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ABSTRACT

In this paper we give an explicit formula for the mass of a quadratic form in
n > 3 variables with respect to a maximal lattice over an arbitrary number field k.
We make the technical assumption that the determinant of the form is a unit up
to a square if n is odd. The corresponding formula for £ totally real was recently

computed by Shimura [Shi].
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CHAPTER 0

SUMMARY

Our goal is to give an exact formula for the mass of the genus of a quadratic
form ¢ on a maximal lattice defined over an arbitrary number field £. In Section
2 we explain how knowledge of the Tamagawa number of the special orthogonal
group G¥ gives rise to a mass formula. Such a formula expresses the mass as
a product of local factors over all places v of k, so our problem is reduced to
computing each of these. For the non-archimedian places, these factors were
recently computed by Shimura [Shi]. We state his result in Section 3 and for
completeness include a translation between our language and his. In Section 4
we compute the archimedian factors, treating separately the 3 cases: v real, ¢
definite; v real, ¢ indefinite; and v complex. To define the factors in the last two
cases, we choose a symmetric space 3, equipped with a GY action and a non-zero
G¢ invariant volume form w3. Finally, in Section 5 we compute the mass of ¢ with
respect to a maximal lattice. We note that this formula agrees with Shimura’s in
the case of k totally real. Our results depend on several technical lemmas which

we include in the Appendix.
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CHAPTER 1

INTRODUCTION

We begin with a quadratic space (V, @) over an algebraic number field k. By
this we mean a k vector space V together with a non-degenerate quadratic form
@ :V — k. Let O denote the ring of integers of k£ and let O, denote the local
ring of integers at each place v of k. We consider (V, ¢) as well as its localizations
(Vu, ©y) given by linear extension of scalars to k,. Given a lattice A C (V, o),
we have the associated local lattice Ay = A ®0, Op C (V},9p) at each non-
archimedian place p of k. We write (A, ¢) for the restriction of the form (V, ¢) to
A, and (Ay, ¢p) for the restriction of (Vj,, ¢p) to A,.

With (V, @) as above, we let G¥ = G(¢) be the special orthogonal group of
(V, ¢) by which we mean the group of deteminant 1 invertible linear transforma-
tions of V' which preserve ¢. We also define G¥ to be the special orthogonal group
of (Vi, ¢y). Then we have a natural G¥ action on (V, ¢), and a natural G¢ action
on (V,,p,). We say that two lattices A, A’ C (V, ) are globally equivalent if
there exists g € G¥ such that A’ = gA, and locally equivalent if for each v € h,
there exists g, € G¥ such that A = g,A,. We define the genus of (A, ) to
be the set of all lattices locally equivalent to (A, ¢), and say that the classes of
(A, ) are the global equivalence classes of (A, ¢) in its genus.

Let G4 be the adelization of G¥. Then there is a natural G4 action on the
space of lattices A C (V, ¢). To see this, take g = (g,) € G4 and define gA to be

the lattice A” C (V, ¢) such that Al = g,A, for all v € h.
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Let €[ denote the (finite) set of classes in the genus of (A, ¢), and take {A%},cqr
to be a complete set of representative lattices in (V, ) for the classes of A. We
denote by I'* the group of automorphisms of (A%, ¢), defined to be those g € G¥
leaving A% invariant. If we are working with a totally definite lattice (A, ¢) over

a totally real number field, we define the mass of its genus to be

Mass(A, @) = Z [re:1]71,
a€ll

For an arbitrary lattice (A, ¢), [['® : 1] is not necessarily finite, but we would still
like to keep track of the size of I'*. To do this we let I'® act on some symmetric
space 3 and choose a measure on 3 invariant under this action. We then define
the mass in terms of the measures of the quotients I'*\ 3. So in general we define

the mass of (A, ¢) to be

(1.1) Mass(A, ) = v(I'*),

accl

where

V(1) = { [re:1]~1! if G, is compact,
T2 {£1}:1]7tvol(T*\3) otherwise.

In the case where (A, ) is a maximal lattice for (V,¢) (i.e., maximal for the
property ¢(A) C Oy), we will give an exact formula for Mass(A, ¢). This for-
mula essentially expresses the mass as a product of even integer values of the
Dedekind zeta function of k, a power of the index of A in its dual lattice, and

some gamma function factors. If 2| dimg (V') a special value of the L-function of a

certain quadratic extension of k£ also appears.



CHAPTER 1.1

SUMMARY OF NOTATION

Throughout this paper we take k£ to be a number field, Oy, its ring of integers,
and Dy the discriminant of k/Q. We denote by v a valuation (or place) of k.
We also let a and h denote the archimedian and non-archimedian places of &
respectively. Suppose p is a prime ideal in Oj lying over the prime p in Z, and
z € k. We let |z|, denote the usual p-adic absolute value of x defined by |z|, =
g4 (#) where we take ¢ = gp = [Op : 9]

We follow the convention that if we have an object R defined at a certain
valuation v, we denote it by R,. If R, is defined at each of the archimedian

valuations, we also write

Ro =[] R

vEa

For an algebraic group G defined over k, we denote the adelization of G by Ga .

If R is an arbitrary set, we denote by R]" the m X n matrices with coefficients
in R. We write the transpose of a matrix A as !A. If z is a matrix, then we
let z;; denote the entry of = in the it row and j*" column. Conversely given
numbers z;;, we let (z;;) denote the matrix whose entries satisfy (z;;)i; = zi;.

We abbreviate the diagonal matrix

ail 0 . 0
0 agy -+ 0
oo 0
0 0 0 ann
by diaglaii,--- ,ann], and denote the n x n identity matrix by 1,. Given an

arbitrary n x n matrix A and an integer [ with 1 <[ < n, we define det;(A) to
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be the determinant of the upper left [ x [ submatrix of A. If A is a matrix of
functions, we define the matrix of 1-forms dA = (dA;;). Given two n x n matrices
A and B over R, we say that A > B if the matrix A — B is positive definite, and

we set

"={AeR! |*A=A>0}.

