LOCAL DENSITIES AND EXPLICIT BOUNDS FOR
REPRESENTABILITY BY A QUADRATIC FORM

JONATHAN HANKE

§1 INTRODUCTION & NOTATION

One of the oldest questions in number theory is the question of when a number
m is represented by an integral quadratic form @ in n variables, meaning that
Q(Z) = m for some T € Z™. In fact, it suffices to answer the question for any form
Q which differs from Q by some invertible integral change of variables, since they
represent the same numbers. We call the set of such forms the class of Q). To
begin to answer this question, people first considered the weaker condition of m
being locally represented by (), meaning that m is represented by ) mod p® for
all @ > 0 and also that it is represented over the real numbers R. The condition
that m is locally represented by @) leads to finitely many congruence conditions on
m. Since these are easy to check, the question then becomes when is some locally
represented m actually represented by Q7

However, in general there are finitely many classes of quadratic forms which are
locally equivalent to @ (called the genus of @), so local conditions are not enough
to determine the numbers represented by ). To answer this question, one would
need to somehow distinguish the class of ) from among these finitely many classes.

The first major quantitative result along these lines was that of Siegel, who gave
a description of a certain weighted average of representations by forms in the genus
of () as an infinite product of local factors. He further showed that these averages
are the Fourier coefficients of the Eisenstein series appearing in the theta function

(1.1) Og(z) = ) ro(m)e™m?,

mEZ

where rg(m) denotes the number of representations of m by @ (suitably normalized
in the case where the rg(m) are infinite). It is this interpretation of the Eisenstein
series that allows one to make precise effective statements, provided enough is
known about the local factors.

There is a more refined local equivalence one can use which divides the genus
into spinor genera. It is an amazing fact, again due to Siegel, that his weighted
averages above only depend on the spinor genus of ) when n > 4.

The author would like to thank Ken Ono for suggesting to him that one could obtain an
effective bound within a fixed square class when n = 3, which is how this project began. The
author would also like to thank Manjul Bhargava for many useful conversations, and his enduring
interest in the case n = 4.
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In the case where n > 3 and the form (@ is indefinite, meaning that it locally
represents both positive and negative numbers (over R), one can show that each
form in the genus of @) is its own spinor genus. So by Siegel’s weighted average
result, we have local conditions for the representability of a given number by Q).

If @ is not indefinite, then we say () is positive definite or negative definite
depending on whether () represents positive or negative numbers. By replacing
@ by —Q, we may assume () is positive definite. In this case, the spinor genus
remains a useful notion, but it does not provide as complete of an answer as when
@ is indefinite.

In this paper, we seek to give explicit lower bounds for an integer m which ensure
that m is represented by a given integral positive definite quadratic form ) inn > 3
variables. Our main interest is in the cases n = 3 and 4, since a reasonable bound in
these cases was not previously known and they allow us to compute which (spinor)
locally represented numbers are not represented by (). These bounds also help
us to describe the general representation behavior of () when n = 3. In this case,
Duke and Schulze-Pillot [Du-SP] showed an ineffective lower bound over Q, avoiding
discussion of the primes p | N and the spinor exceptional-type square classes. We
give an effective version of their result, including an effective asymptotic statement
for these square classes. For completeness, we actually give bounds for all n > 3.
In fact, we work quite generally over a totally real number field ' and only restrict
to F = Q to avoid mentioning Hilbert modular forms. However, using Hilbert
modular forms, our results could easily be extended to any totally real F'.

In §1 we introduce our notation and summarize our approach and results. In §2
we describe an explicit reduction procedure which helps us to compute the number
of solutions Q(Z) = m (mod p*), the main idea being that either Hensel’s Lemma
applies or we can divide the representation by a power of p. In §3 we review some
essential facts about modular forms that we will need, with special attention to the
Shimura lift when n = 3 where it plays a crucial role because of its close relationship
with spinor genera. In §4 we establish explicit lower bounds for the main term of our
asymptotic for rg(m). When n > 4 this comes from the Fourier coefficients of an
Eisenstein series, while when n = 3 there is an additional spinor term which comes
into play. In §5 we state our main results, which provide effective lower bounds
on m which, when satisfied, guarantee that m is represented by ). Here our main
emphasis is on n = 3 and n = 4, where such bounds provide theoretically interest-
ing and computationally useful information about the representation behavior of @
respectively. In §6 we use these results to analyze several quadratic forms. In par-
ticular, we answer affirmatively the long-standing conjecture of XXXXXXXXXX
that for Q = 22 + 3y2 + 522 + Tw? the only locally represented numbers which fail
to be represented are 2 and 22. In §7, for completeness we include some straightfor-
ward Gauss sum computations, originally due to Siegel, which we use to understand
the generic local factors f,(m).

NOTATION

We will use the standard notation C,R,Q,Z, N, p, Q, ,Z, to denote the complex
numbers, real numbers, rational numbers, rational integers, natural numbers, a
positive prime number, the completion of Q at the valuation v, and ring of integers
in Q.

