 0 there will be a continuous spectrum. However, with our boundary
conditions yn

(
±T

2

)
= 0 the eigenvalues which are bigger than ω2 will also be

discrete, and only when taking the limit T → ∞ they will “become” continuous.
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2.3.0.1 Claim{
0, 3

4ω
2
}

⊂ {εn}n∈N, where {εn}n∈N are all the eigenvalues of − d2

dt2 + ω2 −
3
2

ω2{
cosh

[
1
2ω(t−T )

]}2 . In particular, 0 is the lowest eigenvalue of − d2

dt2 + ω2 −
3
2

ω2{
cosh

[
1
2ω(t−T )

]}2 .

Proof

• We follow [5] pp. 73 problem 5:

– Rearrange the equation as
(

d2

dt2 + εn − ω2 +
3
2ω

2{
cosh

[
1
2ω(t−T )

]}2

)
yn (t) =

0

– Make a change of variables t− T 7→ t to get:

–
(

d2

dt2 + εn − ω2 +
ω2 3

2{
cosh

[
1
2ωt

]}2

)
yn (t) = 0

– Define ξ (t) := tanh
(
1
2ωt
)
, ε := 2

ω

√
ω2 − εn, s := 2

– Then dy
dt = dξ

dt
dy
dξ and so d2y

dt2 = d
dt

(
dξ
dt

dy
dξ

)
= d2ξ

dt2
dy
dξ +

(
dξ
dt

)2
d2y
dξ2

– dξ
dt = 1

2ω
[
sech

(
1
2ωt
)]2

= 1
2ω
(
1− ξ2

)
and d2ξ

dt2 = − 1
2ω

2
(
1− ξ2

)
ξ

– So that d2y
dt2 = − 1

2ω
2
(
1− ξ2

)
ξ dy
dξ+

1
4ω

2
(
1− ξ2

)2 d2y
dξ2 = 1

2ω
2
[
−
(
1− ξ2

)
ξ dy
dξ + 1

2

(
1− ξ2

)2 d2y
dξ2

]
=

= 1
2ω

2 d
dξ

[(
1− ξ2

)
dy
dξ

]
– ε = 2−n and so 2

ω

√
ω2 − εn = 2−n and so ω2−εn = ω2

4

(
4− 4n+ n2

)
=

ω2−ω2n+ 1
4ω

2n2 and so εn = ω2n

(
1− 1

4
n

)
for n ∈ N. But ε must

be positive! so we obtain only two eigenvalues in this way, and the
rest will be obtained differently.
�

2.3.1 Zero Modes–Collective Coordinates
We are in trouble, because the first eigenvalue is 0, and we have a term (ε0)

− 1
2 =

1
0 in our transition amplitude.

We identify the y0 (t) eigenvector–the eigenvector corresponding to eigen-
value zero–as a “direction” in function space that leaves the action invariant.

This is because
(
− d2

dt2 +
∂2V

[
IT , İT

]
∂x2

)
is actually δ2S

δη2 where η is a quantum

variation around the classical path IT . But we know of such a “direction”
already: varying IT 7→ IT+∆T leaves the action invariant. Thus y0 must
correspond to this shift in T . Thus if IT (t) + ∆T y0 (t) ∝ IT +∆T (t) then
y0 (t) ∝ IT +∆T (t)−IT (t)

∆T
∆T→0→ − d

dT IT (t) = d
dtIT (t). We must still normal-

ize this vector to be able to use it:
∫∞
−∞ dty0 (t)

2 !
= 1, but this computation

we have already made, and found
∫∞
−∞ dt

(
d
dtIT (t)

)2
= S0. Thus we find:

y0 (t) = (S0)
− 1

2
d

dt
IT (t) .
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So in the path integral which we separated in chapter one into an |N| dimen-
sional integral over coefficients corresponding to eigenvectors, we must separate
the zero mode, because it is in fact not Gaussian

∫
R dc0e

0. It is clear that c0
actually corresponds to T and so we can swap this integral with an integral over
T . This is conventionally called the introduction of a collective coordinate. This
fits well with our scheme as we already anticipated integration of the various T
parameters.

2.3.1.1 Claim∫
dc0 =

√
S0

∫
dT

Proof

• If c0 changes by ∆c0, our path (the integration variable in the path inte-
gral) changes by ∆x (t) = y0 (t)∆c0.

• On the other hand, if T changes by ∆T , our path changes by ∆x (t) =

∆IT (t) = ∂IT (t)
∂T ∆T = −

√
S0y0 (t)∆T

• Because the change to x (t) must be the same, we conclude that dc0 =√
S0dT . (The minus sign is irrelevant).

�

2.3.2 The Remaining Eigenvalues
• Define det0 (operator) :=

∏
(eigenvalues of operator except the zero one).

Going back to our product of eigenvalues, we thus omit the zero eigenvalue and
replace it with “preparation” for integration over the zero mode:


det

(
− d2

dt2 +
∂2V

[
IT , İT

]
∂x2

)
det
(
− d2

dt2 + ω2
)


− 1

2

=

√
S0

2π
dT


det0

(
− d2

dt2 +
∂2V

[
IT , İT

]
∂x2

)
det
(
− d2

dt2 + ω2
)


− 1

2

For normalization purposes we must also multiply by 1√
2π

which is what we
would have obtained from the Gaussian integral of the zero mode. Recall from
chapter one that the eigenvalues of − d2

dt2 + ω2 were
(
πn
T

)2
+ ω2 T→∞−→ ω2. So for

every term we don’t include in the product we should “compensate” by dividing
by ω2 so that all together we have:

√
S0

2π
ωdT


det0

(
− d2

dt2 +
∂2V

[
IT , İT

]
∂x2

)
ω−2 det

(
− d2

dt2 + ω2
)


− 1

2
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2.3.2.1 Claim

det0

(
− d2

dt2
+

∂2V
[
IT , İT

]
∂x2

)
ω−2 det

(
− d2

dt2
+ω2

) = 3
4 × 1

9

Proof

• The next eigenvalue after 0 is 3
4ω

2. But since we are also dividing by
the harmonic oscillator eigenvalues in the limit T → ∞, we must divide
each eigenvalue by ω2. Thus we get for the first nonzero eigenvalue a
contribution of 3

4 .

• The 1
9 factor is computed in [5] pp. 80 and also applied to our particular

problem in [12].

�

Notes So all together we have lim
T→∞

〈
−a
∣∣∣ e−TĤ

∣∣∣ a〉
one-instanton

= lim
T→∞

(√
ω

π
e−

ω
2 T

)
DωdT

where we define D :=

√
6

π

√
S0e
−S0 to make the expressions shorter.

2.4 Dilute Instanton Gas

2.4.1 Energy Eigenvalues
Because we know that a correction of one-instanton to the harmonic oscillator
entails a factor of DωdT to the transition amplitude, we may readily generalize
that the contribution of n instantons is (DωdT )

n.

2.4.1.1 Claim

The contribution of an n-instanton to the transition amplitude is (Dω)n dT1 . . . dTn.

Proof We only need to explain the
√

6
π

n

term, because the power in the
exponent follows from the fact that the action of the multi-instanton solution
is merely n times the action of the single instanton. The other factors are

byproducts of the collective coordinates, and so only
√

6
π

n

actually follows from
computing the functional determinant. We leave this as an exercise to the
reader.
�
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Figure 2.5: A 4-instanton. The green arrows point to instantons and red arrows
point to anti-instantons in the sequence.

2.4.1.2 Conclusion

So we may finally write:

lim
T→∞

〈
−a
∣∣∣ e−TĤ

∣∣∣ a〉
n=1

= lim
T→∞

(√
ω

π
e−

ω
2 T

) ∑
n∈2N+1

∫ T/2

−T/2

dT1 . . .
∫ T/2

Tn−1

dTn [Dω]n

= lim
T→∞

(√
ω

π
e−

ω
2 T

) ∑
n∈2N+1

(Dω)
n T

n

n!

= lim
T→∞

(√
ω

π
e−

ω
2 T

)
sinh [DωT ]

= lim
T→∞

(√
ω

π
e−

ω
2 T

)
1

2

[
eDωT − e−DωT

]
= lim

T→∞

1

2

√
ω

π

[
e−

ω
2 T+DωT − e−

ω
2 T−DωT

]
= lim

T→∞

1

2

√
ω

π

[
e−

ω
2 (1−2D)T − e−

ω
2 (1+2D)T

]
= lim

T→∞

1

2

√
ω

π

[
e
−ω

2

(
1−
√

2ω3

πλ e−
ω3

12λ

)
T
− e
−ω

2

(
1+

√
2ω3

πλ e−
ω3

12λ

)
T

]

And so we find exactly the same two lowest energy eigenvalues as the ordinary
quantum mechanics techniques.

2.4.2 Symmetry of Ground State

Using exactly the same procedure, we can evaluate
〈
a
∣∣∣ e−ĤT

∣∣∣ a〉. Now we
have one classical solution which is the solution x (t) = a. But as above, we also
must take into account multi-instanton approximate solutions, which take us
back and forth. However, in contrast to before, now we need an even numbered
multi-instanton.
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lim
T→∞

〈
a
∣∣∣ e−ĤT

∣∣∣ a〉 ≈ lim
T→∞

(√
ω

π
e−

ω
2 T

) ∑
n∈2N

(Dω)
n T

n

n!

= lim
T→∞

(√
ω

π
e−

ω
2 T

)
cosh [DωT ]

= lim
T→∞

1

2

√
ω

π

[
e
−ω

2

(
1−
√

2ω3

πλ e−
ω3

12λ

)
T
+ e
−ω

2

(
1+

√
2ω3

πλ e−
ω3

12λ

)
T

]

2.4.3 Wave Functions
From our analysis it is also possible to extract the energy eigenfunctions: ψ0 (−a)ψ∗0 (a) =

ψ0 (a)ψ
∗
0 (a) =

1
2

√
ω
π =⇒ ψ0 (a) = ψ0 (−a) =

( ω
4π

) 1
4

and so it is appears that

the wave function for the lowest state remains symmetric after all under the
exchange of ±a.

2.4.4 Validity of Dilute Instanton Approximation
Even though we are seemingly summing over an arbitrarily large number of
instantons (and so the dilute gas approximation should break down at some
point), in infinite sums of the form

∑
n∈N

xn

n! , only the terms for which n < x
are non-negligible. That means for us only terms where n < DωT are actually
important in the infinite sum, where we recall D ≡

√
6
π

√
S0e
−S0 from before.

