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In this paper we give an explicit formula for the mass of a quadratic

form in n ≥ 3 variables with respect to a maximal lattice over an arbitrary number
field k, and use this to find the mass of many  -maximal lattices. We make the minor
technical assumption that locally the determinant of the form is a unit up to a square
if n is odd. The corresponding formula for k totally real was recently computed by
Shimura [Shi].

§0 Summary

Our goal is to give an exact formula for the mass of the genus of a quadratic
form ϕ on a maximal lattice defined over an arbitrary number field k. In §2 we
explain how knowledge of the Tamagawa number of the special orthogonal group
Gϕ gives rise to a mass formula. Such a formula expresses the mass as a product
of local factors over all places v of k, so our problem is reduced to computing each
of these. For the non-archimedian places, these factors were recently computed by
Shimura [Shi]. We state his result in §3 and for completeness include a translation
between our language and his. In §4 we compute the archimedian factors, treating
separately the 3 cases: v real, ϕ definite; v real, ϕ indefinite; and v complex. To
define the factors in the last two cases, we choose a symmetric space Zv on which
Gϕv acts and a non-zeroGϕv -invariant volume form ωZ. Finally, in §5 we compute the
mass of ϕ with respect to a maximal lattice. We note that this formula agrees with
Shimura’s when k is totally real. In §6 we conclude by using the local similitude
groups to show that this agrees with the mass of many genera of a-maximal lattices.
Our results depend on several technical lemmas which we include as an appendix.

§1 Introduction

We begin with a quadratic space (V, ϕ) over an algebraic number field k. By
this we mean a k-vector space V together with a non-degenerate quadratic form
ϕ : V −→ k. Let Ok denote the ring of integers of k and let Ov denote the local
ring of integers at each place v of k. We consider (V, ϕ) as well as its localizations
(Vv , ϕv) given by linear extension of scalars to kv . Given a lattice Λ ⊂ (V, ϕ), we
have the associated local lattice Λp = Λ⊗Ok

Op ⊂ (Vp, ϕp) at each non-archimedian
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place p of k. We occasionally write (Λ, ϕ) for the restriction of the form ϕ to Λ,
and (Λp, ϕp) for the restriction of ϕp to Λp.

With (V, ϕ) as above, we let Gϕ = G(ϕ) be the special orthogonal group of (V, ϕ)
by which we mean the group of determinant 1 invertible linear transformations of
V preserving ϕ. We also define Gϕv to be the special orthogonal group of (Vv , ϕv).
Then we have a natural Gϕ-action on (V, ϕ), and a natural Gϕv -action on (Vv , ϕv).
We say that two lattices Λ,Λ′ ⊆ (V, ϕ) are globally equivalent if there exists
g ∈ Gϕ such that Λ′ = gΛ, and locally equivalent if for each non-archimedian
place v, there exists gv ∈ Gϕv such that Λ′

v = gvΛv. We define the genus of (Λ, ϕ)
to be the set of all lattices locally equivalent to (Λ, ϕ), and say that the classes of
(Λ, ϕ) are the global equivalence classes of (Λ, ϕ) in its genus.

Let Gϕ
A

be the adelization of Gϕ, and let Gϕa and Gϕ
h

be the product of Gϕv over
the archimedian and non-archimedian places respectively. Then there is a natural
Gϕ

A
-action on the space of lattices Λ ⊆ (V, ϕ). To see this, take g = (gv) ∈ Gϕ

A
and

define gΛ to be the lattice Λ′′ ⊆ (V, ϕ) such that Λ′′
v = gvΛv for all non-archimedian

places v. The stabilizer of a lattice (Λ, ϕ) defines a subgroup D ∈ Gϕ
A

such that
D ⊂ Gϕa and D ∩ Gϕ

h
is open and compact, and by fixing a lattice (Λ, ϕ) we may

parametrize the classes Cl of Λ by the elements of Gϕ\Gϕ
A
/D using a 7→ Λa := aΛ.

We denote by Γa the group of automorphisms of (Λa, ϕ), defined as those g ∈ Gϕ

leaving Λa invariant. From an adelic perspective,we see that Γa = Gϕ ∩ aDa−1.
We say that a lattice Λ ⊆ (V, ϕ) is maximal if ϕ(Λ) ⊆ Ok and Λ is not properly

contained in some lattice Λ′ with ϕ(Λ′) ⊆ Ok. There is a similar notion of an a-

maximal lattice for any ideal a, given by replacing Ok by a. It turns out that for
any ideal a, all of the a-maximal lattices in (V, ϕ) are locally equivalent (see [Shi2,
Lemma 5.9]), so it makes sense to speak about the genus of a-maximal lattices.

If (Λ, ϕ) is a totally definite lattice over a totally real number field k, then we
define the mass of its genus to be

Mass(Λ, ϕ) =
∑

a∈Cl

[Γa : 1]−1.

If (Λ, ϕ) is not totally definite (e.g. when k is not totally real) then Γa will be
an infinite group, but we would still like to somehow keep track of its size. To do
this, we allow Γa to act on some symmetric space Z and choose a measure on Z

invariant under this action. We then define the mass in terms of the measures of
the quotients Γa\Z. So in general, we define the mass of (Λ, ϕ) to be

(1.1) Mass(Λ, ϕ) =
∑

a∈Cl

ν(Γa),

where

ν(Γa) =

{
[Γa : 1]−1 if Ga is compact,

[Γa ∩ {±1} : 1]−1vol(Γa\Z) otherwise.

Our main interest in this paper will be to find an exact formula for the mass of
the genus of maximal lattices over an arbitrary number field k when n ≥ 3. Our
approach is to use the Tamagawa number of Gϕ to extend Shimura’s computation
of the mass of a maximal lattice over a totally real number field to a general number
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field k. Then by interpreting the mass in terms of the volume of the non-archimedian
stabilizer of (Λ, ϕ), we use the local group of similitudes of ϕ to show that the mass
is unchanged as we vary over certain genera of a-maximal lattices.

This exact mass formula essentially expresses the mass as a product of even
integer values of the Dedekind zeta function of k, a power of the index of Λ in its
dual lattice, and some gamma function factors. If dimk(V ) is even, a special value
of the L-function of a certain quadratic extension of k also appears.

Summary of Notation

Throughout this paper we take k to be a number field, Ok its ring of integers, and
Dk the discriminant of k/Q. We denote by v a valuation (or place) of k. We also
let a and h denote the archimedian and non-archimedian places of k respectively.
Suppose p is a prime ideal in Ok lying over the prime p in Z, and x ∈ k. We let
|x|p denote the usual p-adic absolute value of x defined by |x|p = q−ordp(x), where
we take q = qp = [Op : p].

We follow the convention that if we have an object R defined at a certain valua-
tion v, we denote it by Rv. If Rv is defined at each of the archimedian valuations,
we also write

Ra =
∏

v∈a

Rv .

For an algebraic group G defined over k, we denote the adelization of G by GA.
If R is an arbitrary set, we denote by Rmn the m × n matrices with coefficients

in R. We write the transpose of a matrix A as tA. If x is a matrix, then we let xij
denote the entry of x in the ith row and jth column. Conversely given numbers xij ,
we let (xij) denote the matrix whose entries satisfy (xij)ij = xij . We abbreviate
the diagonal matrix 



a11 0 · · · 0
0 a22 · · · 0
...