We let (V, @) denote a non-degenerate quadratic space of dimension n over k,
and take V,, Ay, G¥,G¥,G¥ as defined in the introduction. If we choose a basis
{v1,--- ,vn} for V, we may express ¢ as the matrix ¢ = [p(vs, v;)]1<i,j<n- We also
let G~ () denote the set of invertible linear transformations of V' which preserve
the form ¢ and have determinant —1.

For convenience, we define the symbols
T = { Symmetric n x n matrices with coefficients in k} ,

X =k,

and their local counterparts T, and X, at a valuation v by replacing k by k, in
the above definition. We also let S®~! denote the unit sphere in R".

We set i = /—1 € C. For z € R we let |z] be the greatest integer < z. Also,
when there is no danger of confusion, we freely use the letters ¢, 5, k,[ as indices.
Our equations and statements are numbered first by section, then by order within

each section, with the appendix labeled by A (e.g. Lemma A2).



CHAPTER 2

THE TAMAGAWA NUMBER AND LOCAL FACTORS

The main fact that we use in our result is that the Tamagawa number 7 of the

special orthogonal group G = G¥ over any number field £ is
(2.1) (G =2 ifn>3,

where n = dimg (V). To define the Tamagawa number we first choose a measure

(dz)a on ka normalized so that

(2.2) /k ’ (dz)a = 1.

We then define the Tamagawa number of G to be

(2.3) +(G) = /G o, lwola

where wg is a non-zero left G invariant top degree differential form on G and |wg|a
is the volume element defined with respect to (dz)a. By the product formula we
see |cwg|a = |wa|a for ¢ € kX, and since wg is chosen from a 1 dimensional space,
this specifies a left G invariant measure on G independently of our choice of wg.
We call the measure associated to wg the Tamagawa measure on Ga. (For a
more detailed introduction, see [Tam], [Vos], or [Weil].)

From now on when speaking of an invariant object, we always understand this
to mean it is left invariant. For clarity we also define a volume form to be a
nowhere zero diferential form of top degree.
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In our computations, we define another measure (d'z)a by the restricted prod-

uct (d'z)a = [[,(d'z), with local measures

Haar measure on k, normalized by fop (d'z)y =1 if k, = ky,
(d'z), = { Lesbegue measure on R if k, =R,

idz A dzZ = 2 x Lesbegue measure on R? if k, =C.

Then we have fk\kA (d'z)a = |Dg|*2. So in terms of (d'z)a we have

(2.4)

Here |wg|’y is the volume element derived from weg using (d'z)a instead of (dx)a.
We now construct a suitable volume form wg on G¥. Choose a basis {v1,--- ,v,}
for (V, ) and use it to write ¢ as a matrix 9. This gives a natural map
X=kr L5 7T

(2.5)
z — txx,

whose fibre over the matrix ¢ € T is the full orthogonal group of ¢. Given the

non-zero volume forms
(2.6) wx = Ndzij,  wr= )\ dt;
i,j 1<J

on X and T respectively, we can find a form w on X such that
(2.7) wx :?*(wr_r)/\w.

Pulling w back to the fibre and then restricting to the identity component we get
a form wg on G¥. By Lemma A6, wg is a non-zero G¥ invariant volume form,
independent of our choice of w. We will use this construction many times in our

calculation.



For each v € aU h we define

1 Jo dX

(2'8) /Bv(w) = /Bv(Aa ¢) = 5 Uli)nill)v fU dT’

where dX = []; ;(dz;;), and dT' = J[;;(dt;;), are the measures associated to
wx and wr in these coordinates,
,_{?_I(U) if v € a,
I\ FY W) N{reX,|zA, =A,} ifveh,
and U is an open neighborhood of v, in T,. One should note that 3,() depends
not only on (V,¢) and v, but also on our given choice of basis for (V,¢). In our
calculations the lattice A will be fixed, so we will often supress A and write (3, (1).
We define G, to be the product of the archimedian localizations of G and use
a particular choice of volume form wg in (2.3) to define an archimedian measure
Ta ON it using [], ., lwal,. By writing (2.1) in terms of its local measures one can

prove the following result:

THEOREM 2.1. Let A be a lattice in (V, ), and 1) a matriz representing ¢ in
some basis. Then

D (N\GE) = 7(G%) [ Bu(A, )7,

a€Cl vEh
with Ta and By (A, 1) as above, and T'® defined in §1.
PROOF. This is proved in [Cas, pp380-382] when k& = Q, but the argument
there works for any number field k. In his notation 8,(A, %) = A, = 7,(0OT(A,))
and the right side of [Cas, Appendix B (4.19), p382] should read 223! T[] Ao O

pFoo 7'p

To simplify our calculations, we change basis locally so that 1), has the standard

form
([ 0 0 2711,
0 9,() 0 if kv = kp,
2711, 0
(29) (bv = to-vl/)vo-v =< -
1, 0 .
if k, =R,
L 0 _17'
L 1n if k, =C,




for some invertible matrix o, € (k,)5, where ¢,r € N satisfying either ¢ +r =n
and ¢ > r or dim(6,) 4+ 2r = n, and 6, is some anisotropic symmetric matrix with
dim(6,) < 4.

Further, if we take A to be a maximal lattice, by [Shi2, Lemma 5.6], locally we
can choose a free Op-basis for A, so that (Ap, ¢,) is represented by ¢, above. We

choose the matrices oy, so this is true.



CHAPTER 3

NON-ARCHIMEDIAN LOCAL FACTORS

The non-archmedian local factors that appear in the mass formula for a maxi-
mal lattice A have been calculated by Shimura in [Shi|, under the condition that
the determinant of ¢ is a unit up to a square if n is odd. We now show how the
local factors in [Shi] relate to the local factors fB,(Ap, ¢p) in our mass formula.