For the dilute gas approximation to be valid, we have assumed that instan-
tons don’t “interact”, that is, that one instanton event is finished well before
another one starts: |Ti − Tj | � 1

ω . So we must make sure this condition holds,
at least for all solutions with n < DωT . On average, we have |Ti − Tj | = T

n ,
and so, we only care about the “worst” case in which |Ti − Tj | = T

DωT = 1
D × 1

ω .
So we find that in order for this approximation to hold we need D � 1, which

means
√

6

π

√
ω3

12λ
e−

ω3

12λ � 1 . This will be true if λ� 1.
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Chapter 3

The Periodic Well

Consider the same unit mass particle as before, but now under the influence of
the potential V [x] =

∑
n∈Z v (x− na) where v (x) is a single well inside

(
−a

2 ,
a
2

)
and zero outside that interval
A practical example for a system that has such a potential is the sine Gordon

in QFT or just a simple pendulum in QM.
The x-values of the minima (maxima) of the potential are the set aZ.

3.1 Kronig-Penny Type Model
Using Bloch’s theorem we know that the eigenvalues of this system will be
divided into energy bands, each of which a continuum (indexed by k ∈

(
−π

a ,
π
a

)
)

and that the energy eigenstates are also eigenstates of the translation operators
by aZ: T̂maψk (x) ≡ ψk (x+ma) = eikmaψk (x). We shall try to obtain results
using “instanton calculus” instead.

3.2 Generic Transition Amplitude
A single instanton a

2

[
tanh

(
ω
2 (t− T )

)
+ 2j + 1

]
shifts site j to site j +1, anti-

instantons a
2

[
tanh

(
−ω

2 (t− T )
)
+ 2j + 1

]
shift from j+1 to j. Now an instan-

ton is an event localized both in space and in time.

3.2.1 A sequence of single-instantons versus A single big
instanton

If we want to move from j to j + 5 we could think of two options:

1. Stringing together 5 1-instantons, j → j + 1, j + 1 → j + 2, . . . Then the
contribution is proportional to e−S0 where S0 = 5 2

3a
2ω (as we computed

in the double well).

2. Taking a single 5-instanton: 5a
2

[
tanh

(
ω
2 (t− T )

)
+ 2j + 1

]
contribution

proportional to e−S
′
0 where S′0 = 2

3 (5a)
2
ω. Thus this is O

((
e−S0

)5)! We
will only take into account stringing 1-instantons then.
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Figure 3.1: The periodic well.

Figure 3.2: In Euclidean spacetime the potential is inverted.

So if we want to go from j → j′ we assume any sequence of 1-instantons and
anti 1-instantons are combined, just so that the number of instantons minus the
number of anti-instantons is equal j′ − j.

3.2.2 The Transition Amplitude
If we denote our minimum sites by j for x = ja where j ∈ Z, then we can write
a transition amplitude as:

limT→∞

〈
j
∣∣∣ e−ĤT

∣∣∣ j′〉 ≈ limT→∞

(√
ω

π
e−

ω
2 T

)
︸ ︷︷ ︸

SHO

∑
n∈N

(Dω)
n T

n

n!︸ ︷︷ ︸
n instantons

∑
n′∈N

(Dω)
n′ Tn′

n′!︸ ︷︷ ︸
n′ anti-instantons

δ(j−j′)−(n−n′)

What we have asserted with this statement is that we can have any number
of instantons and anti-instantons (doesn’t matter where) just as long as the total
change in position j − j′ is equal to the total number of instantons n minus the
total number of anti-instantons n′.

Next, write δ(j−j′)−(n−n′) =
∫ 2π

0
dθ
2π e

iθ
[(

j−j′
)
−
(
n−n′)]

to get:
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lim
T→∞

〈
j
∣∣∣ e−ĤT

∣∣∣ j′〉 = lim
T→∞

(√
ω

π
e−

ω
2 T

)∑
n∈N

[Dω]
n T

n

n!

∑
n′∈N

[Dω]
n′ Tn′

n′!

∫ 2π

0

dθ

2π
eiθ
[(

j−j′
)
−
(
n−n′)]

= lim
T→∞

(√
ω

π
e−

ω
2 T

)∫ 2π

0

dθ

2π
eiθ
[(

j−j′
)]∑

n∈N

1

n!

[
Dωe−iθT

]n ∑
n′∈N

1

n′!

[
DωeiθT

]n′

=

= lim
T→∞

(√
ω

π
e−

ω
2 T

)∫ 2π

0

dθ

2π
eiθ
[(

j−j′
)]
exp

[
Dωe−iθT

]
exp

[
DωeiθT

]
= lim

T→∞

(√
ω

π
e−

ω
2 T

)∫ 2π

0

dθ

2π
eiθ
[(

j−j′
)]
exp [Dω2 cos (θ)T ]

=

√
ω

π
lim

T→∞

∫ 2π

0

dθ

2π
eiθ
[(

j−j′
)]
exp

[
−ω
2
(1− 4D cos (θ))T

]
3.2.3 The θ-Vacuum
We can read-off the energy eigenvalues from the previous expression readily:

Eθ =
ω

2
−Dω2 cos (θ)

This is the same result we would obtain using Bloch’s theorem. The barrier
penetration coefficient enters in D via e−S0 . This is already a “theta-vacuum”
which will be important later in gauge theory: Even though we originally for-
mulated a tunneling between |j〉 and |j′〉, it turns out that the actual vacua (by
Bloch’s theorem) have to be eigenstates of of the translation operator, and so,
as we found, it is more natural to write |θ〉 :=

∑
n e
−inθ |n〉. Then

T̂ma |θ〉 =
∑
n

e−inaθT̂ma |n〉

=
∑
n

e−inaθ |n+m〉

= eimaθ |θ〉
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Part II

Instantons in Quantum Field
Theory
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Chapter 4

Pure Yang-Mills Theory

In this chapter we finally get to field theory, in which the main goal will be to
show that the vacuum has such a structure as to effectively add a CP-violating
term to the Lagrangian. We follow the presentation in [4].

4.1 Gauge Theory

4.1.1 Gauge Groups and their Corresponding Lie Alge-
bras

Let G be a compact Lie group, called the gauge group. Let {T a}Na=1 be the
generators of its corresponding Lie algebra g. Thus we have

[
T a, T b

]
= fabcT c

where fabc are called the structure constants of g and we employ the Einstein
summation convention on the group indices (despite all group indices being
superscript). For SU (2) for example, fabc ≡ εabc, the totally anti-symmetric
tensor. If G is Abelian, for instance, for U (1), the structure constants are
fabc ≡ 0.

We pick a representation of g in which tr
(
T aT b

)
∼ δab. For example, for

SU (2), T a = −iσ
a

2 where σa are the Pauli matrices. For SU (3), T a = −iλ
a

2
where λa are the Gell-Mann matrices.

4.1.1.1 Definition

Define the Cartan inner product between two generators so that we would have(
T a, T b

)
:= δab.

4.1.1.2 Claim

For SU (2) in the representation of su (2) specified above,
(
T a, T b

)
= −2tr

(
T aT b

)
.
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Proof

−2tr
(
T aT b

)
= −2tr

[(
−iσ

a

2

)(
−iσ

b

2

)]
=

1

2
tr
(
iεabcσc + δabI

)
tr(σc)=0

=
1

2
δabtr (I)

= δab

�

4.1.2 Gauge Fields

Consider a field theory of N real vector fields, {Aµ
a}Na=1, where N is the dimen-

sion of g above. Because we are interested in instanton solutions, we will work
exclusively in Euclidean spacetime. Thus all spacetime indices, still in Greek
letters, will be subscript, yet Einstein summation convention is still in effect.

For convenience work instead with one matrix-valued vector field Aµ :=
gAµ

aT a where g ∈ R is a coupling constant. So Aµ takes values in g. Define
the field-strength tensor Fµν := ∂[µAν] +A[µAν] .

4.1.2.1 Note on Abelian Groups

If G = U (1), this is the electromagnetic field-strength tensor because U (1) is
Abelian and for Abelian groups [Aµ, Aν ] = 0.

4.1.2.2 The Action

Assume that the (Euclidean) action for this theory is given by S [Aµ] =
1

4g2

∫
R4 d

4x (Fµν , Fµν).
This is a reasonable assumption (that is, this is the most generic term to put in
the action) taking into consideration certain constraints:

• Lorentz invariance.

• Gauge invariance (to be verified later on).

• The need for renormalizability (that is, we need the mass dimension of
this term to obey a certain constraint).

• Naively assuming CP invariance of the theory (this will turn out to be a
misguided assumption, and as a result, we will add another term to the
Lagrangian).

Note: because we are in Euclidean spacetime, there is no distinction between
lower and upper spacetime indices.
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4.1.3 Gauge Transformations

Define a local gauge transformation as the following map onAµ: Aµ 7→ V AµV
−1 + V ∂µV

−1

for any V ∈ GR4

(here V is function of spacetime, and should really be written
V (x), but this is not explicit in the notation in order to keep the expressions in
manageable size).

4.1.3.1 Claim

Under such a map, Fµν 7→ V FµνV
−1.

Proof

Fµν 7→ ∂µAν − ∂νAµ +AµAν −AνAµ

= ∂µ
(
V AνV

−1 + V ∂νV
−1)− µ↔ ν

+
(
V AµV

−1 + V ∂µV
−1) (V AνV

−1 + V ∂νV
−1)− µ↔ ν

= (∂µV )AνV
−1 + V (∂µAν)V

−1 + V Aν∂µV
−1 + (∂µV ) ∂νV

−1 + V ∂µ∂νV
−1 − µ↔ ν

+V AµAνV
−1 + V Aµ∂νV

−1 + V
(
∂µV

−1)V AνV
−1 + V

(
∂µV

−1)V ∂νV −1 − µ↔ ν
∗
= (∂µV )AνV

−1︸ ︷︷ ︸
I

+V (∂µAν)V
−1 + V Aν∂µV

−1 + (∂µV ) ∂νV
−1 − µ↔ ν

+V AµAνV
−1 + V Aµ∂νV

−1 − (∂µV )AνV
−1︸ ︷︷ ︸

I

− (∂µV ) ∂νV
−1 − µ↔ ν

= V (∂µAν)V
−1 − µ↔ ν

+V AµAνV
−1 − µ↔ ν

≡ V FµνV
−1

where in ∗ we have used two facts:

1. ∂µ
(
V V −1

)
2. ∂[µ∂ν] = 0

�

4.1.3.2 Claim

The action we defined above is gauge invariant

Proof S
[
V AµV

−1 + V ∂µV
−1] = 1

4g2

∫
R4 d

4x
(
V FµνV

−1, V FµνV
−1).