...
. . . 0

0 0 0 ann




by diag[a11, · · · , ann], and denote the n×n identity matrix by 1n. Given an arbitrary
n × n matrix A and an integer l with 1 ≤ l ≤ n, we define detl(A) to be the
determinant of the upper left l × l submatrix of A. If A is a matrix of functions,
we define the matrix of 1-forms dA = (dAij). Given two n × n matrices A and B
over R, we say that A > B if the matrix A−B is positive definite, and we set

Sn+ = {A ∈ Rnn | tA = A > 0}.

We let (V, ϕ) denote a non-degenerate quadratic space of dimension n over k,
and take Vv ,Λp, G

ϕ, Gϕv , G
ϕ
A

as defined in the introduction. If we choose a basis
{v1, · · · , vn} for V , we may express the bilinear form ϕ(v, w) associated to ϕ as the
matrix ψ = [ϕ(vi, vj)]1≤i,j≤n. We also let G−(ϕ) denote the set of invertible linear
transformations of V which preserve the form ϕ and have determinant −1.

For convenience, we define the symbols

X = knn , T = {Symmetric n× n matrices with coefficients in k} ,

and their local counterparts Tv, and Xv at a valuation v by replacing k by kv in
the above definition.
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We set i =
√
−1 ∈ C. For x ∈ R we let bxc be the greatest integer ≤ x. Also,

when there is no danger of confusion, we freely use the letters i, j, k, l as indices.
Our equations and statements are numbered first by section, then by order within
each section, with the appendix labeled by A (e.g. Lemma A2).

§2 The Tamagawa Number and Local Factors

The main fact that we use in what follows is that the Tamagawa number τ of
the special orthogonal group G = Gϕ over any number field k is given by

(2.1) τ(G) = 2 if n ≥ 3,

where n = dimk(V ). To define this, we first choose a measure (dx)A on kA nor-
malized so that

(2.2)

∫

k\kA
(dx)A = 1.

We then define the Tamagawa number of G to be

(2.3) τ(G) =

∫

G\GA

|ωG|A,

where ωG is a non-zero left G-invariant differential form on G of highest degree and
|ωG|A is the volume element defined with respect to (dx)A. By the product formula
we see |cωG|A = |ωG|A for c ∈ k×, and since ωG is chosen from a 1 dimensional
space, this specifies a left G-invariant measure on GA which is independent of our
choice of ωG. We call the measure associated to ωG the Tamagawa measure on
GA. (For a more detailed introduction, see [Tam], [Vos], or [Weil].)

From now on when speaking of an invariant object, we always understand this to
mean it is left invariant. For clarity we also define a volume form to be a nowhere
zero diferential form of highest degree.

For our computations, it will be useful to define another measure (d′x)A by the
restricted product (d′x)A =

∏′
v(d

′x)v with local measures

(d′x)v =





Haar measure on kv normalized by
∫
Op

(d′x)v = 1 if kv = kp,

Lebesgue measure on R if kv = R,

idz ∧ dz̄ = 2×Lebesgue measure on R2 if kv = C.

This gives
∫
k\kA (d′x)A = |Dk|1/2, so in terms of (d′x)A we have

τ(G) = |Dk|
− dimk(G)

2

∫

G\GA

|ωG|′A

= |Dk|
−n(n−1)

4

∫

G\GA

|ωG|′A,
(2.4)

where |ωG|′A is the volume element derived from ωG using (d′x)A instead of (dx)A.
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We now give a general procedure for constructing a suitable invariant volume
form ω̃G on G. By choosing a global basis {v1, · · · , vn} for (V, ϕ) we can represent
the bilinear form associated to ϕ as a matrix ψ. This gives a natural map

(2.5)
X = (k)nn

F−−−−→ T

x 7−→ txψx,

whose fibre over the matrix ψ ∈ T is the full orthogonal group of ϕ. Given the
volume forms

(2.6) ωX =
∧

i,j

dxij , ωT =
∧

i≤j
dtij

on X and T respectively, we can find a differential form ω on X such that

(2.7) ωX = F
∗(ωT ) ∧ ω.

By pulling ω back to the fibre and then restricting to the identity component, we
get a form ω̃G on G. From Lemma A6, we see that ω̃G is a non-zero G-invariant
volume form, and is independent of our choice of ω. We will use this construction
many times in our calculation, and consistently identify G = Gϕ = Gψ as well as
the image of Λ under this identification.

For each place v of k, we define the local representation density

(2.8) βv(ψ) = βv(Λ, ψ) =
1

2
lim
U→ψv

∫
U ′
dX∫

U
dT

,

where dX =
∏
i,j(dxij )v and dT =

∏
i≤j(dtij)v are the measures associated to ωX

and ωT in these coordinates,

U ′ =

{
F
−1(U) if v ∈ a,

F
−1(U) ∩ {x ∈ Xv | xΛv = Λv} if v ∈ h,

and U is an open neighborhood of ψv in Tv. From the construction of ω̃G above,
we can easily see that

∫
Dv

ω̃G = βv(Λ, ψ) where D ⊂ GA is the stabilizer of Λ (see

[Tam, §6, pp119–120]). In our calculations the lattice Λ will be fixed, so we will
often supress Λ and write βv(ψ).

Remark. Notice that both the volume form ω̃G and the local densities βv(ψ) depend
not only on (V, ϕ) and v, but also on our given choice of basis for (V, ϕ).

Any choice of volume form ωG can be used to define an archimedian measure
τa on Ga by

∏
v∈a

|ωG|′v . By choosing ωG = ω̃G as above and expressing (2.4) in
terms of local measures, one can prove:

Theorem 2.1. Let Λ be a lattice in (V, ϕ), and suppose ψ a matrix representing
ϕ in some global basis for V . Then

∑

a∈Cl

τa(Γa\Ga) = τ(G) |Dk |
n(n−1)

4

∏

v∈h

βv(Λ, ψ)−1,
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with τa and βv(Λ, ψ) as above, and Γa as defined in §1.

Proof. This is proved in [Cas, pp380-382] when k = Q, but the argument there
works for any number field k. In his notation, βv(Λ, ψ) = λv = τv(O

+(Λv))
and (due to a typographical error) the right side of (4.19) on p382 should read
2λ−1

∞
∏
p6=∞ λ−1

p . See also [Tam, §6, pp119–120] and [Vos, §15, pp87–88]. �

To simplify our calculations, we use the invertible matrix σv ∈ (kv)
n
n to change

basis locally at every place v, so that ψv has the standard form

(2.9) φv = tσvψvσv =








0 0 2−11r

0 θp 0

2−11r 0 0


 if kv = kp,

[
1q 0

0 −1r

]
if kv = R,

1n if kv = C,

with q, r ∈ N satisfying either q + r = n and q ≥ r, or dim(θp) + 2r = n and
θp is some anisotropic symmetric matrix with dim(θp) ≤ 4. Since we take Λ to
be a maximal lattice, by [Shi2, Lemma 5.6], we can locally choose a free Op-basis
for Λp so that (Λp, ϕp) is represented by the matrix φp above, and we choose the
matrices σp so this is true. The following lemma describes how the local factors
change under such a change of basis.

Lemma 2.2. Let v be a place of k and suppose that ψ and ψ′ in (kv)
n
n are related

by ψ′ = tAψA for some invertible n× n matrix A. Then

βv(Λ, ψ
′) = | det(A)|n+1

v βv(AΛ, ψ).