Fix a basis for V},, let 9 be the invertible n x n matrix defined over k, which
represents (Vj, ¢p) in this basis, and let A, be a lattice in (Vj, ¢p) (ie., Ay is a
compact Op-module such that Ay, ®o, ky = V). We define ,(¢)) as in §2 to be

the limit of the ratio of volumes

1 lim Ju dX
2 Uy fUdT

(3.1) Po(Ap,¥) =

where U’ is a neighborhood in X, determined by A, and an open neighborhood
U of ¢ in T,. We may also write U’ as U’(¢) to emphasize its dependence on the
matrix 1. Since we are working over a p-adic field, we have a natural choice of

neighborhoods Uj; to use for this limit, namely U; = ¢ + P; where P; = (p*)* N T}.

LEMMA 3.1. Let Ay, be as above and let c € k;. Then we have
ni1 (nt1)
ﬂp(Ap,w) |C‘P B (Apacd)) ‘ det(c 1 )‘ ﬂ (Ap,CTJ))

PrOOF. We take our limit for 3, with respect to the neighborhoods U;. Con-

sider the set

Ul($) = {z € Xy | 'zppz € ¢ + P; and zA, = A, },
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7

and notice U] (y) = U.'+0rdp (y(c¥). From this we have

byt = & 1im 12022
= — lim ——————
4 2 i—00 fU- dT
L 0o en X
= — lim
n(ntl) ]- . fUi,-}—ordp (¢) (C’ll)) dX
=lc[p > 7 lim
2 i—o0 fUi-I—ordp(c) dT
n(n2+1)
= |C‘P ﬂp (Cl/))a

which completes the proof. [
The following lemma relates our local factors to those in [Shi.

LEMMA 3.2. Let v € aUh and suppose that ' = Ay A for some invertible

n X n matriz A. Then we have

Bu(¥') = | det(A)[;™ Bu(¥).

Proor. Let Ly : X — X denote left multiplication by the matrix A and
define [A] : T — T by [A](t) = tAtA, which correspond to change of basis by A
for a quadratic form.

Fix an open set U about 9’ in T, and let V = [A]7'(U) be the coresponding
neighborhood of ¢. Then

vol (F,' (V)  wolp(U)  _ volx(F,'(V))
volp(U)  volp([A]~H(D)) volg (V)

since Fyr = [A] o Fy.
Since A, is an abstract lattice, it does not change under change of basis, so

passing to the limit as U — 9’ we have

) . volr([A]7H(U))
o) = Jim, — )
11

Bu ().



This ratio of volumes is given by computing the pull-back of the volume form wr

under the map [A]. We claim that
[A]*(wr) = det(A)" T lwy

which is to say
(3.2) /\ d(tAtA);; = det(A)™T A dt;;.

i<j 1<J
To see this notice that we already know (3.2) if we replace det(A)"™! by some
character ¢(A) on GL,(k,), since [AB] = [B][A]. By construction c(A) is a
polynomial in the entries of A. Since the only continuous characters on GL,, are
powers of the determinant, we easily verify (3.2) by checking against the scalar

matrices A =X -1,,.

With this we have

i YOI ((417H (V)

= | det(A)[2+?
e~ 7 | det(A) ;™

which proves our lemma. [

LEMMA 3.3. Suppose we have a lattice Ay C (Vy,pp) and we choose a basis
{vi, -+ ,vn} for V, such that Ay = Y o Opv;. If ¢ is the matriz representing
(Va, ¢p) in this basis and ¥ € (Ofrarp)n, then By(Ap, ) = 3ep(1), where ey(1)
is as in [Shi, §8].

PrOOF. In [Shi,§8] e,(1)) is defined in terms of points in (O, /pOyp)r, so we

n
need to show that the measures of U; and U, can be found by counting the points
of their respective images over the residue field. Since we have chosen our U; to
be a translate of P;, this is true for U;. We now show that U] is a (disjoint) union
of translates of P/ = (p;)".

Let z € X,. From Ay, = > | Opv; we see 2\, C Ay < 2 € (Op)?, and such

an z fixes A, if in addition | det(z)|, = 1. Now consider x + m with z € U] and
12



m € P/. Expanding det(z + m) and applying the ultrametric inequality, we see
|det(z+m)|, = |det(z)|, =150 (z+m)Ap, = Ay. Also *(x+m)(z+m) = p+m/
with m' € P;, hence x+m is in U]. Thus z+P] C U/, so U} is a union of translates
of P;.

With this, we can compute the measures of U; and U] by knowing the images of
their components in the quotient O, /p‘Oy. If ¢ = #(0,/pO,) and N is defined

to be the number of solutions z of *z¢z = 1) mod P/, we have

2

Jydx (7)™

q —n(n—1) .
2

= p— ZN(_
fU. dT . n(n i) q i
%)
Therefore
1 1 d.X 1 f ! dX 1 —n(n—1) .
By(¥) = = lim Jp dX 1 o1 N
20-¢ [,dT  2iooo [ dT  2i-oc

where the last equality is by definition the number 1e,(¢) in [Shi,§8]. O

Take Ay, to be a maximal lattice in (V}, ¢p), and ¢, as in §2. We are interested
in computing By (¢y). Since Ay is maximal we know 2¢, € (Op)r, so by Lemmas
3.1 and 3.3 we have

(33) Boloy) = |det(2 -1, 2CP)

By combining [Shi; Theorem 8.6(3), Proposition 3.9, (3.1.9)], we know the value

of e,(2¢p). Therefore

(3.4) Bo(p) = | det(2- 1) 57 g™"[Ap : AplE,
13



where ¢ = #(0y /pOy), & is defined by 20, = py,

= T (- a7 i1 =0,
[, (1—-g%) ift=1,
(1+g™) H:’;}l(l —q %) if £ = 2,p is unramified in K,
and jf\\; = Ay,
£={ 21+q)(1+g'™)"1 H:’;_ll(l —q~?%) ift = 2,p is unramified in K,
and Ay # Ay,
2 H;Z_ll(l —q %) if t = 2,and p is ramified in K,
201+ ) TI7 ' (1 — ¢7%) if t = 3,
C2(1+q)(1—¢' ™) [ (1 —g7%)  ift =4,

m=|n/2|, K = k(\/(—l)"/2 det(¢)), and K; ={z eV, | 2¢y(z,Ay) € Op}, For

convenience, we also state [Shi, (3.1.9)] which says
(3.5) [Ap = Ap] = |det(2¢y)]; 7,

for a maximal lattice Ay and ¢, as in (2.9).