But this inner-product is proportional to the trace, which is cyclic, so we get
1

4g2

∫
R4 d

4x (Fµν , Fµν) ≡ S [Aµ].
�

4.1.4 The Covariant Derivative
Define a covariant derivative for Fµν by DλFµν := ∂λFµν + [Aλ, Fµν ].
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4.1.4.1 Note

This reduces to the ordinary derivative when G is Abelian, because we have
[Aλ, Fµν ] = 0.

4.1.4.2 Claim

Then the equation of motion stemming from the action defined above is given
by DµFµν = 0 (which is a generalized inhomogeneous source-free Maxwell’s
equation.)

Proof

• We have L = 1
4g2 (Fµν , Fµν).

• The equation of motion is given by ∂β
∂L

∂(∂βAα
d)

− ∂L
∂Aα

d = 0 for all α
in the spacetime indices ({1, 2, 3, 4}) and for all d in the group indices
({1, . . . , N}).

• ∂L
∂Aα

d = ∂
∂Aα

d
1

4g2 (Fµν , Fµν) =
1

4g2

(
∂

∂Aα
dFµν , Fµν

)
+ 1

4g2

(
Fµν ,

∂
∂Aα

dFµν

)
• We compute one derivative first:

∂

∂Aα
d
Fµν =

∂

∂Aα
d
[Aµ, Aν ]

=
∂

∂Aα
d

[
gAµ

aT a, gAν
bT b
]

= g2
∂

∂Aα
d
Aµ

aAν
bfabcT c

= g2fabcT c
(
δαµδ

daAν
b +Aµ

aδανδ
db
)

= g2
(
fdbcδαµAν

b + fadcAµ
aδαν

)
T c

• If we write Fµν = gFµν
cT c where Fµν

c ≡ ∂µAν
c−∂νAµ

c+gAµ
aAν

bfabc

then we have for the complete derivative of the Lagrangian:

∂L
∂Aα

d
=

1

4g2

(
∂

∂Aα
d
Fµν , Fµν

)
+

1

4g2

(
Fµν ,

∂

∂Aα
d
Fµν

)
=

1

4g2
(
g2
(
fdbcδαµAν

b + fadcAµ
aδαν

)
T c, gFµν

eT e
)
+

1

4g2

(
Fµν ,

∂

∂Aα
d
Fµν

)
=

1

2
g
(
fdbcδαµAν

b + fadcAµ
aδαν

)
Fµν

c

=
1

2
g
(
fdbcAν

bFαν
c + fadcAµ

aFµα
c
)

=
1

2
g
(
fdacAµ

aFαµ
c − fdacAµ

aFµα
c
)

= gfdacAµ
aFαµ

c

• Next we need to compute ∂L
∂(∂βAα

d)
= 1

4g2

(
∂

∂(∂βAα
d)
Fµν , Fµν

)
+ 1

4g2

(
Fµν ,

∂
∂(∂βAα

d)
Fµν

)
.
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• Computing only one derivative we have:

∂

∂ (∂βAα
d)
Fµν =

∂

∂ (∂βAα
d)

[gT a∂µAν
a − gT a∂νAµ

a]

= g
[
δβµδανδ

ad − δβνδαµδ
ad
]
T a

= g [δβµδαν − δβνδαµ]T
d

• Thus we get for the complete derivative:

∂L
∂ (∂βAα

d)
=

1

4g2

(
∂

∂ (∂βAα
d)
Fµν , Fµν

)
+

1

4g2

(
Fµν ,

∂

∂ (∂βAα
d)
Fµν

)
=

1

4g2
(
g [δβµδαν − δβνδαµ]T

d, gFµν
cT c
)
+

1

4g2

(
Fµν ,

∂

∂ (∂βAα
d)
Fµν

)
=

1

2
[δβµδαν − δβνδαµ]Fµν

d

= Fβα
d

• Thus we found the equation of motion is given by ∂βFβα
d−gfdacAµ

aFαµ
c =

0.

• Multiply this equation by g and also by T d. We will get N such equation
for each d. Sum up all these equations to get: ∂βFβα −g2fdacAµ

aFαµ
cT d =

0.

• Using the definition of the structure constants fdacT d = facdT d = [T a, T c]
we have:

∂βFβα − g2Aµ
aFαµ

c [T a, T c] = 0

∂βFβα − [gAµ
aT a, gFαµ

cT c] = 0

∂βFβα − [Aµ, Fαµ] = 0

∂µFµα + [Aµ, Fµα] = 0

DµFµα = 0

�

4.1.4.3 Note about Abelian Groups

When G is Abelian, [Aν , Fµν ] = 0 and the solution is Aµ = 0. In the non-
Abelian case, this equation is non-linear and non-trivial solutions may exist.

4.2 Finite Action
Just as for quantum mechanics, now for gauge field theory we are interested in
the lowest energy eigenvalues. Thus we want to compute a path-integral. As
we’ve seen in the case of quantum mechanics, it is thus worthwhile to know the
classical solutions to the equations of motion and approximate the path-integral
about those solutions.

Something that was implicit above should now be made clear: for this type
of approximation (semi-classical approximation), classical solutions which have
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an infinite value for their corresponding action are not important, because their
contribution to the path-integral is proportional to e−S[sol.] (however, in general,
it is actually the solutions with finite action which form a set of measure zero
in the space of all functions (and so should not contribute to the integral), and
only gain significance in the context of the semi-classical approximation.)

4.2.0.4 Claim

In four spacetime dimensions if S < ∞ then Fµν must decrease more rapidly
than 1

|x|2 .

Proof Otherwise S ∼
∫
R4 d

4x
(

1
r2

)2 ∼
∫∞
0
drr3 1

r4 ∼ log (r)|∞0 → ∞.
�

4.2.1 Field Configurations of Finite Action
So we are interested in such field configurations so that in some series expansion
of limr→∞ F in powers of 1

r , the first term in F is 1
r3 . Naively, this means that

in some series expansion of limr→∞A in powers of 1
r , the first term in A is 1

r2 ,
because F ∝ ∂µA ∝ 1

r3 .

4.2.1.1 Pure Gauge Configurations

However, it turns out that there is another possibility, which is more interesting.
F could also be zero if A is some gauge transformation of zero (such a configu-
ration is called a pure gauge). That is, Aµ = V ∂µV

−1 for some V (x) ∈ GR4

.

4.2.1.2 Claim

If A is a pure gauge then F = 0.

Proof

Fµν = ∂[µ
(
V ∂ν]V

−1)+ [V ∂µV −1, V ∂νV −1]
= V,µV

−1
,ν + V V −1 ,ν,µ − V,νV

−1
,µ − V V −1 ,µ,ν

+V V −1 ,µV V
−1

,ν − V V −1 ,νV V
−1

,µ

(V,µ,ν=V,ν,µ)
= V,µV

−1
,ν − V,νV

−1
,µ + V V −1 ,µV V

−1
,ν − V V −1 ,νV V

−1
,µ((

V V −1
)
,µ

=0
)

= V,µV
−1

,ν − V,νV
−1

,µ − V,µV
−1

,ν + V,νV
−1

,µ

= 0

�

Conclusion Thus for finite action we need such fields configurations so that
lim|x|→∞Aµ

!
= V ∂µV

−1 + O
(

1
|x|2

)
for some V (x) ∈ GR4

. However, be-
cause in this expression V is only evaluated for |x| → ∞, we can conve-
niently think of V (x) ∈ GS3

instead of V (x) ∈ GR4

, where S3, mathemati-
cally the 4-dimensional sphere with radius one, is for us homeomorphic to the
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4-dimensional sphere with radius infinity. So every finite action field config-
uration is associated with an element V (x) ∈ GS3

. But if two pure gauge
field configurations are in the same gauge orbit, their corresponding V is not
the same. That is, V , which characterizes a field configuration, is not gauge
invariant.

4.2.1.3 Claim

Gauge transforming a pure gauge field configuration V ∂µV −1 with U ∈ G trans-
forms V into UV .

Proof If we perform a gauge transformation Aµ 7→ UAµU
−1 + U∂µU

−1 on a
pure gauge configuration V ∂µV −1 we get:

V ∂µV
−1 7→ UV

(
∂µV

−1)U−1 + U∂µU
−1

= UV ∂µ
(
V −1U−1

)
− UV V −1∂µU

−1 + U∂µU
−1

= UV ∂µ (UV )
−1

�

Conclusion Thus effectively we have V 7→ UV instead of V 7→ V , which is
what we would expect from a gauge invariant object.

4.2.1.4 Claim

It is not possible, in general, to “gauge away” any pure gauge field configuration
to zero by picking U |r=∞ = V −1

∣∣
r=∞, thereby arranging that Aµ = 1∂µ1

−1 =
0.

Proof We assume all gauge transformations are continuous throughout space-
time, so U |r=∞ must a continuous deformation of U |r=0 ∈ GS3

, which must be
a constant (because it cannot depend on the angles). But all constant elements
in GS3

are continuously deformable into 1 (because we assume G is connected).
So that we may only pick such U |r=∞ which are continuous deformations of 1.
Thus, if V −1 is not continuously deformable into 1 (which in general could be
the case) then we cannot pick U = V −1.
�

Conclusion Even though we found V 7→ UV instead of V 7→ V , U must be
continously deformable to 1 and so: V and UV are continuously deformable
into one another.

As a result, we find that the gauge-invariant object associated with Aµ =

V ∂µV
−1 is not V (x) per se but the class of all elements of GS3

which are
continuously deformable into V (x).
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4.3 Homotopy
Two maps that are continuously deformable into one another are homotopic. So
to classify the gauge-invariant objects associated with finite-action field config-
urations, we need to find all homotopy classes in GS3

. We also specialize to the
case G = SU (2) and so g = su (2).