Proof. For n × n matrices A ∈ X and t ∈ T we let [A] : T −→ T denote the map
[A](t) = tAtA, which corresponds to change of basis by A for the quadratic form
associated to t.

Fix an open set U about ψ′ in T , and let V = [A−1](U) be the corresponding
neighborhood of ψ. Then one can easily check

volX(F−1
ψ′ (U))

volT (U)
· volT (U)

volT ([A−1](U))
=

volX(A−1
F
−1
ψ (V )A)

volT (V )
=

volX (F−1
ψ (V ))

volT (V )
,

where F is as in (2.5) and the last equality follows from both parts of Lemma A2.
By passing to the limit as U → ψ′, we have

βv(Λ, ψ
′) = lim

U→ψ′

volT ([A−1](U))

volT (U)
βv(AΛ, ψ).

This ratio of volumes is given by computing the pull-back of the volume form ωT
under the map [A]. We claim that

[A]∗(ωT ) = det(A)n+1ωT ,
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which is to say

(2.10)
∧

i≤j
d(tAtA)ij = det(A)n+1

∧

i≤j
dtij .

Since [AB] = [B][A], we already know (2.10) is true if we replace det(A)n+1 by
some multiplicative character on GLn(kv). By construction c(A) is a polynomial
in the entries of A, and since the only continuous characters on GLn are powers of
the determinant, we easily verify (2.10) by checking the scalar matrices A = λ · 1n.

With this we have

lim
U→ψ′

volT ([A]−1(U))

volT (U)
= | det(A)|n+1

v ,

which proves our lemma. �

§3 The Non-Archimedian Local Factors

The non-archmedian local factors appearing in the mass formula for a maximal
lattice Λ have been calculated by Shimura in [Shi], under the condition that locally
the determinant of ϕ is a unit up to a square if n is odd. We now show how his
local factors relate to the local factors βp(Λp, φp) appearing in our mass formula.

Fix a basis {v1, · · · , vn} for Vp, let φ be the invertible n× n matrix defined over
kp which represents (Vp, ϕp) in this basis, and let Λp be a lattice in (Vp, ϕp). We
define βp(φ) as in §2 to be the limit of the ratio of volumes

(3.1) βp(φ) = βp(Λp, φ) =
1

2
lim
U→φ

∫
U ′
dX∫

U
dT

,

where U ′ is a neighborhood in Xp determined by Λp and an open neighborhood
U of φ in Tp. We may also write U ′ as U ′(φ) to emphasize its dependence on the
matrix φ. Since we are working over a p-adic field, we have a natural choice of
neighborhoods Ui to use for this limit, namely Ui = φ+ Pi where Pi = (pi)nn ∩ Tp.

Lemma 3.1. Let Λp and φ be as above, and let c ∈ k×p . Then we have

βp(Λp, φ) = |c|
n(n+1)

2
p βp(Λp, cφ) = | det(c · 1n)|

(n+1)
2

p βp(Λp, cφ).

Proof. Since U → φ, it suffices to compute the limit (3.1) for U = Ui. Consider the
pre-images

U ′
i(φ) = {x ∈ Xp | txφx ∈ φ+ Pi and xΛp = Λp},

and notice U ′
i(φ) = U ′

i+ordp(c)(cφ). Using this we have

βp(φ) =
1

2
lim
i→∞

∫
U ′

i(φ) dX∫
Ui
dT

=
1

2
lim
i→∞

∫
U ′

i+ordp(c)
(cφ)

dX
∫
Ui
dT

= |c|
n(n+1)

2
p

1

2
lim
i→∞

∫
U ′

i+ordp(c)
(cφ)

dX
∫
Ui+ordp(c)

dT

= |c|
n(n+1)

2
p βp(cφ),

which completes the proof. �
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Lemma 3.2. Let Λp and φ be as above, and suppose that for our choice of basis
we have Λp =

∑n
i=1Opvi. Then βp(Λp, φ) = 1

2ep(φ), where ep(φ) is as in [Shi, §8].

Proof. In [Shi, §8] ep(φ) is given by

ep(φ) = lim
i→∞

q
−n(n−1)

2 N ′
i ,

where N ′
i = #{x ∈ (Op/p

iOp)
n
n | txφx ≡ φ mod Pi}. However, Ui is a sum

of cosets mod Pi and one can check that U ′
i is a sum of cosets mod (p)nn, so by

counting them we have

βp(ψ) =
1

2
lim
i→∞

∫
U ′

i
dX

∫
Ui
dT

=
1

2
lim
i→∞

(
1
qi

)n2

N ′
i

(
1
qi

)n(n+1)
2

=
1

2
ep(ψ),

which proves the lemma. �

We are interested in computing βp(φp) with respect to a maximal lattice Λp in
(Vp, ϕp), with φp as in §2. By Lemmas 3.1 and 3.2 we know

(3.2) βp(φp) = | det(2 · 1n)|
n+1
2

p

ep(2φp)

2
,

and by combining this with [Shi; Theorem 8.6(3), Prop. 3.9, (3.1.9)], we obtain

(3.3) βp(φp) = | det(2 · 1n)|
n+1

2
p qκpn[Λ̃p : Λp]ξ,

where q = #(Op/pOp), κ is defined by 2Op = pκ,

ξ =





(1 − q−m)
∏m−1
i=1 (1 − q−2i) if t = 0,

∏m
i=1(1 − q−2i) if t = 1,

(1 + q−m)
∏m−1
i=1 (1 − q−2i) if t = 2, p is unramified in K,

and Λ̃p = Λp,

2(1 + q)(1 + q1−m)−1
∏m−1
i=1 (1 − q−2i) if t = 2, p is unramified in K,

and Λ̃p 6= Λp,

2
∏m−1
i=1 (1 − q−2i) if t = 2, and p is ramified in K,

2(1 + q)
∏m−1
i=1 (1 − q−2i) if t = 3,

2(1 + q)(1 − q1−m)−1
∏m−1
i=1 (1 − q−2i) if t = 4,

with t = dim(θp), m = bn/2c, K = k(
√

(−1)n/2 det(ϕ)), and Λ̃p = {x ∈ Vp |
2ϕp(x,Λp) ∈ Op}. For future reference we explicitly state [Shi, (3.1.9)], which says

(3.4) [Λ̃p : Λp] = | det(2φp)|−1
p .
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§4 Archimedian Local Factors

In this section we explicitly compute the volume form ωG on Gv = Gφv
v described

in §2 when v is archimedian, and relate ωG to a natural volume form ωZ on the
symmetric space Zv . The relationship between ωG and ωZ is established by con-
structing a non-zero Cv-invariant volume form ωC on the fibre Cv of Gv over some
chosen point pv ∈ Zv, and then evaluating

∫
Cv
ωC . This allows us to connect the

associated measures on Gv and Zv. We note that when v is real and ϕ is definite,
the situation is much simpler since Zv = {1n} and Cv = Gv .

For our calculations we would like to write down ωG in some set of coordinates
on G, and we choose the coordinates given by the strictly lower triangular matrix
entries of the natural embedding G ↪→ (kv)

n
n. These give coordinates on an open

subset of G whose compliment has measure zero, and the associated coordinate
1-forms give a basis for the cotangent space. The matrix g−1dg is a G-invariant
matrix of 1-forms under left multiplication, and so the form

(4.1) γn =
∧

i>k

(g−1dg)ik

gives a G-invariant volume form on G. Since the space of such forms is 1 dimen-
sional, any G-invariant volume form will be a constant multiple of γn.