14



CHAPTER 4

ARCHIMEDIAN LOCAL FACTORS

In this section we calculate the archimedian local factors volc(C)) appearing
in the product formula (5.7) below. To do this, for each v € a we write down
a symmetric space 3, on which G, acts transitively which is equipped with a
non-zero G, invariant volume form wz. We explicitly carry out the procedure in
§2 using wg and w3z to construct a non-zero C, invariant volume form w¢ on the
fibre C, of G, over some chosen point p, € 3,, and then evaluate f o, We-

It will be important to know our G invariant volume form in some set of coor-
dinates on G. For our calculations, we choose the coordinates given by the strictly
lower triangular matrix entries. These are known to give coordinates on an open
subset of G whose compliment has measure zero, and the associated coordinate
1-forms give a basis for the cotangent space. The matrix g~'dg is a G invariant

matrix of 1-forms under left multiplication, and so the form

(4.1) = (g7 dg)in
i>k

gives a GG invariant volume form on G. Since the space of such forms is 1 dimen-
sional, any G invariant volume form will be a constant multiple of ~,,.

We now compute the induced form wg on G¢* defined in §2.

CALCULATION 4.1. The induced form wg on G]ﬁ” 1 given up to sign by

1 1 _
wag = 2—nf7n = 2_n Hdetl(.’t) 1 /\ diL’Zk
=1 i>k
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ProOF. To compute wg, it suffices to compute any non-zero monomial © in
F*(wr). To see this, choose a non-zero monomial © = f(z) A\(; jyer @i for some
indexing set I, and let w = f(z)™! /\(i,k)e 7 dx;; be its complimentary monomial.
Then we see that F*(wr) Aw = © A w = wx since w has at least one differential
dz; in common with each of the other terms in F*(wr), so (2.7) is satisfied.

We choose to calculate the monomial © = f(z) A\;; dzik. Since we are only
interested in finding wg up to sign, it is enough to compute wg for ¢, = 1,,.

From (2.5) we have t = F(z) = *zz and so F*(dt) = *(dz)z +*z(dz). Therefore

F*(wr) = /\ Zdﬂ?jil'jk + 2;dT
i<k \ j

= © + other terms.

(4.2)

We compute © by induction on the column bound kg, showing that
(4.3) N | D dwsmn + mjidoge | =2 N\ D wjidag + 0
i<k<kg J 1<k<ko J

where ¥ is a sum of terms each of which has some dx;; factor with 7 > k.

The case kg = 1 is obvious since the left side is just 2x11dxq11. If kg > 1 we

have
(4.4)

/\ Z dil?jill?jk + .’Ejid.’rjk
1<k<ko J

= /\ Z dzj;ixik + Tjidre | A /\ Z dZji%jk, + T5idT jk,

i<k<ko—1 J 1<k=ko J

_ ko—1 E

= | 2Fo /\ E l‘jidl'jk +U | A /\ dxjil'jko + xjidxjko
i<k<ko—1 j i<k=ko J

Now let us analyze the term E = A, (ZJ dzjiTig, + xjidxjk0> appearing at

the end of (4.4). The only terms of = contributing non-zero terms to © come
16



from the column k. This is because all of the dz;, terms with k£ < kg — 1 already
appear in each term of A\, < 1 2=; #jidw i contributing to ©, and so the wedge
product of the two is zero. Also, since the entries of dz are linearly independent,
such factors dzj, must satisfy j < ko to contribute to ©. So = in (4.4) can be

replaced by

/\ Z-Tjid-'ﬂjko A\ Zdl'jkol'jko'i‘xjkodl'jko

i<k J J
(4.5) ’
=2 /\ ijidl'jk:o
i<ko \ J

Doing this, we obtain (4.3) thus completing our proof. Our claim about © follows
from (4.3) by taking ko = n. This together with Lemma A3 gives us
6=2" /\ (txda;)zk
i<k
(4.6)

=2" H det(z /\ dx;i, + other terms.
1<k

We choose w = wg as in (2.7) to be

we = o H det(x)~ /\ dx;g
(4.7) 1 l>k
~ 2_71, /\(t.’l:dl')zk,
1>k
where ~ denotes equivalence of forms restricted to G up to sign. We see that wg

satisfies (2.7) since Lemma A2 gives

(4.8) wx = /\dxzk ~ det(z /\dxzk = /\ tedr) . O
i,k i,k

17



CHAPTER 4.1

LOCAL MASS FACTORS FOR k, =R WITH ¢ DEFINITE

If v is real and @, is definite, then the change of basis in §2 gives G%* = SO, (R).
Since SO, (R) is compact, 7,(G,) is finite. We now find the measure mz of SO, (R)
with respect to wg.

Letting e; = (1,0,---,0), there is a natural map SO, (R) — S™~! sending

g+ g(er). If we let w, = A, (97 dg)i1, we have v, = wp A y,_1. It is easy to

check that w,, is the induced Riemannian volume form on $S”~! from S?~! — R”

with the usual metric ), dz? on R". The volume of S”~! < R” is known to be:

N3

n— nm
VO].Rn (S 1) = m
2

Let C be the fibre of this map over e;, then v,_1 gives the induced volume

form on the fibre. For n > 1 this map is surjective with C' = {1} x SO, _1(R),

but for n = 1 we have SO1(R) = {1} which has ; the volume of the zero-sphere

SO,
This together with Calculation 4.1 gives

1 n
m(Gr) = 527" [[volr:(st1)
=1

- I3
—o—(+) T 227
1131 't +1)
(4.1.1) I n(n+1)
= 2_(n+1) nm ‘
[T TG +1)
-1
1 n@m+yn -
=g (H r(z/2)) .
=1
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CHAPTER 4.2

LOCAL MASS FACTORS FOR £, =R WITH ¢ INDEFINITE

In this section we work with the normalized form ¢, of (2.9), and use ¢,r as
defined there. We let t = ¢ — 7, and abbreviate G as Gk.

