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My research focuses on answering arithmetic questions about quadratic forms,
and their connection to automorphic forms. These questions are pursued by studying
both analytic and algebraic features of the associated automorphic forms.

Completed Work

Local Properties of Quadratic Forms

Paper [Ha1] establishes an exact mass formula for orthogonal groups with re-
spect to a maximal lattice L over an arbitrary number field. This extends a result
of Shimura [Sh4] which holds over totally real number fields, and is proved by rein-
terpreting his result in terms of the Tamagawa number and computing the relevant
archimedian local factors. When a lattice is alone in its genus, this allows one to
compute the volumes of the associated symmetric space quotients Γ\Z where Z is
the symmetric space associated to the orthogonal group and Γ is the stabilizer of
L. A formula of this kind is also useful in studying self-dual lattices, which are
necessarily maximal. Using results of [Sh3], the mass of a general lattice can be
obtained from this formula by computing the appropriate group indices, though in
general this may be quite complicated.

Paper [GHY] is joint work with W. T. Gan and J. Yu in which we provide a more
conceptual proof of Shimura’s mass formulas [Sh3, Sh4, Sh5] for a maximal totally
definite quadratic/hermitian lattice L over a totally real number field F of degree
d. We observe that the stabilizer of a maximal lattice at a finite place is always a
maximal parahoric subgroup of the associated orthogonal/unitary group G, so by
[Gr] we may associate to it canonical local measures |ωv| on Gv and associate to G
a motive MG of Artin-Tate type. Using these local measures, we may construct a
Tamagawa measure µ on G(A) for which by [GrG] we know

∫
G(k)\G(

�
)

µ =
1

2ld
L(MG)τ(G),

where L(MG) denotes the L-function associated to MG evaluated at s = 0, τ(G) is
the Tamagawa number of G, and l is the absolute rank of G over F . By Bruhat-Tits
theory we may then relate this measure to the more natural measure µ′ giving the
stabilizer Stab(L) ⊂ G(A) of L volume 1, for which the mass has the correspondingly
simple expression

Mass(L) =

∫
G(k)\G(

�
)

µ′.

The local constants of proportionality relating µv and µ′
v are explicitly computed

in terms of the number of positive roots over F̄ and order over the residue field of
certain reductive quotients of both Gv and the integral model Hv defined in [Gr, §4].
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Global properties of Quadratic Forms

Paper [Ha2] describes some practical conditions for representability of a number
m by a positive definite integral quadratic form Q in n = 3 or 4 variables. This
allows one to practically compute which numbers are represented by Q, provided
that when n = 3 we restrict ourselves to numbers within a fixed square class tZ2

which is not of exceptional-type. (The restriction to m ∈ tZ2 is due to the ineffective
lower bound L(1, χt) ≥ Cεt

−ε, which is intimately related to the possible existence
of a Siegel zero for Dirichlet L-functions.)

This is proved by analyzing the theta function ΘQ(z) as a sum of an Eisenstein
series E(z) and a cusp form f(z), and computing explicit lower and upper bounds for
the growth of the Eisenstein and cuspidal coefficients respectively. While the final
results are for Q, the necessary local computations here are done (at all primes)
over a totally real number field in preparation for future work. The local factors are
understood and computed using an explicit reduction procedure, which lends itself
to quick computations.

I have also written extensive PARI/GP and Magma code implementing this
algorithm, which reduces this problem to a routine (though often lengthy) com-
putation. This is done in conjunction with the freely available program HECKE
which computes the Fourier coefficients of a basis of eigenforms [St]. As an ex-
ample of its usefulness, it is used to answer the long-standing conjecture that for
Q = x2 + 3y2 + 5z2 + 7w2 the only locally represented numbers not represented by
Q are 2 and 22. This result and the supporting code are important because they
make effective and practical (for small discriminants) a result long-known to hold
for sufficiently large m, allowing for concrete numerical applications (to [Bh] for
example).

Paper [Ha3] answers the question of representability of a number by an integral
definite ternary quadratic form Q within an exceptional-type square class tZ2. As
a consequence we describe the nature of a local-global principle based on the spinor
genus, showing that under certain circumstances there may be infinitely many num-
bers which are (locally) represented by the spinor genus of Q but are not (globally)
represented by Q itself. (This was also independently established by Schulze-Pillot
in [SP] using different methods.)

This result is also proved by analyzing ΘQ(z), however within an exceptional-
type square class tZ2, we have ΘQ(z) = E(z) +H(z) + f(z) where both H(z) and
f(z) are cuspidal but only f(z) has cuspidal Shimura lift. The main term here comes
from the sum E(z)+H(z) and its size is controlled by a certain quadratic character
ψt. By studying when the main term fails to beat the error term and using the
non-negativity of the Fourier coefficients of ΘQ(z), we obtain information about the
coefficients of the weight 2 Shimura lift g(z) := Shi(f, t). Finally, by considering
the Galois representations associated to the Hecke eigenform components of g(z),
we determine that g(z) is a sum of CM forms and pairs of sums or differences of cusp
forms and their twists by ψt. This answers a question of Schulze-Pillot [SP] about
the structure of g(z), and gives the local-global principle above when translated in
terms of f(z).
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Future Research Plans
In the following problems, we assume that the quadratic form being considered

is integer-valued and totally positive definite.