Calculation 4.1. Suppose v is archimedian. Then in the coordinates given by
Gv ↪→ (kv)

n
n, the volume form ωG described in §2 can we written as

ωG = ± 1

2n
γn = ± 1

2n

n∏

l=1

detl(x)
−1
∧

i>k

dxik .

Proof. To compute ωG it suffices to compute any non-zero monomial Θ in F
∗(ωT ),

since if Θ = f(x)
∧

(i,k)∈I dxik for some indexing set I and ω = f(x)−1
∧

(i,k)6∈I dxik
is its complimentary monomial, then F

∗(ωT ) ∧ ω = Θ ∧ ω = ωX . We choose to
calculate the monomial Θ = f(x)

∧
i≤k dxik . Since we are only interested in finding

ωG up to sign, it will be enough to compute ωG for φv = 1n.
From (2.5) we have t = F(x) = txx and so F

∗(dt) = t(dx)x + tx(dx). Therefore

F
∗(ωT ) =

∧

i≤k


∑

j

dxjixjk + xjidxjk




= Θ + other terms.

(4.2)

We compute Θ by induction on the column bound k0, showing that

(4.3)
∧

i≤k≤k0


∑

j

dxjixjk + xjidxjk


 = 2k0

∧

i≤k≤k0

∑

j

xjidxjk + Ψ

where Ψ is a sum of terms each of which has some dxik factor with i > k.
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The case k0 = 1 is clear since the left side is just 2x11dx11. If k0 > 1 we have

∧

i≤k≤k0


∑

j

dxjixjk + xjidxjk




=
∧

i≤k≤k0−1


∑

j

dxjixjk + xjidxjk


 ∧

∧

i≤k=k0


∑

j

dxjixjk0 + xjidxjk0




=


2k0−1

∧

i≤k≤k0−1

∑

j

xjidxjk + Ψ


 ∧

∧

i≤k=k0


∑

j

dxjixjk0 + xjidxjk0




(4.4)

We now analyze the term Ξ =
∧
i≤k0

(∑
j dxjixjk0 + xjidxjk0

)
appearing at the

end of (4.4). The only terms of Ξ contributing non-zero terms to Θ come from the
column k0. This is because all of the dxjk terms with k ≤ k0 − 1 already appear in
each term of

∧
i≤k≤k0−1

∑
j xjidxjk contributing to Θ, and so the wedge product of

the two is zero. Also, since the entries of dx are linearly independent, such factors
dxjk0 must satisfy j ≤ k0 to contribute to Θ. So Ξ in (4.4) can be replaced by

∧

i<k0


∑

j

xjidxjk0


 ∧


∑

j

dxjk0xjk0 + xjk0dxjk0




= 2
∧

i≤k0


∑

j

xjidxjk0


 ,

(4.5)

which proves (4.3).
By combining (4.3) with k0 = n and Lemma A3, we see that

(4.6) Θ = 2n
∧

i≤k
(txdx)ik = 2n

n∏

l=1

detl(x)
∧

i≤k
dxik + other terms,

which shows that

(4.7) ωG =
1

2n

n∏

l=1

detl(x)
−1
∧

i>k

dxik

satisfies (2.7). �

§4.1 Computation for kv = R with ϕ definite

If v is real and ϕv is definite, then Gv = SOn(R). Since SOn(R) is compact,
τv(Gv) is finite. We now find the measure τR of SOn(R) with respect to ωG. From
Calculation 4.1 and Lemma A3 we see that (up to sign) on Gv

ωG ∼
∧

i>k

(tgdg)ik ∼
∧

i>k

(g−1dg)ik ,

and this together with the volume computation in [Vos, (14.6), p85] relative to
volume form

∧
i>k(g

−1dg)ik gives

(4.1.1) τR(Gv) =
1

2
π

n(n+1)
4

(
n∏

l=1

Γ(l/2)

)−1

.
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§4.2 Computation for kv = R with ϕ indefinite

If v is real and ϕv is indefinite, then we take φv = diag[1q,−1r] as in (2.9),
GR = SO(q, r), and define the (symmetric) space ZR by

ZR =

{[
x
y

]
∈ Rqr

∣∣∣∣ x ∈ Rrr, y ∈ Rtr,
tx+ x > tyy

}
.

To define a GR-action on ZR, let

B(z) =




tx ty x
0 1t y

−1r 0 1r


 , γ =




−1√
2 r

0 1√
2 r

0 1t 0
1√
2 r

0 1√
2 r


 ,

Y = {Y ∈ GLn(R) |tY φ−1
v Y = diag[A,−B] with A ∈ Sq+, B ∈ Sr+},

and induce a GR-action on ZR from the bijection

(4.2.1)

ZR ×GLq(R) ×GLr(R)
∼−−−−→ Y

(z, λ, µ) 7−→ B(z)

[
λ 0
0 µ

]
,

by allowing α ∈ GR to act on Y by left multiplication. (See [Shi2, §6] for details.)
Explicitly, (4.2.1) gives the action z 7→ αz on ZR by

(4.2.2) αB(z) = B(αz)

[
λα(z) 0

0 µα(z)

]
,

for some matrices λα(z) and µα(z).

By choosing a distinguished point pR =

[
1r
0tr

]
∈ ZR, we define a map

(4.2.3)
FR : GR −−−−→ ZR

α 7−→ αpR.

If we write α ∈ GR as

(4.2.4) α =



a b c
g e f
h l w




with a, d ∈ Rrr and e ∈ Rtt, then the map FR sends

(4.2.5) α 7−→ αpR =

[
(w − c)(w + c)−1

(
√

2)tf(w + c)−1

]
.

In these coordinates the stabilizer of pR is given by

(4.2.6) CR = {α ∈ GR | f = 0rt , c = 0rr},
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and the relation txφvx = φv implies that l and h are also zero. Thus CR decomposes
as

(4.2.7)

CR
∼= [GR(1q) ×GR(1r)] ∪

[
G−

R
(1q) ×G−

R
(1r)

]

α 7→
([

a b

g e

]
, w

)
.

We will be working with the GR-invariant volume form ωZ on ZR constructed in
[Shi, §4.2], given by the expression

(4.2.8) ωZ = δ(z)−n/2
∧

i,k

dzik,

where δ(z) = det( 1
2 (tx+ x− tyy)).

Computation of ωC and
∫
C
ωC

We now compute the expression for ωC on CR = Stab(pR) described in §4. For
this it is enough, by the last part of Lemma A6, for us to consider forms whose
restrictions to the fibre CR are equal up to sign. We write this equivalence as ≈.

From (4.2.5) we have

F ∗
R(dx) = −(1r + (w − c)(w + c)−1)dc(w + c)−1

+ (1r − (w − c)(w + c)−1)dw(w + c)−1

≈ −2r dcw
−1,

F ∗
R(dy) = −(

√
2)rdf(w + c)−1 − (

√
2)rf(w + c)−1d(w + c)(w + c)−1

≈ (
√

2)rdf w
−1.

Applying Lemma A2 and det(w) ≈ 1 to these gives
∧

i,k

F ∗
R(dx)ik ≈ 2r

2∧

i,k

dcik ,

∧

i,k

F ∗
R(dy)ik ≈ 2

rt
2

∧

i,k

dfik,

which together with the observation δ(pR) = 1 yields

F ∗
Z(ωR) ≈ 2

rn
2

∧

i,k

dcik
∧

i,k

dfik .