Similarly, we let F,op,p, F,,0, denote a totally real number field, its ring of
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integers, a prime ideal in op, the completion of F' at the valuation v, and the
ring of integers in F;,. We note that if v is archimedian then o, = F,. We also
let ¢ = Npsg(p) = #(or/p) and 7, denote a choice of uniformizer at p. When
discussing divisibility we may abuse notation slightly, writing p | m when strictly
speaking we should write 7, | m. We denote by A and Aj; respectively the adeles
and ideles of F, and let A, =[], 04-

We abbreviate €2™%* as e(z), let C' denote the unit circle in C, and let uy
denote the N*® roots of unity. We also write a | b, ged {x;}, lem {z;}, |z], 7(m),
a(m), ¢(m), u(m) for a divides b, the greatest common divisor and least common
multiple of finitely many numbers z;, the greatest integer < z, the number of
positive divisors of m, the sum of the positive divisors of m, the Euler phi and
Moéebuis function, respectively. We write k¥ >> 1 to mean k is sufficiently large
(i-e., there is some positive constant M such that the following statements are true
when k > M).

If Z € Z™ and P is a partition of {1,--- ,n}, then for each j € P we let £ denote
the vector whose components are x; for all ¢ € j. Similarly, for any S C P we take
Zs to be the vector whose components are z; for all i € Ujes j. Implicit in this
notation is a fixed ordering of S, which we always take to be the natural ordering
on {1,---,n}.

Throughout this paper we will be considering an integral totally definite qua-
dratic form ) of dimension n over F', by which we mean a function

n
(1.2) Q(T) = Z Cij %, with ¢;; = ¢j; € F

ij=1

such that Q(F) € o for all # in some fixed op-lattice L of rank n, and for which
Q(F,) C R is either > 0 or < 0 (but not both) for all archimedian places v of F.
Since L is locally free, at each place v of F' we may choose a local basis {y;} so that

n
(1.3) L=> 0,y
i=1

In this basis we may represent () by a matrix @, as in (1.2) (denoted as @, if v
corresponds to p). At every non-archimedian place corresponding to p, we may use
Lemma 1.1 below to write @ in the local normalized form

(14) Q@) = Y m Qy()

with dim(Q;) < 2. When p t 2 we have dim(Q;) = 1, and when v is archimedian,
we may take Q = Yo, k.

Lemma 1.1. Over o, we may locally write the integral quadratic form Q) as a
direct sum of forms m,’ Q; where either Q;(z) = uz?® for someu € oy or Q;(z,y) =
az® + by + cy® with b € o, a,c € oy, and ordy(a) = ordy(c). If p 12 then the Q;
appearing are all 1-dimensional.

Proof. Follwing the method in [C-S, pp369-70] we consider the symmetric matrix
of the bilinear form associated to () with half-integral entries and integral diagonal.
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If the least p divisible entry is on the diagonal, then by elementary symmetric
row-column operations we may clear its row and column isolating it as a direct
summand. If the (strictly) least p divisible entry is not on the diagonal, we may
reorder our variables so that it is adjacent to the diagonal. Since @) is integral, this
Ty w3
B Ty
a,v € po,. Further, since the determinant ary — 82 is in %o,f, these form a basis for
the o,-module o0, and we may clear the two associated rows and columns as above
to isolate it as a direct summand. If p { 2 or ordy(a) > ord,(y), we may add the
second row-column to the first, replacing @ by @ + 28 + . When p ¢ 2 this reduces
us to the diagonal case, and when p | 2 this ensures ord,(a) = ord,(7y). Passing to
the associated quadratic form gives the desired normalized form for @ with a = «,
b =24, and ¢ = 7y in the 2 x 2 blocks. O

We now define the determinant D = Dg and level N = Ng of ). We take Dg
to be the fractional ideal of F' generated locally at each prime p by the elements
Do, = Dy = det(Qy), and Ng as the least ideal N, C o, so that Ny(2Q,) ™! is a
matrix of integral ideals whose diagonal entries lie in 20r. When the class number
of Fis 1 (e.g. FF = Q), we may choose a global basis for L in which case we can
take Do = det(Q) as an element of F, which is unique up to multiplaication by
or*. When F' = Q we will understand Dg to be such an element. We also let
Gen(Q) and Spn(Q) denote the genus and spinor genus of () respectively.

gives an upper left 2 x 2 submatrix of the form with 8 € %o,f and

Since in general Dg is not an integral ideal, it is often more convenient to discuss
its integrality properites in terms of Dag. However, Ng is always an integral ideal.

Lemma 1.2. Let Q) be an integral quadratic form over a numebr field F'. Then

for some j either v; > 1

p|Ng < p| Dy = p[2 and dim(Q;) = 1,

where Ng and Dg are respectively the level and determinant of @, and for each
prime ideal p of F we define the v; as in (1.4) above.