We define the (symmetric) space 3r by

il ew

To define a Gr action on 3g, let

wGRi,yGR?,t:v+x>tyy}-

ey [ 0
B(z)=, 0 1 y, y=10 1 0 ,
[—1T 0 1TJ [% 0 %J

9 ={Y € GL,(R) 'Y ¢, 'Y = diag[4, —B] with A € S¢,B € S },
and induce a G action on 3r from the bijection

3 X GLy(R) x GL,(R) —~— 9
e A —8G) [ 1]
y Ay 0 u|’
by allowing a € Gy to act on ) by left multiplication. See [Shi2,§6] for details.
Explicitly, (4.2.1) gives the action z — az on 3r by

(4.2.2) ayB(z) = yB(az) [)\ao(z) uﬁz)} ,

for some matrices Ay (2), o (2).

Choosing a distinguished point pr = [(1):;] € 3g defines a map Fy by
T
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Gr —2 5 3p

(4.2.3)
o — apR.
If we write o € G as
a b c
(4.2.4) a=1|g e f
h | d

with a,d € R” and e € R, then our map F sends

(d—c)(d+c)™?t
(V2)ef(d+c)!

(4.2.5) o — apr =
In these coordinates the stabilizer of pg is given by
(4.2.6) Cr = {a € Gr | f= OZ,C = 0:}

For o € Cr the relation tz¢,z = ¢, implies that [ and h are also zero. Thus Cr

decomposes as

Cr = [Gr(14) x Gr(1,)] U [Gg (14) x Gz (1,)]

(4.2.7) . ({g 2},(1).

We choose the Gy invariant volume form on 3 constructed in [Shi,§4.2], given

by
(4.2.8) w3 = 6(z)"™/? /\ dzix
ik

where 0(z) = det(3 (*z + = — tyy)).

Computation of w¢ and [, we

We now compute the expression for wg on Cg = Stab(pg) described in §4. For
this it is enough, by the last part of Lemma A6, for us to consider forms whose

restrictions to the fibre Cr are equal up to sign. We write this equivalence as =.
20



From (4.2.5) we have
Fi(dz) = —(1, + (d — ¢)(d + ¢) " Vde(d + )7t
+ 1y —(d=c)(d+c) Hdd(d+c)!
~ —2,ded™?,
Fi(dy) = —(V2),df (d+ )™t = (V2), f(d+c)"*d(d + c)(d + ¢)*
~ (V2),.df d*.

Applying Lemma A2 and det(d) =~ 1 to these gives

/\Fﬁ(dl‘)zk ~ 27'2 /\dcik,
i,k i,k

I I

which together with the observation d(pr) = 1 yields
Fg(wR) ~ 2% /\dczk /\dfzk
ik ik
We recall from Calculation 4.1,
wag ~ 2°" Hdetl(a)_l /\ daik.
=1

i>k

By the construction of wg in §2 and F§ (wr) as above, and since the matrix g~1dg

of 84 is skew symmetric. we see that the volume form wg on the fibre is

n
wo 27T 2 l_Idetl(o:)_1 /\ day, /\ de;k /\dgik /\ dd;,
=1 1>k 1>k i,k 1>k

R 277 Ws0,R) N\ WSO, (R)-

By comparison with wg in §4.1 and the isomorphism (4.2.7), we find that

VOlc(C]R) = / ‘wc‘

Cr

—92.277 [/ wSOq(R)] [/ wSOT(R)]
504(R) SO, (R)

r

-1 _1
—rn 1 a(atD) E 1 re+v)
=2:27% o (k]:[lr(k/z)> 5T (Hmm) :

k=1

which completes our calculation.
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CHAPTER 4.3

LOCAL MASS FACTORS FOR £, =C

In this section we work with the normalized form ¢, = 1,, of (2.9), and denote

G?% by Gc. We define the (symmetric) space 3¢ by
Ic={z€R" |'2=—2"t22< 1}

and wish to define a G¢ action on 3¢. To do this we first define

SR A N S R

A 0

X = {X € GLy(R) Y

] with A4, B € S_'f_}.

EXTX = [

We have an injection
3c X GL,(R) x GLy(R) —— X
(4.3.1)

A0
0 p|’

(A — ) |

a

b _ab] and allow « to

Writing a = a + bi € G¢ with a,b € R, we define «(a) = [

act on z € X by left multiplication by ()
azr = (o).

By a direct calculation we see that this gives a well-defined action on the image

of (4.3.1) and can be used to define a G¢ action on 3¢ by

(4.3.2) aB(2) = (@) B(2) = B(az) [Aao(z) Mao(z)} ,
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the key observation being that ‘.(a)Ii(a) = I for a € G¢. The same calculation

shows that

Aa(2) = pa(2) = (a + b2),

which we henceforth denote by pq(2).

We choose a distinguished point pc = 0]) € 3¢. This defines a map

Ge —= 3¢
(4.3.3)

o — apc.

Writing this map out in real coordinates we see

(4.3.4) a=a+bi— —ba"",

where a,b € R!. In these coordinates the stabilizer of pc is given by
(4.3.5) Cc = Stab(pc) ={a=a+bie Gc |b=0,} =2 SO, (R).