We recall from Calculation 4.1,

ωG ≈ 2−n
n∏

l=1

detl(α)−1
∧

i>k

dαik.

By the construction of ωG in §2 and F ∗
R
(ωR) as above, and since the matrix g−1dg

of §4 is skew symmetric. we see that the volume form ωC on the fibre is

ωC ≈ 2
−rn

2 2−n
n∏

l=1

detl(α)−1
∧

i>k

daik
∧

i>k

deik
∧

i,k

dgik
∧

i>k

dwik

≈ 2
−rn

2 ωSOq(R) ∧ ωSOr(R).
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By comparison with ωG in §4.1 and the isomorphism (4.2.7), we find that

volC(CR) =

∫

CR

|ωC |

= 2 · 2−rn
2

[∫

SOq(R)

ωSOq(R)

][∫

SOr(R)

ωSOr(R)

]

= 2 · 2−rn
2

1

2
π

q(q+1)
4

(
q∏

k=1

Γ(k/2)

)−1
1

2
π

r(r+1)
4

(
r∏

k=1

Γ(k/2)

)−1

,

which completes our calculation.

§4.3 Computation for kv = C

If v is complex, then GC = SOn(C) and we define the (symmetric) space ZC by

ZC = {z ∈ Rnn | tz = −z, tzz < 1}.

To define a GC-action on ZC, we first let

B(z) =

[
1n z
−z 1n

]
, I =

[
1n 0
0 −1n

]
,

X =

{
X ∈ GL2n(R)

∣∣∣∣
tXIX =

[
A 0
0 −B

]
with A,B ∈ Sn+

}
.

One can check that this gives an injection

(4.3.1)

ZC ×GLn(R) ×GLn(R) −−−−→ X

(z, λ, µ) 7−→ B(z)

[
λ 0
0 µ

]
.

Writing α = a+ bi ∈ GC with a, b ∈ Rnn, we define ι(α) =
�
a −b

b a � and allow α to

act on x ∈ X by left multiplication by ι(α)

αx = ι(α)x.

By a direct calculation we see that this gives a well-defined action on the image of
(4.3.1) and can be used to define a GC-action on ZC by

(4.3.2) αB(z) = ι(α)B(z) = B(αz)

[
λα(z) 0

0 µα(z)

]
,

the key observation being that tι(α)Iι(α) = I for α ∈ GC. The same calculation
shows that

λα(z) = µα(z) = (a+ bz),

which we henceforth denote by µα(z).
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By choosing a distinguished point pC = 0nn ∈ ZC, we define a map

(4.3.3)
FC : GC −−−−→ ZC

α 7−→ αpC.

Writing this map out in real coordinates we see

(4.3.4) α = a+ bi 7−→ −ba−1,

where a, b ∈ Rnn. In these coordinates the stabilizer of pC is given by

(4.3.5) CC = Stab(pC) = {α = a+ bi ∈ GC | b = 0nn} ∼= SOn(R).

We now construct a GC-invariant volume form on ZC. To do this we need to
know how the differentials transform under the map FC. We begin with a few
definitions. For any two points w, z ∈ ZC we let

ξ(w, z) = 1n − twz, ξ(z) = ξ(z, z),(4.3.6)

δ(w, z) = det(ξ(w, z)), δ(z) = δ(z, z),(4.3.7)

which satisfies the relation

(4.3.8) tB(w)IB(z) =

[
ξ(w, z) z + tw
z + tw −ξ(w, z)

]
.

By combining (4.3.8), tι(α)Iι(α) = I , and (4.3.2), we have

tµα(w)(αz − αw)µα(z) = z − w,

tµα(w)ξ(αw, αz)µα(z) = ξ(w, z).

Fixing w ∈ ZC, we differentiate these with respect to z and evaluate at z = w to
obtain

d(αz) = tµα(z)−1 dz µα(z)−1,

δ(αz) = det(µα(z))−2δ(z).

By applying Lemma A4 to these two equations, we see that the expression

(4.3.9) ωZ = δ(z)
1−n

2

∧

i>k

dzik

gives a non-zero GC-invariant volume form on ZC.

Computation of ωC and
∫
C
ωC

We now compute the form ωC on CC = Stab(pC) described in §4. By the last
part of Lemma A6, it is enough to consider forms whose restrictions to the fibre
CC are equal up to sign. We write this equivalence as ≈.

First we compute F ∗
C
(ωZ). From (4.3.4) we have

F ∗
C(dz) = −db a−1 − b d(a−1)

≈ db a−1,
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and so ∧

i>k

F ∗
C(dz)ik ≈

∧

i>k

(
db a−1

)
ik
.

From the relations defining GC, we know that ta ≈ a−1 and the restriction of ta db
to CC is skew symmetric, therefore so is a(ta db)a−1 = db a−1. Applying Lemma A5
to this gives

∧

i>k

dbik =

n−1∏

l=1

detl(a)
∧

i>k

(db a−1)ik

and so

F ∗
C(ωZ) =

n−1∏

l=1

detl(a)
−1
∧

i>k

dbik

since δ(pC) = 1.

From our choice of local measures in §2, the real volume form ω̃ associated to
the complex volume form ω is given by ω∧ω. Combining this with Calculation 4.1
we have

ω̃G = 2−2n
n∏

l=1

detl(z)
−1 detl(z̄)

−1
∧

i>k

(idzik ∧ dz̄ik)

= 2
n(n−5)

2

n∏

l=1

detl(z)
−1 detl(z̄)

−1
∧

i>k

(daik ∧ dbik)

≈ 2
n(n−5)

2

n−1∏

l=1

detl(a)
−2
∧

i>k

(daik ∧ dbik) .

By applying the procedure in §2 to ω̃G and F ∗
C
(ωZ) above, we see that the (real)

volume form ωC on the fibre is given by

ωC = 2
n(n−5)

2

n−1∏

l=1

detl(a)
−1
∧

i>k

daik.

From §4.1, we know

∫

SOn(R)

ωG =
1

2
π

n(n+1)
4

n∏

j=1

Γ(j/2)−1,

so we have

volC(CC) =

∫

CC

ωC = 2
n(n−3)

2

∫

SOn(R)

ωG = 2
n(n−3)

2


1

2
π

n(n+1)
4

n∏

j=1

Γ(j/2)−1


 ,

which completes our calculation.
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§5 Mass Formula for Maximal Lattices

In this section we compute an exact mass formula for the genus of maximal
lattices Λ ⊂ (V, ϕ). We call a lattice Λ ⊂ (V, ϕ) a maximal lattice if ϕ(Λ) ⊆ Ok
and Λ is maximal with this property.

To define the mass of a genus of lattices over an arbitrary number field k, we
need to define symmetric spaces Zv for all v ∈ a. If v is real and ϕv is definite, then
we take Zv to be a single point with measure one. If v is real and ϕv is indefinite
or v is complex, then we take Zv as in §4.2 or §4.3 respectively. The spaces Zv
come equipped with a transitive Gv-action, an invariant volume form ωZ, and a
distinguished point pv . For each v ∈ a, we define a surjective map

(5.1)
Fv : Gv −→ Zv

α 7−→ αpv

and denote by Cv the fibre of Fv over pv. We let

(5.2) Z =
∏

v∈a

Zv, C =
∏

v∈a

Cv , p = (pv)v∈a,

and let F denote the product map

(5.3) F : Ga −→ Z.