Proof. From the local normal form (1.4) and Lemma 1.1, we see that

vi +ordy,(2) if dim(Q;) =1
0.11) ordy(Dagy) =Y A, where N, =4 77 F SOl
(0.11)  ordy(D1q,p) ; g WHETE A, { v; if dim(Q;) =2,

and

vi+2o0rdy(2) if dim(Q;) =1
0.12 dy (Vy) = X h N = J P J ’
(0:12) ord, (Ny) mjax{ s} where A {Vj if dim(Q;) =2.

Our Lemma follows by using these formulas to check when ord,(-) > 1. O

We say that an integer m € o is represented by Q if Q(Z) = m has a solution
with & € L, and that m is locally represented by @ if it has a solution with
Z € L, for all places v of F. A prime p is said to be anisotropic (resp. isotropic)
with respect to @) when @ is anisotropic (resp. isotropic) over o,. We often omit
the explicit mention of () when our meaning is clear.

For m € Z we let (m)s denote the maximal positive divisor of m divisible only
by primes p € S. For m € op, we let Np/g(m)s denote the norm of the maximal
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integral ideal dividing mop divisible only by primes p € S. We let Iso and Aniso

respectively denote the set of isotropic and anisotropic primes of F. We also say

that m € o is supported on some set S of primes when |m|, =1for allp ¢ S.
We define

Ro(m)={Z € L|Q(Z) =m}
Ryrg(m) ={& € L/p*L | Q(Z) = m (mod p*)}

and let rg(m) = #Rq(m), rpr g(m) = #Rye g(m). Solutions (mod p*) satisfying
additional congruence conditions are denoted as above with the relevant conditions

as a superscript (e.g., Rf,fgi(m), rﬁf‘g(m), etc.). We adopt the convention that

fs=0 modp < ecither S=0orS # 0 and #s = 0 mod p. Therefore Fs Z 0
mod p implies S # 0 and Zs Z 0 mod p. When our meaning is clear, we often omit
the subscript @ to simplify our notation.

For a € o we let %) = %1 denote the usual Legendre symbol given by a’s

mod p. When F = Q, we let (%) denote the quadratic residue symbol defined in
[Sh, pp442-3], where the sign of a determines the parity of the character (9) For
a Dirichlet character ¢, we define its twist ¢(,)(-) = ¢(-) (=%) by —u.

For any fixed u € or we let ®,, denote a Hecke character on F' defined for all
primes p 12N by

-1)3D e
(()f") if n is even,

P, (p) = @n(p,u) = nt
(M) if n is odd.

When n is odd the extra 2 is unnecessary since N is already even. Also, when the
class number of F'is 1 (e.g. F' = Q) we may replace the local D, by D, in which
case ®,, is just a quadratic Dirichlet character.

We define the spaces of modular forms My (N,¢) and Sk(N,d) of weight k,
level N and character ¢. If k € Z + % then these are defined as in [Sh, pp443—4]
(however his subscript is twice ours). There is a natural (Petersson) inner product
on My (N, ¢) given by

_ 1 —— pdzdy
(16) <19 i) o IOV

assuming that the product fg is a cusp form. (We always assume y/2 > 0.)

Warning. We will often speak about a square class TZ2, Tor?, or T(A,,)?,
however this is an abuse of notation since our meaning is to allow all non-zero square
multiples of T'. Therefore, to be precise we should write T(Z — {0})%, T'(or — {0})?,
or T[], (0, — {0})? respectively.

§2 A REDUCTION FORMULA

We begin by giving a recursive procedure to compute the number of representa-
tions ryx o(m) for k >> 1 using Hensel’s Lemma and 3 reduction maps. This will
be useful later for understanding the behavior of the local factors 3, (m) appearing
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in Siegel’s product formula, and will allow us to obtain explicit lower bounds for
the growth of the Fourier coefficients of the Eisenstein series E(z) within a square
class. A simpler version of our approach can be found in [M-H, pp51-3].

Throughout this section, we fix a prime p of F' and assume @) = @, is of the
form (1.4). We also implicitly use the letter j to index the forms m,’Q; and the
vectors & appearing there.

Definition 2.0. We say that ¥ € Ryx g(m) is of Zero-type if & = 0 mod p, of
Good-type if 7r;,'j ;£ 0 mod p for some j, and of Bad-type otherwise. The set of
all such & are denoted respectively by RS (m), Ri%(m), and R (m) (which
have sizes rZi¢7 (m), r§e(m), and 150 (m)).

Our definition of Good-type solutions was motivated by the following property:

Lemma 2.1. We have

(21) et (m) = " VG (m),

for all k > 2 ord, (2) + 1.

Proof. Suppose ¥ is a Good-type solution to Q(Z) = m (mod p*), so 77;/" Z; Z£0
mod p for some j. We choose an arbitrary lift (mod p**!) for the variables outside
Z; and collect all terms outside @; together, writing them as m'.