4.3.0.5 Claim

SU (2) ' S3

Proof Write a general element of SU (2) as
[
a b
−b̄ ā

]
where {a, b} ⊂ C and

|a|2+|b|2 = 1. This is indeed the most general form of an element in Mat2×2 (C)
which is unitary (is its own inverse) and has determinant 1 (to see that write a
general 2×2 matrix with complex-number entries and solve the system of equa-
tions stemming from these two constraints). Define a map C2 → Mat2×2 (C)

by
[
a
b

]
7→
[
a b
−b̄ ā

]
. This is a homeomorphism onto its image (injective, contin-

uous, and inverse is continuous). Thus SU (2) can be identified with the vectors
in (a, b) ∈ C2 which have |a|2 + |b|2 = 1, which is exactly the unit sphere in
C2 ' R4–the 3-sphere.
�

Conclusion Using this homeomorphism we only need to think of homotopy
classification of maps in

(
S3
)S3

instead of SU (2)
S3

, which is more convenient.

4.3.1 Third Homotopy Group of SU (2) and the Winding
Number

The classifications of all maps S3 → S3 belongs in the field of algebraic topology
[6]. For topologists, one main goal is to classify the spaces which constitute the
range of these maps. Thus, in very crude terms, they decide if the topological
spaces A and B are equivalent if the set of maps Sn → A is “equivalent” to the
set of maps Sn → B for some n ∈ N, where Sn is the n-sphere in Rn. It turns
out that these sets of maps (or rather equivalence classes of them–homotopy
classes) form the mathematical structure of a group. This group is called the
n-th homotopy group of a space. In order to decide if two groups are equivalent
we have at our disposal the notion of group isomorphism. Algebraic topologists
can then very clearly rule that A and B are not equivalent (homeomorphic, in
topological jargon) if the corresponding n-th homotopy groups are not isomor-
phic (the converse is not in general true).

For our current purposes, the distinction between two topological spaces is
not so important, but rather a “by product” of the hard work that algebraic
topologists have made: the construction of the homotopy group. In order to
give the n-th homotopy group the structure of a group, an equivalence relation
is defined on the set of maps Sn → A. Two maps {f, g} ⊂ ASn

are equivalent
iff ∃ a point x ∈ Sn and a continuous map h ∈ A[0, 1]×Sn

, called a homotopy
between f and g, such that:
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1. h (0, −) = f (−)

2. h (1, −) = g (−)

3. h (−, x) = f (x) = g (x) for some x ∈ Sn.

That is, h can be thought of as a continuous deformation or interpolation be-
tween the “path” f to the “path” g, where all the deformations are based at
f (x) = g (x). The group of classes of maps in ASn

which have a homotopy
between them is denoted by πn (A). The law of composition on this group is
defined in a natural way by concatenating two paths (and taking the equiva-
lence class of that), the identity is the constant path at a point (or all paths
equivalent to that), and inverses are paths that go in reverse direction. Thus
it is clear that, for instance, if π1 (A) ' {0}, that is, the trivial group, then all
paths are homotopic to the constant point. What that means is that all paths
can be continuously contracted into one point (or rather, a path that just goes
through one point for its range). This is not always possible, but when it is, the
space is called simply connected.

Back to our matter at hand, we are interested in computing π3
(
S3
)
.

4.3.1.1 Claim

π3
(
S3
)
' Z.

Proof

• We know that ∃ a group homomorphism π3
(
S3
)
→ H3

(
S3
)

where H3 is
the third homology group with integer coefficients.

• According to Hurewicz’ theorem [13], because S3 is 2-connected, this map
is an isomorphism.

• But H3

(
S3
)
= Z is easy to calculate.

�

Conclusion This integer in Z represents the number of times the 3-sphere
wraps around itself (negative values for opposite orientation).

So the finite-action field configurations are “indexed” by Z, in the sense that
each Aµ obtains a label from Z and iff two finite-action field configurations have
the same label they are homotopic.

This label is conventionally called the winding number of an element of(
S3
)S3

.

4.3.2 Standard Mappings of Integer Winding Numbers
Define the following reference maps which will serve us later:

1. B (x)
(0)

:= 1

2. B (x)
(1)

:= 1
|x| (x41+ i~x · ~σ) where |x| ≡

√
(x4)

2
+ (x1)

2
+ (x2)

2
+ (x3)

2.
Observe how in this definition the group indices and the spacetime indices
are mixed.
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3. B (x)
(ν)

:=
[
B (x)

(1)
]ν

for any ν ∈ Z.

4.3.2.1 Claim

Using the homeomorphism we established between SU (2) ' S3, B (x)
(1) is

actually the identity mapping between S3 B(x)(1)→ SU (2) ' S3.

Proof Plugging in the actual Pauli matrices, we have

B (x)
(1) ≡ x4

|x|
1+ i

~x

|x|
· ~σ

=
1

|x|

[
x4 + ix3 ix1 + x2
ix1 − x2 x4 − ix3

]

Now we use the homeomorphism from S3 to SU (2) which we established
[
a
b

]
7→[

a b
−b̄ ā

]
, to write 1

|x|

[
x4 + ix3 ix1 + x2
ix1 − x2 x4 − ix3

]
7→ 1
|x|

[
x4 + ix3
ix1 + x2

]
∈ C2. Now use

the homeomorphism between C2 ' R4 to write 1
|x|

[
x4 + ix3
ix1 + x2

]
7→ 1
|x|


x4
x3
x2
x1

. So

clearly if we started in S3 we ended up in exactly the same point.
�

4.3.2.2 Claim

B (x)
(ν) ∈ SU (2)

S3

for all ν ∈ Z.

Proof

• When ν = 0 the claim is true.

• When ν = 1:

–
(

x4

|x|1+ i ~x
|x| · ~σ

)−1
= x4

|x|1−i
~x
|x| ·~σ because

(
x4

|x|1− i ~x
|x| · ~σ

)(
x4

|x|1+ i ~x
|x| · ~σ

)
=

(x4)
21+(~x~σ)2

|x|2 .

∗ But

(~x~σ)
2

=

3∑
i,j=1

xixjσiσj

=

3∑
i,j=1

xixj

(
δij1+ i

∑
k

εijkσk

)

= (~x)
2
1+ i

3∑
i,j,k=1

εijkxixjσk
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∗ εijkxixj = 0 because εijkxixj
relabelingi←→j

= εjikxjxi
xixj=xjxi

=
εjikxixj = −εijkxixj .

∗ So we have
(

x4

|x|1− i ~x
|x| · ~σ

)(
x4

|x|1+ i ~x
|x| · ~σ

)
= (x4)

21+(~x)21

|x|2 = 1.

∗ This shows that x4

|x|1+i
~x
|x| ·~σ is unitary, because

(
x4

|x|1+ i ~x
|x| · ~σ

)∗
=

x4

|x|1− i ~x
|x| · ~σ (recall that the Pauli matrices are Hermitian).

– To show that the determinant is really one:

det

(
x4
|x|

1+ i
~x

|x|
· ~σ
)

=
1

|x|2
det

([
x4 + ix3 ix1 + x2
ix1 − x2 x4 − ix3

])
=

1

|x|2
{
(x4)

2
+ (x3)

2 −
[
− (x1)

2 − (x2)
2
]}

= 1

– So we conclude that x4

|x|1+ i ~x
|x| · ~σ is a bona fide element of SU (2).

• We know that SU (2) is a group. In particular, it is closed under multipli-
cation and inverses. So B (x)

(ν) ≡
[
B (x)

(1)
]ν

must lie in SU (2) as well,
for any ν ∈ Z.

�

Note With these standard mappings we can construct finite-action field con-
figurations of arbitrary winding numbers.

4.3.3 Topological Charge
4.3.3.1 Definition

Define the Cartan-Maurer Integral Invariant,

ν [V (x)] :=
1

48π2

∫
S3

dθ1dθ2dθ3

3∑
i,j,k=1

εijk

(
V

∂

∂θi
V −1, V

(
∂

∂θj
V −1

)
V

∂

∂θk
V −1

)

∀V (x) ∈ SU (2)
S3

where θ1, θ2 and θ3 are angles that parametrize S3 and ( , )
is the Cartan inner product.

4.3.3.2 Claim

The definition does not depend on a particular choice of parametrization

Proof Follows directly from the fact that εijk
∂θ′

l

∂θi

∂θ′
m

∂θj

∂θ′
n

∂θk
= det

(
∂θ′

∂θ

)
εlmn.

�

4.3.3.3 Example

In particular, for the representation we chose of SU (2) we have:

ν [V (x)] = − 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
(
V
(
∂iV

−1)V (∂jV −1)V ∂kV −1)
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4.3.3.4 Claim

ν [V (x)] = ν
[
Ṽ (x)

]
if V (x) is homotopic to Ṽ (x).

Proof Suffice to show that ν [V (x)] is invariant under infinitesimal deforma-
tions to V (x), because we can build continuous deformations from infinitesimal
deformations.

• If V (x) = exp (iλa (x)T a), then δV = V δλa (x)T a ≡ V δT .

• Then

δ
(
V ∂iV

−1) = (δV ) ∂iV
−1 + V ∂i

(
δV −1

)
= V (δT ) ∂iV

−1 + V ∂i
(
−δTV −1

)
= −V (∂iδT )V

−1

.

• Because all three derivatives in ν [V (x)] make an equal contribution, we
find that

ν [δV ] ∝
∫
S3

dθ1dθ2dθ3ε
ijk
(
V ∂iV

−1, V
(
∂jV

−1)V (∂kδT )V
−1)

∝
∫
S3

dθ1dθ2dθ3ε
ijk
(
∂iV

−1, − (∂jV ) (∂kδT )
)

• If we make partial integration we get a term symmetric in ik or jk, and
together with εijk, ν [δV ] = 0.