We now construct a G¢ invariant volume form on 3¢. To do this we need to
know how the differentials transform under the map F. We begin with a few

definitions. For any two points w, z € 3¢ we let

(4.3.6) E(w,2) =1, — twez, £(z) = &(z, 2),

(4.3.7) d(w, z) = det(é(w, 2)), d(z) = 0(z, 2).
Then we have the relations

(4.3.8) "B(w)IB(2) = éz(i) ’tfg —Zs?uji)

From (4.3.8), tu(a)Ii(a) = I, and (4.3.2), we have

Cio(w)(az — aw)pe(2) = 2z — w,

"ha (W)€ (0w, ) pa(2) = §(w, 2).
23



Fixing w € 3¢, we differentiate these with respect to z and evaluate at z = w to

obtain

d(az) =" pa(2) ™" dz pa(2) ™,
§(az) = det(pa(2))720(2).

By combining these two equations and using Lemma A4, we see that the expression
(4.3.9) w3 =68(z) 7\ dzik
i>k

is a non-zero G¢ invariant volume form on 3¢.

Computation of we and [, we

We now compute the form we on Cc = Stab(pc) described in §4. By the last
part of Lemma A6, it is enough to consider forms whose restrictions to the fibre
Cc are equal up to sign. We write this equivalence as ~.

First we compute F('(w3). From (4.3.4) we have

F{(dz) = —dba™' —bd(a™1)

~dbal,

and so

N\ Fe(dz)aw = )\ (dba™t),, .

i>k i>k
From the relations defining G¢, we know that 'a ~ a~! and the restriction
of tadb to C¢ is skew symmetric, therefore so is a(‘adb)a™! = dba~'. Applying

Lemma A5 to this gives

/\ dbir, = ﬁ detl(a) /\ (db a_l)ik
=1

i>k i>k
and so

n—1
Fg(w3) = [] detu(a)™" /\ dbir
=1 1>k
24



since d(pc) = 1.
From our choice of local measure in §2, the real volume form w associated to
the complex volume form w is given by w A w. Combining this with Calculation

4.1 we have

we =270 [ [ deti(z) "  dety(2) ™" N\ (idzin, A dZir,)

=1 >k
= 2" [[deti(2) "  dety(2)™* N\ (daix A dbiy)
=1 >k

n—1
=~ 2n(n275) H detl(a)_2 /\ (daik A dbik) .
=1 >k

By the procedure in §2 for wg and F¢(w3) as above, we see the (real) volume form

we on the fibre is given by

n—1
wo = 2n(n2_5) H detl(a)_l /\ da;.
=1 >k

From §4.1, we know

n(n+1)

1 n
wg = -m 1 I'Gi/2)71t,
Lo 6= 3 IIr/2)

so we have

n(n—23) n(n—38) 1 n(n+1) - .
VOlc(C(c) = / wg =27 2 : / wg =2 2 : - 4+1 HF(]/Q)_I s
SO, (R) 2

Cc j=1

which completes our calculation.
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CHAPTER 5

THE MASS FORMULA

In this section we compute an exact mass formula for the genus of a maximal
lattice A C (V, ). We call a lattice A C (V, ¢) a maximal lattice if p(A) C Oy
and A is maximal with this property.

In order to define the mass of the genus of A, we first define symmetric spaces
3, forall v € a. If v is real and ¢, is definite, then we define 3, to be a single point
with measure one. If v is real and ¢, is indefinite or v is complex, then we define
3, as in §4.2 or §4.3 respectively. The spaces 3, come equipped with a transitive

G, action and a distinguished point p,. We use this to define a surjective map

F,:G, — 311
(5.1)
o — ap,

and denote by C, the fibre of F, over p,. We let

(52) 3 = H 311, C = H C’U7 D= (pv)UEaa

vEa vEa

and let F' denote the product map
(5.3) F:.:G, — 3.

We observe that the C = F~1(p) is the fibre of F over p.

We define the mass of a quadratic form (V, ¢) with respect to a lattice A to be

(5.4) Mass(A, ¢) = Z v(IT'?)

a€eCl
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where

[re:1]1! if Ga is compact,
63 =

[[eN {1} : 1]7vol(T'*\3) otherwise.

We now compute Mass(A, ) in the case where the lattice A is maximal. By

Lemma A7 applied to F', for each class a in the genus of A we have
Ta(T*\Ga) = volg((I'* N S)\Ca)volz(I'*\3),

where S = {g € Ga | gz = z for every z € 3}. By Lemma Al, S = {(£1), vea}

so we have
(5.6) Ta(T*\Ga)volg(Ca) ™! = [T N {£1} : 1] 'vol3(T*\3).

This together with Theorem 2.1 and our previous calculations gives

Mass(A, ¢) = *yolg(Ca) ™! 1] 8.A %)~
vEh
(5.7) - B
= 2| Dy [ vole(@o) ™ ] Bo(A, )™
vEa vEh

THEOREM 5.1. Let (V,p) be a non-degenerate quadratic space of dimension
n > 3 defined over a number field k of degree d over Q. Then the mass of (V, )

with respect to a maximal lattice A C (V, p) is given by

nflJ

2

n—1)? (25— 1)) ~ e
Mass(A, o) = 2/D |7 | T 1Dkl? (%) Gr(2) | A A= [T

J=1 (

vle
H bf H 2_ ('n—1)2(n—2) n(n+1 H J/2
vEa vcomplex j=1
{ 2_(%)d Zf21’n
1 _nqd
[Di? [(5 = DM2m) 2] L(5,%)  if 2ln,



where r, and t, are defined by the normalization of ¢, in §2,

ri(s) = w7 [[ TG - /),
A={z eV |20(z,A) € O},

Ty n (n—ry)ry 7“11) v

b =2 1 Ty, (ro/2)Ty, (n/2)~"

¢ is the product of all prime ideals for which A, # Ay, Ck(s) and L(s,x) are

zeta and L-functions over k, x is the non-trivial Hecke character on Gal(K/k)

associated to the extension K /k where K = k(+/(—=1)"/2 det(¢)), and \, is defined

by
(1 ift, =1,
2711+ YA+ gt™ (1 + ¢ ™) ift, = 2,p is unramified in K,
- and A, # Ay,
Y 2-1 ift, =2, and p is ramified in K,
27 1+ (1 —g7™) if ty =3,
(271 +g) ML —g"™ (L —g ™) ity =4,

where q is the norm of the prime ideal at v € h and m = |3 ].