If dim(Q;) = 1 then we wish to solve uz®> = m' mod p*+! with = z; mod p*.
By Hensel’s Lemma such a solution exists when k > 2ord,(2) + 1, and it is clearly
unique.

If dim(Q;) = 2 then we wish to apply Hensel’s Lemma as above to f = az? +
bry + cy? after choosing an arbitrary lift of one of the coordinates, say y. To
meet the criterion of Hensel’s Lemma, we must find some coordinates in which
%(x’}) # 0, which is to say that f is non-singular at #; (mod p). Checking when
both partials vanish, we see that the only possible singular point is & = (0,0),
which contradicts our assumption that Z is of Good-type. Since b is a unit, we may
even lift these solutions when £k =1. O

Let Z denote a general solution of a given type. We now describe several reduction
maps useful for understanding the number of solutions of each type, allowing the
possibility that & satisfies additional congruence conditions of the form #j = 0 or
T # 0 (mod p) for each j so long as these extra conditions are not implied or
contradicted by the reduction-type congruence conditions on Z. If such conditions
on z; are allowed for all j € S, we denote them by #s € C.

Good-type Solutions: For these we have the map

RGood,feC

o Good, fEC(m)

pk—l

(m) —— R

defined by reducing # mod p*~!. By Lemma 2.1 this is surjective with multiplicity
g" ', so the number of Good-type solutions can be computed explicitly either from
the mod p solutions (if p { 2) or from the solutions mod 4p (if p | 2).

Zero-type Solutions: These solutions are characterized by the congruence
# = 0 mod p, thus arise only when p? | m. Reduction of these solutions depends
on the map
sz,fm(m) L) Rpk—z(m/ﬁg)
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defined by #1 &' = ' —F mod pF~2.
P

This is well-defined since Wipa':’ is defined
modulo pF—1.

We observe that 7z is surjective with multiplicity ¢” since the elements Z' mod
p*~! which reduce to a fixed & are in 1-to-1 correspondence with 7' (&) under
& = mp @, and there are ¢" such Z'.

Bad-type Solutions: These arise only when p | m. To describe their reduction

we define
SOZ{]ll/J:O}, Sl:{]l”]:]-}a SQZ{J|V]22}J

and let s; = )., dim(Q;). Then the Bad-type solutions are characterized by the
(mod p) congruences ¥ # 0 and s, = 0. We will have two reduction maps 7
and 7p: which respectively correspond to division by m, and division by wg. In the
process, we introduce two auxiliary forms @' and Q" whose data is denoted with a

"or " accordingly. For these we have Q; = @} = @7 for all j.

Bad-type I: Division by =, is appropriate for the case when S; # () and Zs, # 0.
Then we have the map

Bad, #5, 20, #5,us,€C Ty Good, ¥s,us,€C
Rp"’,Q (m) Rplc—17Ql (m/ﬂ'p)

defined for each index j by

which is surjective with multiplicity ¢®**%2 since we are free to choose lifts of the
components of the image at S; U S».
Bad-type II: Division by ’/Tg is appropriate for the remaining case where either

Si=0orFs, = 0, and can occur only when S, # 0. In this case, we define the map

Ria,é 55150, 5}‘5260 (m) TR szif’oQ,’a_:;g2EC(m/7T§)

given componentwise by

gt~ v =y if j € SoUSy,

391}:17'3, I/J’-I:l/j—Z iijSQ,
which is surjective and has multiplicity ¢??~%°~%1. To see this, notice that the map
is g-to-1 over the SoUS; components by the same reasoning as for 77, and is ¢>-to-1
over the S, components since the inverse map there corresponds to multiplication
by 7rg.

Definition 2.*. We define the depth of each type of solution (i.e., Good, Zero,
Bad) of Ryx g(m) to be the maximal difference k — k' for any & € Ryx o(m) to
be mapped into Rpk, @(fﬁ) under consecutive application of the respective type of
maps ng, 7z, and 7. € {mp,wp} (for some Q and m).
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Lemma 2.2. Suppose Q is an integral quadratic form over F, p is prime ideal in
or, and m € op. Then for k >> 1 we can compute rpk’Q(m) recursively in terms
of solutions mod p (or 4p if p | 2) using the maps wg, 7z, wp', and wp». In fact,
the Good, Zero, and Bad-type depths of Ry« o(m) are bounded by k, ord,(m), and
ord,(N) + 1 respectively, where N is the level of Q.

Proof. By definition, the maps ng and 7 give Good-type solutions. The map
wz gives all types of solutions, which may be broken down into Good, Zero, and
Bad-type solutions. The image of the map wp~ is less clear, but can be written as
7 23, & Fgn 20, £5,€C Fgn=0,75,_sn 20, Fs,€C
REZZS T mf2) = Rl o™ (m/m) U R, o477 (),
where S} is the set S, with respect to the form Q" defined above. Each of these
terms can be handled recursively by considering Good-type and Bad-type solutions
with extra congruence conditions mod p of the kind we allow. The Bad-type solu-
tions of the first term can be handled by the maps 75 and 7p~ (since the condition
Tsy # 0 is trivial in the setting of 7w ), while the Bad-type solutions of the second
term only require wp/. Therefore we reduce to counting certain types of solutions
mod p (or mod 4p if p | 2).