�

4.3.3.5 Claim

ν
[
B (x)

(1)
]
= 1

Proof

• Because the trace is cyclic, we have

εijktr
(
V
(
∂iV

−1)V (∂jV −1)V ∂kV −1) = 3tr
[
V
(
∂1V

−1)V (∂2V −1)V ∂3V −1]
−3tr

[
V
(
∂1V

−1)V (∂3V −1)V ∂2V −1]

• We introduce the following parametrization of S3:


x4
x3
x2
x1

 =


cos (θ1)

sin (θ1) cos (θ2)
sin (θ1) sin (θ2) sin (θ3)
sin (θ1) sin (θ2) cos (θ3)


where {θ1, θ2} ⊂ [0, π] and θ3 ∈ [0, 2π). For brevity introduce the follow-
ing notation: sj := sin (θj) and cj := cos (θj) for all j ∈ {1, 2, 3}. So we

have


x4
x3
x2
x1

 =


c1
s1c2
s1s2s3
s1s2c3
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• Then

B (θ1, θ2, θ3)
(1) ≡ x4

|x|
1+ i

~x

|x|
· ~σ

= (c11+ is1s2c3σ1 + s1s2s3σ2 + s1c2σ3)

=

[
c1 + is1c2 is1s2c3 + s1s2s3

is1s2c3 − s1s2s3 c1 − is1c2

]
• Thus[

B (θ1, θ2, θ3)
(1)
]−1

= (c11− is1s2c3σ1 − s1s2s3σ2 − s1c2σ3)

• Compute the derivatives:

– For θ1:

∂θ1

{[
B (θ1, θ2, θ3)

(1)
]−1}

=

[
−s1 − ic1c2 −ic1s2c3 − c1s2s3

−ic1s2c3 + c1s2s3 −s1 + ic1c2

]
– For θ2:

∂θ2

{[
B (θ1, θ2, θ3)

(1)
]−1}

=

[
is1s2 −is1c2c3 − s1c2s3

−is1c2c3 + s1c2s3 −is1s2

]
– For θ3:

∂θ3

{[
B (θ1, θ2, θ3)

(1)
]−1}

=

[
0 −s1s2c3 + is1s2s3

s1s2c3 + is1s2s3 0

]
• Thus for the first term:

B(1)∂θ1

[
B(1)

]−1
=

[
c1 + is1c2 is1s2c3 + s1s2s3

is1s2c3 − s1s2s3 c1 − is1c2

] [
−s1 − ic1c2 −ic1s2c3 − c1s2s3

−ic1s2c3 + c1s2s3 −s1 + ic1c2

]
=

[
−ic2 s2 (−ic3 − s3)

s2 (−ic3 + s3) ic2

]
• For the second term:

B(1)∂θ2

[
B(1)

]−1
=

[
c1 + is1c2 is1s2c3 + s1s2s3

is1s2c3 − s1s2s3 c1 − is1c2

] [
is1s2 −is1c2c3 − s1c2s3

−is1c2c3 + s1c2s3 −is1s2

]
=

[
ic1s1s2 s1 (s1 − ic1c2) (c3 − is3)

−s1 (s1 + ic1c2) (c3 + is3) −ic1s1s2

]
• For the third term:

B(1)∂θ3

[
B(1)

]−1
=

[
c1 + is1c2 is1s2c3 + s1s2s3

is1s2c3 − s1s2s3 c1 − is1c2

] [
0 −s1s2c3 + is1s2s3

s1s2c3 + is1s2s3 0

]
=

[
i (s1)

2
(s2)

2 −s1s2 (is1c2 + c1) (c3 − is3)

s1s2 (−is1c2 + c1) (c3 + is3) −i (s1)2 (s2)2
]
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• So we find

B(1)

(
∂θ1

[
B(1)

]−1)
B(1)

(
∂θ2

[
B(1)

]−1)
B(1)∂θ3

[
B(1)

]−1
=

[
− (s1)

2
s2 0

0 − (s1)
2
s2

]

which has a trace of −2 (s1)
2
s2.

• and

B(1)

(
∂θ1

[
B(1)

]−1)
B(1)

(
∂θ3

[
B(1)

]−1)
B(1)∂θ2

[
B(1)

]−1
=

[
(s1)

2
s2 0

0 (s1)
2
s2

]

which has a trace of 2 (s1)
2
s2.

• Thus all together we find that the integrand is equal to 3×
[
−2 (s1)

2
s2

]
−

3×
[
2 (s1)

2
s2

]
= −12 (s1)

2
s2.

• Plugging this into the Cartan-Maurer integral we find:

ν
[
B (θ1, θ2, θ3)

(1)
]

= − 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3

[
−12 (s1)

2
s2

]
=

1

2π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3 [sin (θ1)]
2
sin (θ2)

= 1

�

4.3.3.6 Claim

ν [U (x)V (x)] = ν [U (x)] + ν [V (x)] for any {U (x) , V (x)} ⊂ GS3

.
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Proof Plugging into the formula the product we have:

ν [UV ] = − 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
(
UV

(
∂i (UV )

−1
)
UV

(
∂j (UV )

−1
)
UV ∂k (UV )

−1
)

= − 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
(
V
(
∂iV

−1)V (∂jV −1)V (∂kV −1))
− 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
(
UV

(
∂iV

−1)V (∂jV −1) (∂kU−1))
− 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
(
V
(
∂iV

−1) (∂jU−1)UV (∂kV −1))
− 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
(
UV

(
∂iV

−1) (∂jU−1)U (∂kU−1))
− 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
((
∂iU

−1)UV (∂jV −1)V (∂kV −1))
− 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
(
U
(
∂iU

−1)UV ((∂jV −1)) (∂kU−1))
− 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
((
∂iU

−1)U (∂jU−1)UV ((∂kV −1)))
− 1

24π2

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
(
U
(
∂iU

−1)U (∂jU−1)U (∂kU−1))
= ν [V ] + ν [U ] + remainder

The remainder is zero (using cyclicity of the trace and the fact we are summing
on εijk, so ijk = jki etc.):

traced remainder = −U (∂iV )
(
∂jV

−1) (∂kU−1)
−U (∂kV )

(
∂iV

−1) (∂jU−1)
−U (∂jV )

(
∂kV

−1) (∂iU−1)
−V

(
∂iV

−1) (∂jU−1) ∂kU
−V

(
∂jV

−1) (∂kU−1) ∂iU
−V

(
∂kV

−1) (∂iU−1) ∂jU
= −3U (∂iV )

(
∂jV

−1) ∂kU−1 − 3V
(
∂iV

−1) (∂jU−1) ∂kU
= −3U (∂iV )

(
∂jV

−1) ∂kU−1 − 3V
(
∂jV

−1) (∂kU−1) ∂iU
−3U (∂iV )

(
∂jV

−1) ∂kU−1 − 3 (∂iU)V
(
∂jV

−1) (∂kU−1)
ij/ik symmetric terms vanish

= −3∂i
[
UV

(
∂jV

−1) ∂kU−1]
Integrating this and using the fundamental theorem of calculus, we cancel the
derivative with the integral and get the difference of UV

(
∂jV

−1) ∂kU−1 between
the two end points of the range of θi. Because we expect UV

(
∂jV

−1) ∂kU−1
to be continuous, the value on the two endpoints must be exactly the same and
we get all together zero.
�
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Conclusion Then we have ν
[
B (x)

(n)
]
= n ∀n ∈ Z. This follows from the

fact that the winding number of a constant map is clearly zero, so 0 = ν [1] =

ν
[(
B(1)

)−1
B(1)

]
≡ ν

[
B(−1)B(1)

]
= ν

[
B(−1)] + ν

[
B(1)

]
so ν

[
B(−1)] = −1.

Then we can get all the other integers using the above formula.

4.3.3.7 Claim

B (x)
(n1) is homotopic to B (x)

(n2) iff n1 = n2.

Proof

• =⇒

– We assume that B (x)
(n1) is homotopic to B (x)

(n2).

– We have shown that the Cartan-Maurer integral invariant is stable
under homotopies, so ν

[
B (x)

(n1)
]
= ν

[
B (x)

(n2)
]
.

– But we have just proved before that ν
[
B (x)

(n)
]
= n∀n ∈ Z, thus it

follows that n1 = n2.

• ⇐=

– Because n1 = n2 we have that ν
[
B (x)

(n1)
]
= ν

[
B (x)

(n2)
]
.

– But ν is stable under homotopies, so that means that B (x)
(n1) must

be homotopic to B (x)
(n2).

�

4.3.3.8 Claim

∀V (x) ∈ SU (2)
S3

∃n ∈ Z such that B (x)
(n) is homotopic to V (x).

Proof Define n := ν [V (x)] ∈ Z. Then by construction B (x)
(n) is homotopic

to V (x), as they have the same winding number.
�

4.3.3.9 Claim

ν [V (x)] = 1
32π2

∫
R4 d

4x
(
F, F̃

)
where F̃µν ≡ 1

2εµνλσFλσ is the Hodge dual of
Fµν , and F is a field strength associated with some field configuration such that
at r → ∞, Aµ = V ∂µV

−1.

Note This formula is important because it gives us a way to compute the
winding number of a field configuration rather than of a gauge group element
which corresponds to a pure gauge field configuration. With this formula at
hand, we can compute the winding number for any field configuration. For
finite action field configurations, we are guaranteed the result would be some
integer.
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Proof

• DefineGµ := 2εµνλσ
(
Aν , ∂λAσ + 2

3AλAσ

)
, conventionally called the Chern-

Simons current.

• Note that we can also write Gµ = εµνλσ (Aν , Fλσ)− 2
3εµνλσ (Aν , AλAσ).

To see this:

εµνλσ

(
Fλσ − 2

3
AλAσ

)
= εµνλσ

(
Aσ, λ −Aλ, σ −AσAλ +

1

3
AλAσ

)
εµνλσ is A.S.

= εµνλσ

(
Aσ, λ +Aσ, λ +AλAσ +

1

3
AλAσ

)
= εµνλσ

(
2Aσ, λ +

4

3
AλAσ

)
– If we calculate ∂µGµ we would obtain ∂µGµ =

(
Fµν , F̃µν

)
:

∂µGµ = 2εµνλσ∂µ

(
Aν , ∂λAσ +

2

3
AλAσ

)
= −4εµνλσ∂µtr

(
Aν∂λAσ +

2

3
AνAλAσ

)
= −4εµνλσtr

[
∂µ (Aν∂λAσ) +

2

3
∂µ (AνAλAσ)

]

= −4εµνλσtr

(∂µAν) ∂λAσ + ∂µλAσ︸ ︷︷ ︸
zero


−8

3
εµνλσtr [(∂µAν)AλAσ +Aν (∂µAλ)Aσ +AνAλ∂µAσ]

trace is cyclic
= −4εµνλσtr [(∂µAν) ∂λAσ]

−8

3
εµνλσtr [(∂µAν)AλAσ + (∂µAλ)AσAν + (∂µAσ)AνAλ]

= −4εµνλσtr [(∂µAν) ∂λAσ]− 8εµνλσtr [(∂µAν)AλAσ]

= 2εµνλσ [(Aν, µ, Aσ, λ) + 2 (Aν, µ, AλAσ)]

= 2εµνλσ [(Aν, µ, Aσ, λ) + (Aν, µ, AλAσ) + (AµAν , Aσ, λ)]

= 2εµνλσ

(Aν, µ, Aσ, λ) + (Aν, µ, AλAσ) + (AµAν , Aσ, λ) + (AµAν , AλAσ)︸ ︷︷ ︸
zero by cycl.