We observe that the C = F−1(p) is the fibre of F over p.

We define the mass of a quadratic form (V, ϕ) with respect to a lattice Λ to be

(5.4) Mass(Λ, ϕ) =
∑

a∈Cl

ν(Γa)

where

(5.5) ν(Γa) =

{
[Γa : 1]−1 if Ga is compact,

[Γa ∩ {±1} : 1]−1vol(Γa\Z) otherwise.

Theorem 5.1. Let (V, ϕ) be a non-degenerate quadratic space of dimension n ≥ 3
defined over a number field k of degree d over Q. Then the mass of (V, ϕ) with
respect to a maximal lattice Λ ⊂ (V, ϕ) is given by

Mass(Λ, ϕ) = 2|Dk|b
(n−1)2

4 c



bn−1

2 c∏

j=1

|Dk|
1
2

(
(2j − 1)!

(2π)2j

)d
ζk(2j)


 [Λ̃ : Λ]

n−1
2

∏

v|e
λv

∏

v∈a

bϕv
∏

v complex


2−

(n−1)(n−2)
2 π

n(n+1)
4

n∏

j=1

Γ(j/2)−1




{
2−(n−1

2 )d if 2 - n,

|Dk|
1
2

[
(n2 − 1)!(2π)−

n
2

]d
Lk(

n
2 , χ) if 2|n,
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where rv and tv = dim(θv) are defined by the normalization of ϕv in §2,

Γi(s) = π
i(i−1)

4

i−1∏

j=0

Γ(s− (j/2)),

Λ̃ = {x ∈ V | 2ϕ(x,Λ) ∈ Ok},

bϕv = 2
rvn
2 π

(n−rv)rv
2 Γrv (rv/2)Γrv(n/2)−1,

e is the product of all prime ideals for which Λ̃v 6= Λv, ζk(s) and Lk(s, χ) are
zeta and L-functions over k, χ is the non-trivial Hecke character associated to the

extension K/k where K = k(
√

(−1)n/2 det(ϕ)), and λv is defined by

λv =





1 if tv = 1,

2−1(1 + q)−1(1 + q1−m)(1 + q−m) if tv = 2, p is unramified in K,

and Λ̃p 6= Λp,

2−1 if tv = 2, and p is ramified in K,

2−1(1 + q)−1(1 − q−2m) if tv = 3,

2−1(1 + q)−1(1 − q1−m)(1 − q−m) if tv = 4,

where q is the norm of the prime ideal at v ∈ h and m = bn2 c.
Proof. By Lemma A7 applied to F , for each class a ∈ Cl we have

τa(Γa\Ga) = volC((Γa ∩ S)\Ca)volZ(Γa\Z),

where S = {g ∈ Ga | gz = z for every z ∈ Z}. By Lemma A1, S = {(±1)v,v∈a} so
this becomes

(5.6) τa(Γa\Ga)volC(Ca)−1 = [Γa ∩ {±1} : 1]−1volZ(Γa\Z).

This together with Theorem 2.1 and (2.1) gives

Mass(Λ, ϕ) = 2|Dk|
n(n−1)

4 volC(Ca)−1
∏

v∈h

βv(Λ, ψ)−1

= 2|Dk|
n(n−1)

4

∏

v∈a

volC(Cv)
−1
∏

v∈h

βv(Λ, ψ)−1.
(5.7)

From here, we complete the proof in 3 parts:

Part 1: First we prove the case where ϕv is positive definite at all v ∈ a. In
this case Cv = Gv for all v ∈ a, so by (5.7) we have

Mass(Λ, ϕ) = 2|Dk|
n(n−1)

4

∏

v∈a

βv(ψ)−1
∏

v∈h

βv(Λ, ψ)−1.

By (2.9), φv = tσvψσv and | det(σv)|v =
(

|det(φv)|v
|det(ψ)|v

) 1
2

. Combining this with

Lemma 3.2 we have

2|Dk|
n(n−1)

4

∏

v∈a

(
| det(ψ)|

−(n+1)
2

v | det(φv)|
n+1

2
v βv(φv)

−1

)

∏

v∈h

(
| det(ψ)|

−(n+1)
2

v | det(φv)|
n+1

2
v βv(Λv , φv)

−1

)
,
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which by the product formula and det(φv) = ±1 for all v ∈ a, gives

2|Dk|
n(n−1)

4

∏

v∈a

βv(φv)
−1
∏

v∈h

(
| det(φv)|

n+1
2

v βv(Λv, φv)
−1
)
.

Substituting (3.3) and (4.1.1), using (3.4), and noticing
∏
v|2 2κv = 2n, we get

2|Dk|
n(n−1)

4


2π

−n(n+1)
4

n∏

j=1

Γ(j/2)



d

[Λ̃ : Λ]
n−1

2


2−nd

b n−1
2 c∏

i=1

ζk(2i)
∏

v|e
λv



{

1 if 2 - n,

Lk(
n
2 , χ) if 2|n.

By rearranging terms we obtain

2|Dk|
n(n−1)

4

(
2−(n−1)d

)




π

−n(n+1)
4

n∏

j=1

Γ(j/2)



d bn−1

2 c∏

i=1

ζk(2i)




[Λ̃ : Λ]
n−1

2

∏

v|e
λv

{
1 if 2 - n,

Lk(
n
2 , χ) if 2|n,

= 2|Dk|
n(n−1)

4

(
2−(n−1)d

)


bn−1

2 c∏

j=1

(
(2j − 1)!

(2π)2j

)d
ζk(2j)




[Λ̃ : Λ]
n−1

2

∏

v|e
λv

{
2

n−1
2 d if 2 - n,

[
2n−1(n2 − 1)!(2π)−

n
2

]d
Lk(

n
2 , χ) if 2|n,

= 2|Dk|
n(n−1)

4



bn−1

2 c∏

j=1

(
(2j − 1)!

(2π)2j

)d
ζk(2j)


 [Λ̃ : Λ]

n−1
2

∏

v|e
λv

{
2−(n−1

2 )d if 2 - n,
[
(n2 − 1)!(2π)−

n
2

]d
Lk(

n
2 , χ) if 2|n,

= 2|Dk|b
(n−1)2

4 c



b n−1

2 c∏

j=1

D
1
2

k

(
(2j − 1)!

(2π)2j

)d
ζk(2j)


 [Λ̃ : Λ]

n−1
2

∏

v|e
λv

{
2−(n−1

2 )d if 2 - n,

D
1
2

k

[
(n2 − 1)!(2π)−

n
2

]d
Lk(

n
2 , χ) if 2|n.

Part 2: Now suppose that all v ∈ a are real, but perhaps ϕv is indefinite at
some v. Take

bϕv = 2
rvn
2 π

(n−rv)rv
2 Γrv (rv/2)Γrv(n/2)−1
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as above where rv is defined by the normalization of ϕv in (2.9). For each indefinite
v, we add an additional factor of bϕv from the formula in part 1, which is seen by
observing

volC(Cv)
−1 =


2π

−n(n+1)
4

n∏

j=1

Γ(j/2)


 bϕv

and that bϕv = 1 if v is definite. Combined with the previous formula this proves
the case where all v ∈ a are real.