From Lemma 2.1 the Good-type depth is bounded by k — 1, and the Zero-type
depth is clearly bounded by ord,(m) since it involves division by Tl'g and if ¥ is of
Zero-type then ordy(m) > 2. The Bad-type depth is controlled by largest v; in
(1.4) since we may have at most | %] consecutive maps 7p~ (each with depth 2),
and then possibly an additional 7p: (with depth 1). From (0.12), we see that this
is <max;{r;} +1<ordy(N)+1. O

Remark 2.2.1.

a) When 7, { m then all solutions are of Good-type.

b) When 7y, t N then all solutions are of Good-type or Zero-type.

¢) From Lemma 2.2, the Bad-type term r;}°¢,(m) has depth < ord,(N) + 1.
To guarantee the constancy of the Bad-type term as m becomes more p-
divisible, we must assume divisibility of m by an additional 7, so that all
of our Good-type solutions count representations of 0 mod p. Thus our
condition for constancy becomes ord, (V) + 2.

d) Some authors like to speak about primitive representations of m, meaning
those representations which are not a multiple of a representation of some
proper divisor of m. In our terminology, primitive represenations are those
representations not of Zero-type.

e) For k >> 1, we may use Lemma 2.1 together with the reduction maps above
to obtain recursion formulas for the number of solutions mod p* in terms
of other solutions mod p*. The factors associated to the maps 7, g, and
mpr are g2, ¢' %0, and g2 %01 respectively.

Definition 2.3. We define a number m to be p-stable if for all £k >> v, the
quantity

TﬁOOd(Wgum) _|_,r.5€ad(ﬂ_§um)
is constant for all » > 1, and

Tor(m) =0 <= TkaOd(ng) + rﬁ“d(wgm) =0.
We further define m to be stable if it is p-stable for all primes p, and S-stable if
it is p-stable for all p € S.



LOCAL DENSITIES AND REPRESENTABILITY BY A QUADRATIC FORM 9

Remark 2.3.1. From Remark 2.2.1(b) we know that all m are p-stable when p { N,
and using Lemma 2.2 and Remark 2.2.1(c) we see that all m € s, = p°™%»(N)+2 are
p-stable when p | N. (The second condition of p-stability requires the extra +1.)
Together, these imply that the ideal s = [,y 6p is a stable ideal in the sense
that m is stable for all m € s.

To do explicit calculations with Lemma 2.1 when n = 3 or 4, it is useful to have
on hand the number of solutions mod p t 2 of quadratic forms in < 4 variables
provided in Table 1 below. These can be verified by computing the appropriate
Gauss sums (see Appendix). If p | 2 then we are interested in the number of
solutions mod 4p which is not as straightforward and so must be computed on a
case-by-case basis.

Table 1 - Number of solutions mod p when p{2N, u € (op/p)*, and n < 4:

n=1 n=2 n=3 4

e
2 (0) ! a+@-1) (_fp) ¢ ¢ +qlg-1) (%

v |1 | a- ] [oea(m) | oma(s)

)

Definition 2.3.1. We say that a prime p is anisotropic for @} (or alternatively,
that @ is anisotropic at p) if for every vector Z € (F},)", we have

If this is not so, we say that a prime p is isotropic for @) (or alternatively, that
Q is isotropic at p). We denote the set of anisotropic (resp. isotropic) primes by
Aniso (resp. Iso), and often omit () when our meaning is clear.

Lemma 2.4. Suppose () is a non-degenerate integral quadratic form over F', p is
a prime ideal in o, k >> 1, and m is p-stable with p | m. Then

@ is anisotropic at p <> ryr o(m) =G (m).

Proof. Since m is p-stable and p | m, it suffices to prove the Lemma under the
assumption that m is sufficiently p-divisible, and we assume this in what follows.

(=) Suppose Q is anisotropic at p. Then we know rﬁ",‘g(m) = 0 since by Lemma
2.1 any such solution would lift to a non-zero representation of zero in oy, hence in
F,,, which do not exist by assumption.

From [OM, pp153, 167-171] (or more clearly [Ca, pp58-9] when F' = Q) we know
—D, & (Fy)? if n =2,
(2.2) (@ is anisotropic at p < ¢ € # (%) if n =3,
c= (%) and D, € (Fy)? ifn=4,

where ¢ is the Hasse invariant of ) at p. Since the norm residue symbol (“Tb)

depends only on the square classes of a and b over F},, we know () is anisotropic
exactly when the form Q" from the map 7 is anisotropic. The form Q' from g
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is obtained by multiplying @) by 7y, then changing the S; U S, coefficients within
a square class by dividing by 7Tg. Since multiplication by m, doesn’t change the
anisotropicity of @), we see that if @) is anisotropic, then so are the @', Q" arising
from it.