= 2εµνλσ (Aν, µ +AµAν , Aσ, λ +AλAσ)

=
1

2
εµνλσ (Aν, µ −Aµ, ν +AµAν −AνAµ, Aσ, λ −Aλ, σ +AλAσ −AσAλ)

=
1

2
εµνλσ (Fµν , Fλσ)

=
(
Fµν , F̃µν

)
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• Finally we have∫
R4

d4x
(
F, F̃

)
=

∫
R4

d4x∂µGµ

Stokes’
=

∫
S3 at infinity

d3Sr̂µGµ

=

∫
S3

d3Sr̂µ

[
εµνλσ (Aν , Fλσ)−

2

3
εµνλσ (Aν , AλAσ)

]
=

∫
S3

d3Sr̂µ [εµνλσ (Aν , Fλσ)]︸ ︷︷ ︸
F→0 as r→∞ so this term is 0

−2

3

∫
S3

d3Sr̂µεµνλσ (Aν , AλAσ)

• Because the last term is evaluated at r → ∞, we can safely assume that
A is a pure gauge field configuration. Assume V ∈ GS3

is the element
associated with A: Aµ = V ∂µV

−1. So we have:∫
R4

d4x
(
F, F̃

)
= −2

3

∫
S3

d3Sr̂µεµνλσ
(
V
(
∂νV

−1) , V (∂λV −1)V (∂σV −1))
...

=
2

3

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijk
(
V
(
∂iV

−1) , V (∂jV −1)V ∂kV −1)
= −4

3

∫ π

0

dθ1

∫ π

0

dθ2

∫ 2π

0

dθ3εijktr
(
V
(
∂iV

−1)V (∂jV −1)V ∂kV −1)
= 32π2ν [V ]

�

4.3.4 The Bogomol’nyi Bound and (anti-) Self Dual Field
Strengths

4.3.4.1 Claim

S [Aµ] ≥ 8π2

g2 |ν [Aµ]| and equality is obtained when Fµν = ±F̃µν .

Proof 1

• F̃µν F̃µν = 1
4Fρλ

1
2Fρ′λ′ 2! 2! δρλρ′λ′ = FµνFµν

•
∫
d4x (Fµν , Fµν) =

{∫
d4x (Fµν , Fµν)

∫
d4x

(
F̃µν , F̃µν

)} 1
2

• But by the Schwartz inequality,
∣∣∣∫ d4x(Fµν , F̃µν

)∣∣∣2 ≤
∫
d4x (Fµν , Fµν)

∫
d4x

(
F̃µν , F̃µν

)
.

• So we have that
∫
d4x (Fµν , Fµν) ≥

∣∣∣∫ d4xTr (Fµν , F̃µν

)∣∣∣
• Thus 4g2S [Aµ] ≥ 32π2 |ν [Aµ]|.

• The Schwartz inequality is an equality iff Fµν = ±F̃µν .

�
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Proof 2

• We have

S [Aµ] ≡ 1

4g2

∫
R4

d4x (Fµν , Fµν)

≡ −2
1

4g2

∫
R4

d4x tr [FµνFµν ]

= −2
1

4g2

∫
R4

d4x tr

[
±Fµν F̃µν +

1

2
FµνFµν +

1

2
F̃µν F̃µν ∓ Fµν F̃µν

]
= −2

1

4g2

∫
R4

d4x tr

[
±Fµν F̃µν +

1

2

(
Fµν ∓ F̃µν

)2]
= ± 1

4g2

∫
R4

d4x
(
Fµν , F̃µν

)
− 1

8g2

∫
R4

d4x tr

[(
Fµν ∓ F̃µν

)2]
= ±8π2

g2
ν [Aµ]−

1

4g2

∫
R4

d4x tr

[(
Fµν ∓ F̃µν

)2]

• So when F = F̃ we have the extremal value of the action as 8π2

g2 ν [Aµ],

and when F = −F̃ we have the extremal value as − 8π2

g2 ν [Aµ].

�

4.3.4.2 Conclusion

We conclude that if we found such field configurations for which Fµν = ±F̃µν ,
they would actually solve the equations of motion, because such configurations
indeed extremize the action. This is good because this equation is a first order
differential equation compared with the second order EoM. We also know what is

the value of the action when it is minimal: S0 :=
8π2

g2
(for nontrivial solutions).

4.4 The BPST Instanton
In 1975 Belavin, Polyakov, Schwarz and Tyupkin suggested the following solu-
tion to the (anti-) self-dual field strength equation in [3].

4.4.0.3 Claim

The following family of field strengths, parametrized by ρ ∈ R:

Aµ =
|x|2

|x|2 + ρ2
B (x)

(1)
∂µ

{[
B (x)

(1)
]−1}

whereB (x)
(1) ∈ SU (2)

R4

is as defined above, fulfill the anti-self-dual condition.

49



Notes

• This solution is called the BPST instanton (of winding number 1).

• Since [3] has been published, solutions of higher winding number to the
self-dual equation have been found, but they are not so useful in finding the
vacua structure as explained in the discussion of the periodic well detailing
the difference between 5 single-instantons versus one 5-instanton. Further
discussion can be found in [4].

• ρ is called the size of the instanton. The existence of solutions of arbitrary
sizes is a necessary consequence of the scale invariance of the classical field
theory.

• Anti-instanton is obtained by replacing B (x)
(1) with B (x)

(−1). The anti-
instanton will fulfill the self-dual condition whereas the instanton fulfills
the self-dual condition.

• Observe how in the limit |x| → ∞, this solution is indeed a pure gauge,
and as we computed already (using the formula for the winding number
in terms of F (which is in turn given in terms of A)), its winding number
is thus exactly 1.

• We shall denote these solutions as Ainst, ρ, µ (x).

• We can also define a shifted instanton asAinst, ρ, x0, µ (x) := Ainst, ρ, µ (x− x0)
which we can think of as merely having a “center” in spacetime at x0 in-
stead of 0.

Proof

• For a 4×4 anti-symmetric tensor, the self-dual condition can be formulated
as three conditions:

– For the 01 component we have

F01 =
1

2
ε01µνFµν

=
1

2
ε0123F23 +

1

2
ε0132F32

= F23

– For the 02 component we have F02 = −F13

– For the 03 component we have F03 = F12

– All other conditions are redundant due to anti-symmetry of F , so all
in all, in order to verify that Fµν is self-dual, we must make sure that
the following condition holds:

F01 = F23

F02 = −F13

F03 = F12
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– Note: this means that a self-dual 4 × 4 anti-symmetric tensor has
merely 3 real parameters.

• We compute Fµν step by the step:

– Define fρ (r) := 2
r+ρ2 ∀r ∈ R.

– Note that 2f ′ρ (r) + [fρ (r)]
2
= 0:

2f ′ρ (r) + [fρ (r)]
2

= 2 (−1)
2

(r + ρ2)
2 +

4

(r + ρ2)
2 = 0

– Define sµ :=

[
1

−i~σ

]
.

– Then B (x)
(1)

= x̂µs
†
µ and

[
B (x)

(1)
]−1

= x̂µsµ.

– And so we may write the BPST instanton asAµ = fρ

(
|x|2
)

1
2 |x|

2
x̂αs

†
α∂µ [x̂βsβ ].

– Observe that ∂µx̂ν = 1
|x| (δµν − x̂µx̂ν).

– So the BPST instanton is

Aµ = fρ

(
|x|2
) 1

2
|x|2 x̂αs†α∂µ [x̂βsβ ]

= fρ

(
|x|2
) 1

2
|x|2 x̂αs†αsβ

1

|x|
(δµβ − x̂µx̂β)

= fρ

(
|x|2
) 1

2
|x|
(
x̂αs

†
αsµ − x̂αx̂µx̂βs

†
αsβ
)

– Define sµν := 1
4i

(
sµs
†
ν − sνs

†
µ

)
and s̄µν := 1

4i

(
s†µsν − s†νsµ

)
. These

are closely related to SO (4) and also to the ’t Hooft symbols, as we
shall see.

∗ Note that these objects are anti-symmetric:
· sνµ = 1

4i

(
sνs
†
µ − sµs

†
ν

)
= −sµν

· s̄νµ = 1
4i

(
s†νsµ − s†µsν

)
= −s̄µν

∗ Note that s̄µν = (−1)
δ0µ+δ0ν sµν :

· When µ = 0 and ν 6= 0, s̄0ν = 1
4i

(
s†0sν − s†νs0

)
= 1

4i (−iσν − iσν) =

− 1
4i

(
s0s
†
ν − sνs

†
0

)
= −s0ν .

· When µ 6= 0 and ν = 0, s̄µ0 = −s̄0µ = +s0µ = −sµ0.
· When µ 6= 0 and ν 6= 0, s̄µν = 1

4i

(
s†µsν − s†νsµ

)
= 1

4i

(
sµs
†
ν − sνs

†
µ

)
=

sµν .
∗ Note that s is self dual:

51



· First condition for s:

s01 ≡ 1

4i

(
s0s
†
1 − s1s

†
0

)
=

1

4i

(
1iσ1 − (−iσ1)1†

)
=

1

2
σ1

=
1

4i
[σ2, σ3]

=
1

4i
((−iσ2) iσ3 − (−iσ3) iσ2)

=
1

4i

(
s2s
†
3 − s3s

†
2

)
≡ s23

· Second condition for s:

s02 ≡ 1

4i

(
s0s
†
2 − s2s

†
0

)
=

1

4i

(
1iσ2 − (−iσ2)1†

)
=

1

2
σ2

= − 1

4i
[σ1, σ3]

= − 1

4i
((−iσ1) iσ3 − (−iσ3) iσ1)

= − 1

4i

(
s1s
†
3 − s3s

†
1

)
≡ −s13

· Third condition for s:

s03 ≡ 1

4i

(
s0s
†
3 − s3s

†
0

)
=

1

4i

(
1iσ3 − (−iσ3)1†

)
=

1

2
σ3

=
1

4i
[σ1, σ2]

=
1

4i
((−iσ1) iσ2 − (−iσ1) iσ2)

=
1

4i

(
s1s
†
2 − s1s

†
2

)
≡ s12

∗ and s̄ is anti-self-dual:
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· First condition for s̄:

s̄01 ≡ 1

4i

(
s†0s1 − s†1s0

)
=

1

4i

(
1† (−iσ1)− (iσ1)1

)
= −1

2
σ1

= − 1

4i
[σ2, σ3]

= − 1

4i
(iσ2 (−iσ3)− iσ3 (−iσ2))

= − 1

4i

(
s†2s3 − s†3s2

)
≡ −s̄23

· Second condition for s̄:

s̄02 ≡ 1

4i

(
s†0s2 − s†2s0

)
=

1

4i

(
1† (−iσ2)− (iσ2)1

)
= −1

2
σ2

=
1

4i
[σ1, σ3]

=
1

4i
(iσ1 (−iσ3)− iσ3 (−iσ1))

=
1

4i

(
s†1s3 − s†3s1

)
≡ s̄13

· Third condition for s̄:

s̄03 ≡ 1

4i

(
s†0s3 − s†3s0

)
=

1

4i

(
1† (−iσ3)− (iσ3)1

)
= −1

2
σ3

= − 1

4i
[σ1, σ2]

= − 1

4i
(iσ1 (−iσ2)− iσ1 (−iσ2))

= − 1

4i

(
s†1s2 − s†1s2

)
≡ −s̄12

∗ Note that sµs†ν = δµν1+ 2isµν :
1. sµs†µ = 1 because if µ 6= 0 then σ2

i = 1, for all µ ∈ {0, 1, 2, 3}.