Part 3: Finally, consider arbitrary v ∈ a. We define rv = 0 for v complex, and
so for such v we have bϕv = 1. Since each complex place replaces two real places in
the totally real formula, we again have a correction factor. The relevant calculation
to check for v complex is

volC(Cv)
−1 =


2π

−n(n+1)
4

n∏

j=1

Γ(j/2)




2
2−

(n−1)(n−2)
2 π

n(n+1)
4

n∏

j=1

Γ(j/2)−1


 bϕv .

This together with Part 2 proves the theorem. �

One interesting application of Theorem 5.1 is to the case of a maximal indefi-
nite quadratic form (Λ, ϕ) in n ≥ 3 variables. In this case our formula explicitly
computes the volume of the quotient Γa\Z.

Corollary 5.2. Let (Λ, ϕ) be a maximal indefinite quadratic form in n ≥ 3 vari-
ables and let D the subgroup of GA stabilizing Λ. Then

vol(Γa\Z) = ε [k×
A

: k×σ(D)] Mass(Λ, ϕ)

where σ is the spinor norm map Gϕ
A

−→ k×
A
/(k×

A
)2 (see [Shi, (2.1.1)]) and ε is

either 1 or 2 depending on whether dim(V ) is odd or even. If k has class number
one, then

vol(Γa\Z) = εMass(Λ, ϕ).

Proof. Since n ≥ 3 and ϕ is indefinite, the classes and the spinor genera in the
genus of Λ coincide. From this and [Shi, Lemma 2.3(4)] we know that the number
of classes is [k×

A
: k×σ(D)]. We also know that ν(Γa) is independent of the class

a by [Shi, Thrm 5.10(1)]. Finally, −1 ∈ Γa exactly when det(−1n) = 1 which
happens exactly when 2| dim(V ). This proves the first assertion.

For the second part, from [Shi, Lemma 2.5] we know that k×
A
/k×σ(D) is a

quotient of the ideal class group of k. Thus if the class number of k is one, then
[k×

A
: k×σ(D)] = 1. �

§6 Mass formula for a-maximal lattices

In this section we use the local similitude groups G̃ϕp to show that the mass of the
genus of a-maximal lattices is the same for many ideals a. We do this by noticing
that Mass(Λ, ϕ) depends only on the volume of non-archimedian stabilizer Dh of

(Λ, ϕ), and then showing that the action of G̃ϕp preserves these volumes.
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Let G̃ϕp = {g̃ ∈ GLn(kp) | tg̃ ϕpg̃ = ξ(g̃)ϕp for some ξ(g̃) ∈ k×p } be the local
group of similitudes of ϕ, and let Ξp(ϕ) = {ξ(g̃) | g̃ ∈ Gϕp } be the set of similitude
multipliers of Gϕp . We also recall the local decomposition

(Vp, ϕp) = (H2r, η2r)
⊕

(Wp, θp)

where (H2r , η2r) ∼=
⊕r

i=1(F
2
p ,
[

0 1

1 0

]
) and (Wp, θp) is anisotropic of dimension tp.

By [OM, 63:19, p170] we know that tp ≤ 4. One can easily compute Ξp(η2r) = F×
p ,

and so Ξp(ϕ) = Ξp(η2r) ∩ Ξp(θp) = Ξp(θp).

Lemma 6.1. Suppose Λ and Λ′ are two lattices in the quadratic space (V, ϕ) over
k with stabilizers D,D′ ⊂ Gϕ

A
respectively. Then

Mass(Λ, ϕ)

Mass(Λ′, ϕ)
=

vol(D′
h
)

vol(Dh)
,

where the local volumes are defined by vol(Dv) =
∫
Dv

ω̃G.

Proof. This follows by combining (5.7) with the remarks after (2.8). �

Lemma 6.2. Suppose Dp is an open compact subgroup of Gϕp and α ∈ G̃ϕp , then
vol(Dp) = vol(α−1Dp α).

Proof. This is equivalent to showing that the volume form ωG on Gv is invariant
under conjugation by α. To see this holds, following the procedure of §2 we can

realize G as a fibre of the map F : G̃v → k×v given by F(g̃) = ξ(g̃), which gives

ω �G = ωG ∧ F
∗(dξξ ). Since G̃v is unimodular and dξ

ξ is clearly invariant under

conjugation, we see that ωG is also invariant. �

Theorem 6.3. Suppose (Λ′, ϕ) is a non-degenerate a-maximal lattice of dimension
n ≥ 3 defined over a number field k. Then

Mass(Λ′, ϕ) = Mass(Λ, ϕ)

where (Λ, ϕ) is a maximal lattice, and ap satisfies the following conditions:

If n is odd, then ap is a square,

If n is even and tp = 2, then ap is a norm from Kp = kp

(√
(−1)

n
2 dp

)
.

This mass is explicitly given in Theorem 5.1.

Proof. By Lemmas 6.1 and 6.2, it suffices to show for all primes p that Λ′
p = g̃Λp

for some g̃ ∈ G̃ϕp , and by [Shi2, Lemma 5.9, p33] we know this is true for any two
a-maximal lattices. By comparing their values under ϕ we see that

Λp is Op-maximal ⇐⇒ g̃Λp is ξ(g̃)Op-maximal,

so the proof reduces to characterizing the set ordp(Ξp(θp)). We do this by using
the local models for (Wp, θp) in [Shi, §3.2].
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If tp is odd then we can never find a similitude of odd valuation, since if ordp(ξ(g̃))
is odd then taking determinants gives ordp(det(g̃)2) = ordp(ξ(g̃)

tp) which is odd.
Conversely, if πp is a uniformizer in kp then we can construct π2

p in Ξ(Θp) by using
g̃ = diag[πp, · · · , πp].

If tp = 0, then (Vp, ϕp) is a direct sum of hyperbolic planes and Ξp(θp) = k×p .

If tp = 2, then (Wp, θp) ∼= (Kp, cNKp/kp
(x)) where Kp = kp(

√
− det(ϕ)) and

c ∈ k×. Therefore K×
p ⊆ G̃θp and so Ξp(θp) ⊇ NKp/Fp

(K×
p ).

If tp = 4, then (Wp, θp) ∼= (Bp, NBp/kp
(x)) where Bp is a division quaternion

algebra over kp. Since B× ⊆ G̃θp and NBp/kp
(B×

p ) = k×p , we have Ξp(θp) = k×p . �

Remark. In terms of the invariants (np, dp, cp) for the local quadratic space (Vp, ϕp),

the condition tv = 1 is equivalent to cp =
(

(−1)n/2, (−1)n/2dp

p

)
when n is odd, and

tv = 2 is equivalent to [Kp : kp] = 2 when n is even and Kp is as above.

Appendix

It will be convenient to know a few lemmas about matrices of differentials. If we
take x = (xij ) to be a matrix of functions, then we define the matrix dx to be the
matrix (dxij) of differentials of x.

Lemma A1. Let Zv be a symmetric space of the type described in §4.2 or §4.3.
Then {g ∈ Gv | gz = z for every z ∈ Zv} = {±1n}.
Proof. This is the analagous statement of [Shi2, Prop. 6.4(5)] for orthogonal groups,
and has the same proof with obvious modifications. �

Lemma A2. Let dx and dx′ be two r × t matrices of linearly independent differ-
entials, and suppose dx′ = a(dx) for some r × r constant matrix a. Then

∧

i,k

dx′ik = det(a)t
∧

i,k

dxik .