Using 7' and wp, the Bad-type solutions can be computed recursively in terms

of (finitely many) r g"‘g( ) for some () and . However m is assumed to be highly

p-divisible and the Bad-type depth is bounded independently of m, so each of the

’I‘G;O%i(m) must be zero which guarantees there are no Bad-type solutions. Hence

P,
ok g(m) = rf,fTQ“(m)

(<) Suppose @ is isotropic at p, so there is some non-zero vector over Fj, which
represents zero. By clearing denominators appropriately we obtain a primitive
vector F over oy,. Then #F, mod p* gives a non-Zero-type solution #; in Ry (0).
By the reduction procedure mentioned above, we may reduce #; to a Good-type
representation Zj € Rﬁ%"‘é*( ) for some auxilliary form Q*.

Since m is assumed highly p-divisible we have RG"“‘ZQ (0) = RpG,f*"‘é?* (m*) where
m™* is obtained by applying the same reduction to m, Lemma 2.1 guarantees the
existence of a Good-type representation Z» over Fy of m* for k >> 1 with &> =& =
Zp mod p. By reversing the reduction procedure with #5, we obtain a non-Zero-type

representation of m by Q). O

*

Remark 2.5. From (2.2) we see that if @) is anisotropic at p, then p | D. Since
@ is anisotropic at p <= 2(@) is anisotropic at p, Lemma 1.2 tells us that all
anisotropic primes primes divide N. Therefore if p 4 N then p is isotropic.

Remark 2.6. Due to the very simple nature of our approach, one could equally
well use these methods to understand the number of solutions rp , (m) of a homo-
geneous polynomial P(Z) of degree d in n variables, and the associated local factors
Bp,p(m) as in (4.2). In particular, one can describe 7p ;x (m) in terms of Good-type,
Zero-type, and Bad-type solutions, however the reduction procedure for Bad-type
solutions will involve d reduction maps wg) corresponding to the d possible divi-
sions of Z by powers 7ré with 1 <[ < d. However, the definitions of stability can
be made exactly as in the quadratic case, and they lead to a simple description of
the growth of the local factor 8p,(mm§”) when m is p-stable. Generalizations of
Siegel-type results to forms of higher degree have been studied by Igusa [Ig].

83 MODULAR FORMS

Throughout this section we take F' = Q and assume that n > 3.

Our interest in modular forms stems from the fact that the theta function ©g(2)
is known to be a modular form of weight n/2 on I'g(NN) for some quadratic character
X (see [An-Zh, Thrm 2.2, p61]). When n = 3 the Shimura lift will play a key role
in our analysis, so we make some related definitions before proceeding.

Definition 3.2. Supposen > 3isodd. For f(z) = > >_; a(m)e(mz) € S, /2(N, x)
and some fixed square free integer ¢ > 0 we define its Shimura lift Shi( f) =
Shi(f,t) following [Sh, p441] to be the modular form g(z) = >"°_, b(m)e(mz) €
M,,_1(N/2,x?) satisfying

o

(3.1) Z b(mo)my® = L(s — 252, ®,,) Z a(tmd)mg ®.

mo=1 mo=1
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Notice that since n is odd the character ®,, depends on t, and that x2 is the trivial
character since x is quadratic. Additionally, Shimura showed that Shi(f) is actually
a cusp form when n > 5.

Remark. This definition agrees with Shimura’s since for odd n we have x(-) = (£).

We now describe the extent to which the Shimura lift fails to be cuspidal when
n = 3. Let U(N, x) be the subspace of S3/5(NN, x) spanned by

(3.2) { =" y(m)me(hm 2)}

mEZ

where ¢ is a primitive Dirichlet character of conductor R with ¢(—1) = =1, ¢ =
®3 = x(n) on (Z/NZ)*, 4hR? | N and h > 0. Notice that the character ¢ depends
only on the square class tZ?2 containing h, and there are only finitely many ¢Z? on
which the Fourier coefficients of U(N, x) are non-zero.

It is known (see [Ci, Cor 4.10, p108]) that U (N, x) is the subspace of Sg,5(IV, x)
whose Shimura lift (for any t) is not cuspidal. We denote by U+ (N, x) the subspace
of S3/2(N, x) perpendicular to U(NV, x) under the Petersson inner product.

Our approach to understanding ©¢(2) is as follows. When n > 4 we write

(3-3) 0q(2) = E(2) + f(2)

as the sum of an Eisenstein series E(z) = ) .,ag(m)e(mz) and a cusp form
f(2), and analyze the growth of the Fourier coefficients separately. However when
n = 3, the situation is complicated by the existence of cusp forms with non-cuspidal
Shimura lift, and we write

(3-4) 0q(2) = E(2) + H(2) + f(2)

where H(2) = 3,0 an(m)e(mz) € U(N, x) and f(z) € U-(N,x). In this case,
we will also be interested in the form g = Shi(f) € S2(IN/2).