2. s0s
†
j = iσj = 1

2 (iσj + iσj) =
1
2

(
s0s
†
j − sjs

†
0

)
= 2is0j for all

j ∈ {1, 2, 3}.
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3. sjs
†
0 = −iσj = 1

2 (−iσj − iσj) =
1
2

(
sjs
†
0 − s0s

†
j

)
= 2isj0 for

all j ∈ {1, 2, 3}.
4. sis

†
j = σiσj = iεijkσk = 1

2 (εijk − εjik)σk = 1
2 (σiσj − σjσi) =

1
2

(
sis
†
j − sjs

†
i

)
= 2isij for all {i, j} ⊂ {1, 2, 3} such that

i 6= j.
∗ and that s†µsν = δµν1+ 2is̄µν :

1. s†µsµ = 1 because if µ 6= 0 then σ2
i = 1, for all µ ∈ {0, 1, 2, 3}.

2. s†0sj = −iσj = 1
2 (−iσj − iσj) =

1
2

(
s†0sj − s†js0

)
= 2is̄0j for

all j ∈ {1, 2, 3}.
3. s†js0 = iσj = 1

2 (iσj + iσj) =
1
2

(
s†js0 − s†0sj

)
= 2is̄j0 for all

j ∈ {1, 2, 3}.
4. s†isj = σiσj = 1

2 (σiσj − σjσi) = 1
2

(
s†isj − s†jsi

)
= 2is̄ijfor

all {i, j} ⊂ {1, 2, 3} such that i 6= j.

∗ Similarly we find that sµsν = δµν1− 2is̄µν (−1)
δµ0 :

1. sµsµ = 1 because if µ 6= 0 then σ2
i = 1, for all µ ∈ {0, 1, 2, 3}.

2. s0sj = −iσj = 1
2 (−iσj − iσj) =

1
2

(
s†0sj − s†js0

)
= 2is̄0j for

all j ∈ {1, 2, 3}.
3. sjs0 = −iσj = − 1

2 (iσj + iσj) = − 1
2

(
s†js0 − s†0sj

)
= −2is̄j0

for all j ∈ {1, 2, 3}.
4. sisj = −σiσj = − 1

2 (σiσj − σjσi) = − 1
2

(
s†isj − s†jsi

)
=

−2is̄ij for all {i, j} ⊂ {1, 2, 3} such that i 6= j.

∗ and that s†µs†ν = δµν1− 2isµν (−1)
δµ0 :

1. sµsµ = 1 because if µ 6= 0 then σ2
i = 1, for all µ ∈ {0, 1, 2, 3}.

2. s†0s
†
j = iσj = 1

2 (iσj + iσj) =
1
2

(
s0s
†
j − sjs

†
0

)
= 2is0j for all

j ∈ {1, 2, 3}.
3. s†js

†
0 = iσj = − 1

2 (−iσj − iσj) = − 1
2

(
sjs
†
0 − s0s

†
j

)
= −2isj0

for all j ∈ {1, 2, 3}.
4. s†is

†
j = −σiσj = − 1

2 (σiσj − σjσi) = − 1
2

(
sis
†
j − sjs

†
i

)
=

−2isij for all {i, j} ⊂ {1, 2, 3} such that i 6= j.

∗ Finally we claim that sµν =
∑3

a=1
1
2ηaµνσa for all {µ, ν} ⊂

{0, 1, 2, 3} where ηaµν is the ’t Hooft symbol, defined as ηaµν ≡
δµ0δνa − δν0δµa + ε0aµν :

1

2
ηaµνσa =

1

2
(δµ0δνa − δν0δµa + ε0aµν)σa

=
1

2
(δµ0σν − δν0σµ + ε0aµνσa)

· If µ = ν we get 0, which is good as s00 = 0.

· If µ = 0 and ν 6= 0 we get 1
2σν = 1

4i (iσν + iσν) =
1
4i

(
s0s
†
ν − sνs

†
0

)
=

s0ν
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· If µ 6= 0 and ν = 0 we get − 1
2σµ = −s0µ = sµ0.

· If µ 6= 0 and ν 6= 0 and µ 6= ν we get 1
2ε0aµνσa = 1

2iσµσν =
sµν .

– Using s and s̄ we find that the BPST instanton is equal to:

Aµ = fρ

(
|x|2
) 1

2
|x|
(
x̂αs

†
αsµ − x̂αx̂µx̂βs

†
αsβ
)

= fρ

(
|x|2
) 1

2
|x| (x̂α (δαµ1+ 2is̄αµ)− x̂αx̂µx̂β (δαβ1+ 2is̄αβ))

= fρ

(
|x|2
) 1

2
|x|

2ix̂αs̄αµ − 2ix̂µ x̂αx̂β s̄αβ︸ ︷︷ ︸
0 by anti-symmetry


= fρ

(
|x|2
)
ixαs̄αµ

– Then

∂µAν = ∂µ

[
fρ

(
|x|2
)
xαis̄αν

]
= f ′ρ

(
|x|2
)(

∂µ |x|2
)
xαis̄αν + fρ

(
|x|2
)
is̄µν

= 2f ′ρ

(
|x|2
)
xµxαis̄αν + fρ

(
|x|2
)
is̄µν

=
[
2f ′ρ

(
|x|2
)
xµxα + fρ

(
|x|2
)
δαµ

]
is̄αν

• Thus we find:

Fµν ≡ ∂µAν − ∂νAµ +AµAν −AνAµ

=
[
2f ′ρ

(
|x|2
)
xµxα + fρ

(
|x|2
)
δαµ

]
is̄αν

−
[
2f ′ρ

(
|x|2
)
xνxα + fρ

(
|x|2
)
δαν

]
is̄αµ

+fρ

(
|x|2
)
ixαs̄αµfρ

(
|x|2
)
ixβ s̄βν

−fρ
(
|x|2
)
ixβ s̄βνfρ

(
|x|2
)
ixαs̄αµ

= 2f ′ρ

(
|x|2
)
2xαis̄α[νxµ]

+
[
fρ

(
|x|2
)]2

xαxβ [is̄αµ, is̄βν ]

+fρ

(
|x|2
)
2is̄µν

• Using the ’t Hooft symbols (the rules of which can be found in the appendix
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of [10]) we can easily compute the awkward commutator. First for s:

[isαµ, isβν ] = [−isαµ, −isβν ]

=
[
ηaαµ

σa
2i
, ηbβν

σb
2i

]
= −1

4
ηaαµηbβν2iεabcσc

=
1

2i
σc (εcabηaαµηbβν)

=
1

2i
σc (δαβηcµν − δανηcµβ − δµβηcαν + δµνηcαβ)

= (−iδαβsµν + iδανsµβ + iδµβsαν − iδµνsαβ)

• And so for our actual expression we have:

[is̄αµ, is̄βν ] =
[
i (−1)

δα0+δµ0 sαµ, i (−1)
δβ0+δν0 sβν

]
(−1)

δα0+δµ0+δβ0+δν0 [isαµ, isβν ]

= (−1)
δα0+δµ0+δβ0+δν0 (−iδαβsµν + iδανsµβ + iδµβsαν − iδµνsαβ)

= −i (−1)
δα0+δβ0 δαβ s̄µν + i (−1)

δα0+δν0 δαν s̄µβ

+i (−1)
δµ0+δβ0 δµβ s̄αν − i (−1)

δµ0+δν0 δµνsαβ

• When we sum these with xαxβ we get:

xαxβ [is̄αµ, is̄βν ] = −i |x|2 s̄µν + ixνxβ s̄µβ + xαxµis̄αν

= −i |x|2 s̄µν − i2xαs̄α[µxν]

• So we find that the field strength tensor is:

Fµν = 2f ′ρ

(
|x|2
)
2xαis̄α[νxµ] + fρ

(
|x|2
)
2is̄µν

+
[
fρ

(
|x|2
)]2 (

−i |x|2 s̄µν − i2xαs̄α[µxν]

)
= 2ixαs̄α[νxµ]

[
2f ′ρ

(
|x|2
)
+
[
fρ

(
|x|2
)]2]

︸ ︷︷ ︸
zero

−is̄µν
[
|x|2

[
fρ

(
|x|2
)]2

− 2fρ

(
|x|2
)]

= −is̄µν

|x|2( 2

|x|2 + ρ2

)2

− 2
2

r + ρ2


= 4i

ρ2(
|x|2 + ρ2

)2 s̄µν
• In conclusion, we found that Fµν has the same tensor structure as s̄µν ,

which we proved earlier is anti-self-dual, and so, we have just proven that
Fµν = −F̃µν .

�
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4.4.1 Collective Coordinates
In the double well, we had one “collective coordinate”, T , a parameter of the in-
stanton solution which the action was invariant under. It was crucial to identify
that coordinate in order to compute the path integral. In our case, there are 8
different collective coordinates for the instanton solutions we have just found.

4.4.1.1 Claim

S [Ainst, ρ1, µ] = S [Ainst, ρ2, µ] (scale invariance). This gives us 1 collective co-
ordinate.

Note The classical Yang-Mills Lagrangian is scale-invariant, as @ a dimension-
ful parameter.