Similarly, if dx′ = (dx)a′ for some t× t constant matrix a′, then

∧

i,k

dx′ik = det(a′)r
∧

i,k

dxik .

Proof. This is well known, and follows from the action of a (resp. a′) on a column
(resp. row) vector. �

Lemma A3. Let dx and dx′ be two n× n matrices of linearly independent differ-
entials and suppose dx′ = a(dx) for some n× n constant matrix a. Then

∧

i≤k
dx′ik =

n∏

l=1

detl(a)
∧

i≤k
dxik +

∑(
terms containing at least one

factor dxik with i > k

)
.

Proof. It will be enough to analyze the columns k ≥ k0, proving inductively that
for each 1 ≤ k0 ≤ n we have

(A3.1)
∧

i≤k
k≥k0

dx′ik =

n−1∏

l=k0

detl(a)
∧

i≤k
k≥k0

dxik + Ω,
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where Ω is a sum of terms each containing at least one factor dxik with i > k.
If k0 = n then

∧

i≤k0
dx′ik0 =

∧

i≤k0

∑

j

aijdxjk0

=
∧

i≤k0

∑

σ∈Sn

aiσ(i)dx
′
σ(i)k0

= det(a)
∧

i≤k0
dxik0

since the only non-zero terms in the wedge product come from permutations of the
row index i.

Proceeding inductively, we consider the row k0 and assume (A3.1) holds for all
k > k0. Then

∧

i≤k
k≥k0

dx′ik =
∧

i≤k0
dx′ik0 ∧

∧

i≤k
k≥k0+1

dx′ik

=


 ∧

i≤k0

∑

j

aijdxjk0


 ∧




n−1∏

l=k0+1

detl(a)
∧

i≤k
k≥k0+1

dxik + Ω


 .

(A3.2)

The terms dxjk0 of
∧
i≤k0

∑
j aijdxjk0 with j > k0 cannot contribute to the term∧

i≤k,k≥k0 dxik since the entries of dx are linearly independent. Therefore the only
terms which contribute to it are the dxjk0 with j ≤ k0 and these can be written as
the following sum over permutations on the row index i:

∧

i≤k0

∑

j≤k0
aijdxjk0 =

∧

i≤k0

∑

σ∈Sk0

aiσ(i)dx
′
σ(i)k0

= detk0(a)
∧

i≤k0
dxik0 .

Combining this with (A3.2), we prove (A3.1). Our lemma then follows from (A3.1)
by taking k0 = 1. �

Lemma A4. Let dx and dx′ be two skew-symmetric n×n matrices of differentials
whose upper triangular coordinates are linearly independent, and suppose dx′ =
ta(dx)a for some n× n constant matrix a. Then

∧

i>k

dx′ik = det(a)n−1
∧

i>k

dxik .

Proof. This is proved in the same way as Lemma 3.2, the only difference being that
the computation for scalar matrices here gives det(a)n−1. �
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Lemma A5. Let dx and dx′ be two skew-symmetric n×n matrices of differentials
whose upper triangular coordinates are linearly independent, and suppose dx′ =
(dx)a for some n× n constant matrix a. Then

∧

i>k

dx′ik =

n−1∏

l=1

detl(a)
∧

i>k

dxik .

Proof. We prove by induction that

(A5.1)
∧

k<i
i≥i0

dx′ik =
n−1∏

l=i0

detl(a)
∧

k<i
i≥i0

dxik

for all 1 ≤ i0 ≤ n.
In the case i0 = n, the non-zero terms of

∧
k<n

∑
j dxnjajk come from choosing

one term dxnjajk for each k with no repetition among the j indices. Thus the j
index is a permutation of the k index, and we have

∧

k<n

∑

σ∈Sn−1

dxnσ(k)aσ(k)k = detn−1(a)
∧

k<n

∑

j

dxnk.

Now suppose i0 < n. By induction we have

∧

k<i
i≥i0

∑

j

dxijajk =


 ∧

k<i0

∑

j

dxi0jajk


 ∧




∧

k<i
i≥i0+1

∑

j

dxijajk




=


 ∧

k<i0

∑

j

dxi0jajk


 ∧




n−1∏

l=i0+1

detl(a)
∧

k<i
i≥i0+1

dxik


 .

By skew-symmetry of dx, we see that all of the terms in
∧
k<i0

∑
j dxi0jajk with

j ≥ i0 would give zero when wedged together with
∧
k<i,i≥i0+1 dxik . Thus the only

terms that contribute have the form

∑

σ∈Si0

dxi0σ(k)ajk = deti0−1(a)
∧

k<i0

dxi0k,

which together with the above proves (A5.1). Our result follows from (A5.1) by
taking i0 = 1. �

We now state two basic lemmas about volume forms on manifolds.

Lemma A6. Let F : X → Y be a map of C∞-manifolds of dimensions n and m
respectively, with rank(F ) = m. Suppose that X is a group acting on Y and the
map F commutes with this action. Choose p ∈ Y and let C = F−1(p) be the fibre
over p. Given X-invariant volume forms ωX and ωY on X and Y respectively, we
can define a unique volume form ωC on C by choosing ω ∈ (

∧n−m)∗(X) such that

(A6.1) ω ∧ F ∗(ωY ) = ωX
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and taking ωC to be the restriction ω|C of ω to C. Further, ωC is C-invariant and
when computing ωC it suffices to take forms on X with coefficients in the fibre C
over p.

Proof. In this situation, the forms on X are determined by their definition on any
neighborhood, so it is sufficient to check locally on X .

Choose a point q ∈ F−1(p) ⊂ X . Taking y1, · · · , ym to be a set of coordinates on
Y in some neighborhood of p, we can pull these back to give coordinates x1, · · · , xm
on some neighborhood of q in X . Since F−1(p) is a regular submanifold of X , we
can extend these to give a complete set of coordinates x1, · · · , xn on a possibly
smaller neighborhood of q. In these coordinates we have

(A6.2) ωX = f(x)

n∧

i=1

dxi,

(A6.3) F ∗(ωY ) = f1(x)
m∧

i=1

dxi.

From this we see that any ω on X satisfying (A6.1) must have the form

(A6.4) ω =
f(x)

f1(x)

n∧

i=m+1

dxi +
∑(

terms containing at least one
factor from {dx1, · · · , dxm}

)
.

Such an ω exists and is a volume form since both ωX and ωY are nowhere vanishing.
Uniqueness of ωC follows since x1, · · · , xm are constant on C, so all terms of (A6.4)
except the first term vanish on C.

To see the C-invariance of ωC , let c0 ∈ C act on (A6.1). This gives

c∗0 ∧ F ∗(ωY ) = ωX .

But by uniqueness of ωC we have the second part of

c∗0(ωC) = c∗0(ω)|C = ωC ,

so ωC is C-invariant.
The final assertion is easy, and can be checked in the coordinates x1, · · · , xn

above. We write f1(x) = f2(x) + f ′
2(x) where f ′

2(x) has coefficients all of which
are zero on C, and observe that the f ′

2(x) term disappears whether we restrict
coefficients before or after choosing ω. �

Lemma A7. Suppose we are in the setting of Lemma A6, and take some Fuchsian
subgroup Γ ⊆ X. We let µC , µX , and µY denote the measures associated to ωC , ωX ,
and ωY respectively. Then

µX (Γ\X) = µY (Γ\Y )µC((Γ ∩ S)\C),

where S = {x ∈ X | xy = y for every y ∈ Y }.
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