Definition 3.3. When n = 3 we say that m € tZ2 is spinor p-stable at some
prime p if ag(mp®”) = ag(m)y(p*)p” for all v > 0 with ¢ as in (3.2), and spinor
stable if m is spinor p-stable for all primes p. Notice that lem {h; | h; € tZ?} is
spinor stable. We also say that m is very p-stable if it is both p-stable (in the
sense of Definition 2.3) and spinor p-stable, and likewise say that m is very stable
if it is very p-stable at all primes.

From [Si, pp??7?] and [SP2, Satz 2, p291] respectively, we may realize the follow-
ing Fourier coefficients as weighted averages over Gen(Q) and Spn(Q) respectively:

rei(m)
2 con@ Ju@]

(3.7 ag(m) = >0,

Ear <@ (@]

ZQ’eSpn(Q) A t(m/)
(3.8) ag(m) + ag(m) = | ul( IS

ZQ’espn(Q) |[Aut(Q")]
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In fact, Kneser [Kn] (when @ is indefinite) and Hsia [Hs] (more generally) have
shown that Gen(Q) splits into two half genera consisting of equal numbers of spinor
genera, and that ag(m) + ag(m) is the same for all spinor genera in a given half
genus. By comparing (3.7) and (3.8), we see that H(z) changes sign as we switch
between these half genera.

Definition 3.5. For convenience, if ¢ is square free and there is some m € tZ2
with ag(m) # 0, then we say that tZ?2 is a spinor square class because of its
close connection with the spinor genera in the genus of Q).

We also say that a locally represented number m is of (spinor) exceptional-
type if ag(m) = |ag(m)|, and non-exceptional otherwise. We see that m is of
exceptional-type exactly when it is extremal in the sense of Lemma 4.2(a).

Remark. Schulze-Pillot [SP1] has given a complete local characterization of num-
bers of exceptional-type, extending the sufficient conditions given by Hsia in [Hs].

We will need effective upper bounds for the Fourier coefficients of a normalized
newform of weight 7. When 7 is odd this comes in two parts. Within a square class
the Shimura lift gives a good bound, but for square free numbers additional analytic
information is needed. Since the state-of-the-art for these square free estimates is
constantly changing, we include their precise statement as an assumpton in what
follows. When n is even, no assumptions are required.

Assumption 1. Suppose n > 3 is odd and f € S, /2(N,X) is an eigenform for all
Hecke operators Ty2, normalized so that a(1) = 1. Then for all square free t > 0
we have

la(t)| < Bot"s —7te
for some effective constant B; and some 0 <7 < %.
As of this writing, the best such estimates known to the author are ...

For simplicty, we adopt the following convention for decomposing a cusp form
for To(NN) as a linear combination of Hecke eigenforms.
If g(2) = >°,,>0 b(m)e(m) has integral weight k, then we write

(3.9) 9(z) = Z%‘ 9i(2)
i=1

where g;(z) = > °_, bi(m)e(m) = g(d;z) and the g}(z) are newforms normalized

so that their first Fourier coefficient is 1. By the theory of newforms [At-Le] and
Deligne’s bound on Hecke eigenvalues [De] we have |b;(m)| < 7(m)m”=", therefore

(3.11) lb(m)| < 7(m)v/m Z il

If f(z) has half-integral weight 2 with n > 3 odd, and f € UX(N,x) when
n = 3, then we write f(2) = ), fi(z) where Shi(f;,t) € Cg;(z) for every ¢, and the
gi(z) are as in the integral weight case above. Thus if g(z) = Shi(f,t), we have

9(z) = 3,7 9i(diz) where v; = ag(td7). When t is fixed, by Mdebuis inverson,
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this together with Deligne’s bound on Hecke eigenvalues [De] and 7(m/d) < 7(m)
gives the estimate

9 n2 T
(3.20) la(m)| < T(mo)*mg= Y |l
i=1
where m = tm2. However, as t varies we can use Assumption 1 to obtain
n—1 n—2
(3.21) la(m)| < B.t 5 "¢ 7(mg)’my > Z a;(d2)].
i=1

§4 SOME LOWER BOUNDS

In this section we establish precise lower bounds for ag(m) and ag(m) + ag(m)
by combining our reduction procedure with Siegel’s product formula and results
from §3. While we will only need information over Q for our main result, we
initially state and prove a bound for ag(m) more generally over a totally real
number field F', obtaining the lower bound over Q as a corollary. A precise lower
bound for ag(m) + ag(m) over F could be proved similarly by replacing §3 with
the analogous facts for Hilbert modular forms.