Quadratic forms representing a given set of integers

For convenience, we will say that a quadratic form which represents all positive
integers is universal. Knowledge of all universal quaternary quadratic forms with
even cross terms is essential in the proof of the 15-theorem [Con, Sch, Bh], which
states that all quadratic forms with even cross terms which represent the first 15
numbers necessarily represent all positive integers.

Using a similar approach to enumerate all quaternary quadratic forms (with
no restriction on the cross terms), Bhargava has found a list of 6,436 forms which
contains all possibly universal quaternary forms. However, contrary to the case of
the 15-theorem, the arithmetic techniques used to prove universality of those forms
only applies to about 4,000 of these possibilities. By applying the results of [Ha2], for
each of these remaining forms Q, one can determine an explicit lower bound B such
that all integers m > B are represented by Q (provided m satisfies certain easily
computable congruence conditions which ensure m is locally represented by Q). By
checking the representability of all integers m ≤ B, we can determine whether Q is
universal. In this way, we can determine which of these remaining forms is universal,
thereby establishing a version of the 15-theorem which applies to all quadratic forms
without any restriction on their cross terms.

This approach was successfully carried out in [Ha2] to show that the form Q1 =
x2+3y2+5z2+7w2 represents all integers ≥ 0 except for 2 and 22. To do this quickly,
we compute the representations of the auxilliary ternary form Q2 = x2 + 3y2 + 5z2,
and use this to check representability by Q1 by subtracting off several large values of
7x2. This idea reduces the computing time from about 73 million years to just over
an hour, most of which is spent computing representations by Q2. While there are
about 2,500 forms involved in the generalization of the 15-theorem, they all arise as
extensions of only about 20 ternary forms. By applying the idea above, it should be
practical to check the representability of the remaining forms.

The methods of [Bh] apply equally well to show that for any subset S ⊆ N there
is a finite subset Sf ⊆ S which if represented by a quadratic form Q, guarantees that
Q represents all of S. Assuming that S contains enough small numbers (e.g., the set
of primes), one can use the same procedure (as when S = N) to identify the finite
subset Sf , thus proving a version of the 15-theorem for S.

Representing integers by a quadratic form over a totally real F

In 1929 Tartakowski [T] proved by analytic methods that any given quadratic
form Q in n ≥ 5 variables represents every sufficiently large m ∈ Z ≥ 0 provided
m is represented mod D for every D (i.e., provided m is locally represented by Q).
This approach was brilliantly refined by Kloosterman [K] who was able to establish
a similar result when n = 4, however the main term in this case is slightly more
delicate and may require that m has a priori bounded divisibility at finitely many
(anisotropic) primes. By avoiding finitely many exceptional-type square classes,
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a similar result was established when n = 3 in [Du-SP]. Given these results, two
questions naturally come to mind:

Question A: Precisely how large m must be to ensure its representability by Q?

Question B: What numbers m are represented by Q when it has only 3 variables?

(When Q is a binary form the problem is purely arithmetical and so the question is
less natural from this perspective.) In [Ha2] and [Ha3] we answer these two questions
when Q is a positive definite quadratic form over Z.

Given the success of this approach over Z, it is natural to ask whether one can
extend these techniques to the ring of integers OF of a totally real number field
F . In the language of modular forms, the passage from Z to OF causes the theta
function ΘQ(z) to become a Hilbert modular form for some congruence subgroup of
SL2(OF ). Hilbert modular forms have been extensively studied, and one can hope
to apply similar techniques to extend the results of [Ha2, Ha3] to this case. The
main technical difference between the modular and Hilbert modular cases is that
the latter involves an infinite group of (totally positive) units, and that the Fourier
coefficients of a cusp form f(z) are supported on the cone of totally positive numbers
and have some transformation properties with respect to this unit group.

With this application in mind, the local computations in [Ha2] were done in the
setting of a totally real number field. The other key ingredients in our approach are:

a) The Shimura lift – This has been generalized to the Hilbert modular setting
by Shimura [Sh1, Sh2].

b) The existence of an associated Galois representation for even weight forms –
This follows from the work of Taylor, Blasius, and Rogowski [Ta1, Ta2, B–R].

c) Subconvexity estimates for Hecke eigenvalues – This has been done at the
good places by Brylinski and Labesse [Br–L].

d) Subconvexity estimates for the square-free Fourier coefficients – This was
recently done by Cogdell, Piatetski-Shapiro, and Sarnak [C–PS–S].

Given these developments, it seems quite promising that this approach will lead to
a complete answer to Question 1 when n ≥ 3, thereby resolving the analytic part
of the question posed by Hilbert in his eleventh problem. Beyond this, one can
ask more generally about representations of one quadratic form by another. This
problem has many similar features, and involves a detailed study of the associated
Siegel modular theta functions, providing an interesting avenue for future work.

Analytic properties of L-functions of classical groups

Aside from their applications to quadratic forms, automorphic forms are interest-
ing their own right. In particular, I am interested in establishing analytic properties
of L-functions associated to classical groups via certain integral representations. In
[Sh3], by a careful analysis of the doubling method, Shimura has shown (under cer-
tain assumptions) that the standard L-function of a cusp form on a unitary group is
meromorphic and can precisely characterize its possible set of poles. I am interested
in extending these methods to characterize the analyticity of other automorphic
L-functions on classical groups.
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