Proor. To avoid excessive algebra, we prove this formula in 3 parts.
Part 1: First we prove the case where ¢, is a positive definite at all v € a. In

this case C, = G, for all v € a, so by (5.7) we have

Mass(A, p) = 2|Dy,| " H Bo(@) ] Bo(A, )71

vEa veEh

1
By (2.9), ¢, = to,to, and |det(oy)|, = (%) *. Combining this with

Lemma 3.2 we have

2Dy |27 H(\det( o det () |2 Bu () )

vEa

H(\deum ' det(0) )2 By (A v,asv)-l),

vEh
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which by the product formula and det(¢,) = £1 for all v € a, gives

21Dk T] B (80) ™ TT (Idet(@) ™ Bu(Av, )77

vEa vEh

Substituting (3.4) and (4.1.1), using (3.5), and noticing J[,, 2" = 2", we get

d
n(n 1) n('n+1 n ~ n—1
2/ ( IIr m) K2

Ln 1
(”d 11« 2’)H*){ 2,%)

vle

Rearranging terms, and using (3.5), we get

—1
=1

d
2| Dy,| = (2 (n— 1)d) (w"ﬁ?“) HF(j/2)) H Co(21)
[A: A" H)\ {

o 5:X)
o (o 125 25— N\
=2|Dk‘ o (2 ) H (W) Ck(2.7)
2% d
A Ay
[ ] H { [2n 1(n 1)!(277)—%}dL(%,X)
g [ ( ) <k<2.7)] A=A ]
[le vle
{ 2—(nT_1)d
(2 — 1)1em) 3] L(2,x)
= 2|y 15 H D?( &) @(23)] A A= ]
vle

if 21 n,
if 2|n.

if 24 n,
if 2|n,

if 24 n,
if 2|n,

if 24 n,
if 2|n,

if 24,
if 2|n.



Part 2: Now suppose that all v € a are real, but perhaps ¢, is indefinite at
some v. Take

W=2"21 =2 I, (r,/2)y, (n/2)7"!

as above where r,, is defined by the normalization of ¢, in (2.9). For each indefinite
v, we add an additional factor of b¥ from the formula in part 1, which is seen by

observing

n
volg(Cy) ™t = o HI‘(j/2) by
j=1

and that b¥ =1 if v is definite. Combined with the previous formula this proves
the case where all v € a are real.

Part 3: Finally consider arbitrary v € a. We define r, = 0 for v complex,
and so for such v we have b¥ = 1. Since each complex place replaces two real
places in the totally real formula, we again have a correction factor. The relevant

calculation to check for v complex is

2
n

n
Volc(cv)_l _ 27T—n(zb+1) Hr(j/2) 2_(n— )2(7»— )7Tn(n4+ ) HF(]/2)_1 bf
j=1 j

J=1

This together with Part 2 proves the theorem. [

One interesting application of this is to the case of an indefinite quadratic form
(A, ) in n > 3 variables with A a maximal lattice. In this case our formula gives
the volume of the quotient I'*\ 3 using known facts about the spinor classes and

genus. The main fact we need is:

o For (A, p) indefinite with dim(V') > 3, each spinor genus contains only one

class. I.e., the classes and the spinor genera coincide.
COROLLARY 5.2. Let (A, ¢) be an indefinite quadratic form with dim(V') > 3,

D the subgroup of Ga stabilizing A, and A a maximal lattice. Then

vol(T*\3) = e [kx : k™ o(D)] Mass(A, ¢)
30



where o is the spinor norm map G{ — kjx /(kx)? (see [Shi, (2.1.1)]) and € is
either 1 or 2 depending on whether dim(V') is odd or even. If k has class number

one, then

vol(T'*\3) = € Mass(A, ¢).

PRrOOF. From the fact above and [Shi, Lemma 2.3(4)] we know that the number
of classes is [k : kX0 (D)]. We also know that v(I'*) is independent of the class a
[Shi, Thrm 5.10(1)]. Finally, —1 € I'* exactly when det(—1,) = 1 which happens
iff 2| dim(V'). This proves the first assertion.

For the second part, from [Shi, Lemma 2.5] we know that kX /k*o(D) is a
quotient of the ideal class group of k. Thus if the class number of %k is one, then

kX kXo(D)] =1. O
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APPENDIX

It will be convenient to know a few lemmas about matrices of differentials. If
we take £ = (z;;) to be a matrix of functions, then we define the matrix dz to be

the matrix (dz;;) of differentials of .

LEMMA Al. Let 3, be a symmetric space of the type described in §4.2 or §4.3.

Then {g € G, | gz = z for every z € 3,} = {£1,}.

ProOF. This is the analagous statemant of [Shi2, Prop6.4(5)] for orthogonal

groups, and has the same proof with obvious modifications. [J

LEMMA A2. Let dx be an r Xt matriz of linearly independent differentials and
let dx' be related to dx by the matriz equation dz’ = a(dx) for some r Xr constant
matriz a. Then

ik

/\ dzl;, = det(a) /\ dz .-
ik

Similarly, if de’ = (dx)a’ for some t X t constant matriz a’, then

PROOF. This is well known, and follows from the action of a (a’) on a column

(row) vector. [

LEMMA A3. Let dx be an n x n matrix of linearly independent differentials

and let dx' be related to dr by the matriz equation dx’' = a(dz) for some n x n
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constant matriz a. Then

terms containing at least one
/<\k dugy, = H deti(a /<\k A + Z ( factor dx;, with 1 > k ) ’
% 1<

ProoF. We write
n
/ /!
Netcio= A\ N
i<k k=1i<k

It will be enough to analyze the columns k£ > kg, proving inductively that for each

1 < kg < n we have

(A3.1) N\ daiy = H dety(a) J\ dzir + ©Q,

i<k 1=k i<k
k>ko k>ko

where €2 is a sum of terms each containing at least one factor dx;; with 7z > k.