Proof The minimal action which we found, S0 := 8π2

g2 , is independent of ρ. �

4.4.1.2 Claim

S [Ainst, ρ, x0, µ] = S [Ainst, ρ, µ] for all x0 ∈ R4 (translation invariance). This
gives us 4 collective coordinates.

Proof Any volume integral must be translation invariant. �

4.4.1.3 Claim

The action is invariant a global SU (2) gauge transformation on Ainst, ρ, x0 µ.
This gives us 3 collective coordinates (as many as there are generators of SU (2)).

Proof If we perform a global constant transformation on Ainst, ρ, x0 µ we would
get: Ainst, ρ, x0 µ 7→ V Ainst, ρ, x0 µV

−1+ V ∂µV
−1︸ ︷︷ ︸

0 because V is const.

, where V ∈ SU (2).

Taking any other element, U ∈ SU (2), because Ainst, ρ, x0 µ is asymptotically a
pure gauge, we may also write:

V Aµ (x)V
−1 = fρ

(
|x|2
) 1

2
|x|2 V B (x)

(1)
∂µ

[
B (x)

(1)
]−1

V −1

= fρ

(
|x|2
) 1

2
|x|2 V B (x)

(1)
U−1∂µ

[
V B (x)

(1)
U−1

]−1
And so we see that really what we have by this constant gauge transformation
of V on A is B (x)

(1) 7→ V B (x)
(1)

U−1.
Now, due to the isomorphism between SO (4) ' SU (2) ⊗ SU (2), under

a general rotation of the instanton, we have B (x)
(1) 7→ V B (x)

(1)
U−1 where

{V, U} ⊂ SU (2) and are determined by the particular rotation of R4 we pick.
So we could pick exactly the right rotation of Λ ∈ SO (4) so that B (Λx)

(1)
=

V B (x)
(1)

U−1, and thus, effectively, by redefining our chart on R4 undo this
constant gauge transformation, and get back Ainst, ρ, x0 µ.
�
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4.4.1.4 Claim

@ other invariants for the action (via an index theorem by Atiyah, Ward in [1]
which determines the dimension of the modulo space of SU (2) as exactly 8).

4.4.1.5 Conclusion

As before, we would need to integrate over these coordinates directly, when
computing the contribution of these solutions to the path integral.

4.5 Finding the Vacuum

Following [4],we work in an axial gauge, in which A3
!
= 0. (Then the path-

integral formulation is equivalent to the canonical quantization, and there is no
need for ghost fields or extra conditions on the space of states.)

We work in a spacetime box of spatial volume V from time −T
2 to time

T
2 . Eventually we will send V → ∞ and T → ∞. We employ boundary
conditions on the three-dimensional boundary of the box at times ±T

2 such that
the tangential term (to the surface of the box) of Aµ is constant. Then the
surface term of δS will be zero.

This constant, however, is not arbitrary. It must obey the following condi-
tions to maintain consistency:

1. A3
!
= 0 gauge must be respected.

2. At infinity we should have finite-action field configurations. Since only
the tangential component of Aµ determines the winding number (...), this
means that spacetime will be filled with field configurations of a definite
winding number.

As V → ∞, the definiteness of the winding number (which follows from the
finiteness of the action) is the only specific feature that remains of the boundary
conditions. So in the path-integral we can forget about the boundary conditions
and simply add a delta function for field configurations that have a definite
integer winding number. In this way we will clearly obtain only finite action
field configurations:
P (V, T, n) := N

∫
DA1DA2DA4e

−S[Aµ]δ (n− ν [Aµ]) for some n ∈ Z.

4.5.0.6 Claim

For large T1 and T2, P (V, T1 + T2, n) =
∑

n1+n2=n P (V, T1, n1)P (V, T2, n2)

Proof Follows from the expression ν [Aµ] =
1

32π2

∫
d4x

(
F, F̃

)
, the winding

number as a local density.
�

4.5.1 The θ-Vacua
This composition law is not what we would expect from a transition matrix
element that has a contribution from only a single energy eigenstate. In order
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to get the composition law we want, e−Ei(T1+T2), we make a Fourier transform
of P (V, T, n):

P̃ (V, T, θ) :=
∑
n∈Z

einθP (V, T, n)

= N
∫

DAµe
−S[Aµ]eiν[Aµ]θ

As a result of the previous composition law now we have P̃ (V, T1 + T2, θ) =

P̃ (V, T1, θ) P̃ (V, T2, θ). So P̃ must be proportional to
〈
e−ĤT

〉
in some energy

eigenstate. We naturally label these eigenstates with θ and as before call them
the θ-vacua:

(4.1)
〈
θ
∣∣∣ e−ĤT

∣∣∣ θ〉 = N ′
∫

DAµe
−S[Aµ]eiν[Aµ]θ

The conclusion is that our theory is split into disconnected sectors labelled by θ,
each with its own vacuum. Naively, we could have obtained the same result by
merely postulating an extra term in the Lagrangian proportional to ν [Aµ] ∼∫
d4x

(
F, F̃

)
. This term was, in fact, only rejected to begin with because it

violates CP (
(
F, F̃

)
∼ ~E · ~B and ~B doesn’t change sign under P ), but otherwise

it is just as good as
∫
d4x (F, F ). In addition, we found it is a total divergence,

and so should have no effect on the EoMs. But there seems to be an effect to it
none the less, which is not classical.

4.5.2 Dilute Instanton Gas
Just as in the periodic well, we build approximate solutions which consist of n
instantons and n′ anti-instantons, where their centers x0 are integrated over.
We then sum over all such possible configurations:

〈
θ
∣∣∣ e−ĤT

∣∣∣ θ〉 ∝
∑

(n, n′)∈N2

1

n!

[(
Ke−S0

)
V T
]n 1

n′!

[(
Ke−S0

)
V T
]n′

ei
(
n−n′)θ

= exp
{
2KV Te−S0 cos (θ)

}
where S0 = 8π2

g2 , V is volume and K is some constant which can be computed
by calculating the infinite product of eigenvalues of a corresponding differential
operator (see [12]). In general K will contain an infrared “embarrassment”–a
divergence–but fortunately it only diverges when we assume our approximation
is not valid. From this we can read off the energy of |θ〉:

E (θ)

V
= −2Ke−S0 cos (θ)

Because the energy and also the vacuum expectation value depend non-trivially
on θ we must conclude that all the θ states are in fact distinct!
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4.5.3 Other Gauge Groups
4.5.3.1 Claim

Every simple Lie group contains a subgroup isomorphic to SU (2).

• For example,

a b 0
c d 0
0 0 1

 is a general element of such a subgroup of SU (3)

where
[
a b
c d

]
∈ SU (2).

4.5.3.2 Notes

∃ a theorem due to Raoul Bott saying that if G is any simple Lie group, H ≤ G
such that H ' SU (2), then any element of GS3

is homotopic with some element
of HS3

. Then we can consider the same BPST solutions we have considered
where Aµ = a ·Aµ

(H) + b ·Aµ
(G\H) and we would take b = 0.

• For example, for SU (3), which has 8 gauge fields, the following is an
instanton solution: three of the fields are just as the SU (2) instanton,
and the remaining five are zero.

• This is the only instanton solution of SU (3) with winding number 1.

• Then there would be 12, and not 8 collective coordinates (the action is
invariant under a global SU (3) transformation, so 8 coordinates instead
of the 3 of SU (2), but one of the generators commutes with SU (2), so
we are left with total of 7 collective coordinates from the global SU (3)
transformation)
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Chapter 5

The Strong CP Probelm

As we have seen, the instanton solution effectively creates a θ term proportional
to θ

∫
d4x

(
F, F̃

)
in the Lagrangian, which, if θ 6= 0, violates CP .

Using the CPT theorem we conclude that T is violated.
According to experimental measurements using the electric dipole moment

of the neutron (dn ≈ θe
m2

π

m2
n
), the amount of T violation corresponds to θ < 10−5

([14]) or even θ < 10−9. This raises a fine-tuning question, which is known as
the strong CP problem. To explain this fine tuning we need to go beyond the
standard model.

One couldn’t just throw away the instanton concept, because it does solve the
U (1) problem: The non-observation in experiments of a U (1) axial symmetry
which is expected in QCD. It was thought to come from spontaneous symmetry
breaking, but no corresponding Goldstone Boson was found. Finally it was
explained by ’t Hooft in [11] that this symmetry is anomalous and the instanton
solution fits perfectly to explain how. So we definitely need the instantons.

5.1 Peccei–Quinn theory
Following [7], ∃ three approaches to explaining the value of θ:

1. Unconventional dynamics.

2. Spontaneously broken CP .

3. An additional chiral symmetry.

Peccei employs the third approach.
This chiral symmetry can arise from assuming mu = 0 (up quark) which is

inconsistent with experimental data. But if that were the case, we could perform
a global chiral rotation ψf 7→ eiαfγ5ψf . The change in the path integral measure
introduces a term proportional to exp

{
− ig2

16π2αf

∫
d4x

(
F, F̃

)}
. So by picking

αf properly we could eliminate the θ term that comes from the instantons.
However, as has been said, when we do this, we introduce a phase to the mass
of the f Fermion, mf 7→ e−iαfmf . This could have only worked if we had one
quark which is massless.
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Alternatively the chiral symmetry can arise from an additional global U (1)
chiral symmetry, U (1)PQ. This symmetry is then to be spontaneously broken.
Its introduction into the theory replaces the static θ term in the effective La-
grangian with a dynamical CP conserving field which has come to be known as
the axion–the Goldstone Boson of the broken U (1)PQ symmetry. This symme-
try could not have been exact because the axion cannot be exactly massless.

Thus the θ-term in our Lagrangian becomes:

L =
θ

32π2

(
F, F̃

)
7→ 1

2
(∂µa) (∂

µa) +
a
M + θ

32π2

(
F, F̃

)
where a is the dynamical axion field and M is the mass scale at which it appears.
Then by an opportune shift in the axion field a 7→ a− θM we can get rid of the
θ term. If the axion is very light (∼ 1eV ), the cut-off scale at which it appears
is very low.

We can also add interaction terms for the axion with the quarks, for in-
stance, for the up quark, a term of the form −i fuM (∂µa) ūγ5γ

µu where fu is
the coupling constant for the interaction. Following the very same procedure
of chiral perturbation theory we can construct an effective Lagrangian for the
pion-axion interaction.
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