If kg = n then

N dzip, = N\ D aidzn,

1<ko i<ko J

= N\ D i dzhap,

1<ko 0ES,

= det(a) /\ dx,
ZSk)o

since the only non-zero terms in the wedge product come from permutations of
the row index 3.

Now proceeding inductively, we consider the row ko and assume (A3.1) for all

k > kg. Then
(A3.2)
k>ko k>ko+1

n—1
= /\ Zaijdxjko A H detl(a) /\ dz;, + Q
i<ko j I=ko+1 i<k
k>ko+1
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The terms dzjk, of \;<y, 2°; @ijdTjk, With j > ko cannot contribute to the term
N <k,k>ko dx ;i since the entries of dx are linearly independent. Therefore the only
terms which contribute to it are the dxj, with j < ky. These can be written as
a sum over permutations on the row index z,

/\ Z aijdx ik, = /\ Z aia(i)da:;(i)ko

i<ko j<ko i<ko 0€Sk,

= detko (0,) /\ dm’iko'
1<ko

Combining this with (A3.2), we prove (A3.1). Our lemma then follows from (A3.1)
by taking ko =1. O

LEMMA A4. Let dx be a skew symmetric n X n matrices of differentials whose
upper triangular coordinates are linearly independent. Suppose dx' = *a(dx)a for
some n X n constant matrix a. Then

/\ del, = det(a)" ! /\ dz;g,.-
1>k i>k
Proor. This is proved in the same way as Lemma 3.2, the only difference

being that the computation for scalar matrices here gives det(a)”!. O

LEMMA Ab5. Let dx be a skew symmetric n x n matrices of differentials whose
upper triangular coordinates are linearly independent. Suppose dx’' = (dz)a for
some n X n constant matrix a. Then

n—1
/\ dzi, = H det;(a) /\ dz ;.
i>k 1=1 i>k

PROOF. Writing out the above in coordinates, we have A\, dziy, = Ay ; d°,; dwijaj.
We prove by induction that

(A5.1) N\ daiy, = ﬁ dety(a) /\ dzi

k<i l=ig k<i
i>140 i>140
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for all 1 <19 < n.

In the case i = n, the non-zero terms of A\, _, > ; dTnjaj; come from choosing
one term dzyja i for each k with no repetition among the j indices. Thus the j
index is a permutation of the k index, and we have

/\ Z AT o (k) o (k)k = detn—1(a) /\ denk-

k<n oc€Sp_1 k<n j

Now suppose ig < n. By induction we have

(
/\ deijajk = /\ deiojajk A /\ Zdwijajk
i

k<i j k<io j k<i
i>io i>io+1

= /\ deiojajk N H detl(a) /\ dx;k

k<io J l=ig+1 k<i
i>i0+1

By skew symetry of dz, we see that all of the terms in A, ;. Zj dz;,ja;, with
J > 1o would give zero when wedged together with A, <ii>io+1 dx;r. Thus the
only terms that contribute have the form

Z ATy 0 (k) Ok = det;,—1(a) /\ Az

oES;, k<io
which together with the above proves (A5.1). Our result follows from (A5.1) by
taking i = 1. [J

We now state two basic lemmas about volume forms on manifolds.

LEMMA A6. Let F : X =Y be a map of C°° manifolds of dimensions n and
m respectively, with rank(F ) = m. Suppose that X is a group acting on'Y and the
map F commutes with this action. Choose p € Y and let C = F~1(p) be the fibre
over p. Given X invariant volume forms wx and wy on X and Y respectively,

we can define a unique volume form wc on C by choosing w € (\"~")*(X) such

that

(A6.1) wA F*(wy) =wx
35



and taking we to be the restriction w|c of w to C. Further, we is C invariant and
when computing we it suffices to take forms on X with coefficients in the fibre C

over p.

ProOF. In this situation, the forms on X are determined by their definition
on any neighborhood, so it is sufficient to check locally on X.

Choose apoint ¢ € F~1(p) C X. Taking yi,- - , ¥m to0 be a set of coordinates on
Y in some neighborhood of p, we can pull these back to give coordinates x1, - - , T,
on some neighborhood of ¢ in X. Since F~1(p) is a regular submanifold of X, we
can extend these to give a complete set of coordinates x1,::-,z, on a possibly

smaller neighborhood of ¢. In these coordinates we have

(A6.2) wx = f(x) /\ dz;,
(A6.3) F*(wy) = f1(2) /\ dz;.

From this we see that any w on X satisfying (A6.1) must have the form

(A6.4) w=

f(z)
)

n
terms containing at least one
dx; + E .
fiz A ( )

immt 1 factor from {dz1,--- ,dzm,}

Such an w exists and is a volume form since both wx and wy are nowhere van-
ishing. Uniqueness of w¢ follows since z1, - - - , x,, are constant on C| so all terms
of (A6.4) except the first term vanish on C.

To see the C invariance of we, let ¢g € C' act on (A6.1). This gives
ey N F*(wy) = wx.
But by uniqueness of we we have the second part of

5 (we) = cg(w)le = we,
36



so wg is C invariant.

The final assertion is easy, and can be checked in the coordinates x1,--- ,z,
above. We write f1(z) = fa(z) + f5(x) where fi(z) has coefficients all of which
are zero on C, and observe that the f)(x) term disappears whether we restrict

coefficients before or after choosing w. [

LEMMA AT7. Suppose we are in the setting of Lemma A6, and take some Fuch-
sian subgroup I' C X. We let uc, px, and py denote the measures associated to

wo,wx, and wy respectively. Then

px (T\X) = py (T\Y)pc (TN S\C),

where S ={x € X |zy =y for everyy € Y}.

Proor. This follows from our choice of measures on X,Y, and C. O
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