Following Siegel, for m € or and an integral quadratic form ) defined over F
we define the local representation density §,(m) at a place v of F' by

_ Vol (Q~1(U))
(4.1) Bo(m) = U_lf{nm} W;

where U is an open neighborhood of m € F,. (Here we use the usual measure on
R, and the Haar measure on F, normalized so that Vol(o,) = 1.) The 3,(m) give
a measure of the number of local solutions of Q(z) = m over F,. If v is a finite
place corresponding to the prime p of F, then by reduction mod p” we may rewrite

Bu(m) as

(4.2) By(m) = Tim —"2{™)

v—00 q("—l) (v—1)”’

where ¢ = Np/q(p). When n > 3, Siegel’s product formula [Si3] states that
(4.2.1) ag(m) = H,Bv(m)

where the product runs over all places v of F.

Definition 4.0. For our purposes, it will also be convenient to consider 3,(m)
which satisfy certain congruence conditions at p (i.e. B5°°%(m), By (m), etc.),
which are defined by imposing these conditions on ry»(m) in (4.2).

Definition 4.0.1. We say that m = (my), € A,, is locally represented by )
when S,(m,) # 0 for all places v of F. This is equivalent to saying ag(m) = 0
where ag(m) is defined by (4.2.1), and we understand 8,(m) to mean 3,(m,). We
similarly say that m is p-stable when m, is p-stable, and that m is stable if m is
p-stable for all primes p. We likewise extend our definition for m to be supported
on some set S of primes.
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Definition 3.4. When n > 4, for each T' € or we let Stable(T) be the set of all
prime ideals p in oF such that T is p-stable. When n = 3 and F' = Q, for each
T € Z we let VStable(T') be the set of all primes p € Z such that T is very p-stable.

Let T be a finite union of totally positive square classes t(A,, )? with ord,(t) <1
at all primes p. By Remark 2.3.1 and Definition 3.3, there is some ideal s C op
such that m is stable (resp. very stable when n = 3 and F' = Q) when m, € s, for
all primes p. By taking representatives of 7 in o /s, we can find a minimal subset
B C T such that any locally represented m € 7 can be written as m = T'(m')?
with T" € By and m' € A,,. supported on Stable(T") (resp. VStable(T")). Without
any difficulty, we may also assume that [], |T'|, =1 for all T € Br.

We will soon see that m is locally represented <= T is locally represented,
since the ratios of local factors in (4.5) are all non-zero numbers. Therefore all
T' € Bt are locally represented.

Theorem 4.1. Let ) be a totally definite integral quadratic form of dimension
n > 3 defined over a totally real number field F'.

a) When n = 3, m is locally represented, and we fix some t € op > 0, we have
the lower bound

ag(m) > 5’3 Npg((mo)rso) — for all m = tm € top?,

where

C~v _ : aE(TI) o (T
=B\ Neatmynmt L G
t(Aop) F/Q Iso pEStable(T")

p|N,pIso
More generally, if we know L(1, X)) > Cc:Npg(t)™° for some e > 0 ast runs over

square free t € op > 0, then we have

~ Npjg(t(mo)i,,))?
ag(m) > C: 50 or all m € o > 0,
where m = tm3 and
A C. (QWDXXX)[F:Q]
= i N T '
Cs CF(Q) TI;%IIIJ‘IT F/Q(( /t Anzso H C H 1 +q
pEStable(T") pIN
p/N,pIso

b) When n =4 and m is locally represented, we have the lower bound:

~ -1
ag(m) > Cs Npjo((m)rs0) H a—- for allm € op > 0,

q+1
plm, ptN
x(p)=-1
where

[F:Q]
R _ ( DXXX) Bo(T")
C — Cl TI
Y7 18, | Neyo((T7) aniso) Lr(2,X) H( X)) I &

pEStable(T")
pIN,pIso
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c) When n > 5 and m is locally represented, we have the lower bound:
ag(m) > Ch NF/Q(m)"T_2 for allm € op > 0,

where the constants én for n > 5 are given by

N (nwn DXXX>[F:Q] #{;2()% minT:eBT{ﬁn(T’)} ’Lf’I’L 18 Odd,
n = — . 3 - .
2 LF(%,C;:;LCF2()"T_2)2 mingrep, {Bn(T")} if n is even,
with 5 (1)
~ Lp("54, ®0) [1, v iyt i 1 is odd,
B,(T") = B, (T") . .
n Hp\N (1,%("))(1_ - ) if n is even.
pyp CEY

Above we take T = Jyept(Aogp)? where T C A,, is a (finite) set of totally
positive representatives for the locally represented square classes in Hp‘ N Op, and

n—2 GoodUBad (21
Lo q By (WPT )
Cy(T') = min {1, P 5,

Proof. We proceed by computing the growth of each of the local factors 8,(m)
separately, and use Siegel’s product formula to assemble our results.

At a real valuation v | 0o, Siegel [XXX] has computed

. DXXX
(4.3) Bo(m) = 2 et

2
where w,, is the volume of the n-sphere 37 27 < 1in R".

At a prime valuation v associated to p, we give a lower bound for the ratios of
local factors within a square class using our reduction formula. In estimating these
ratios, we assume m € T"0,,? for some fixed 7", and consider several cases:

m is not p-stable: In this case, applying the map 7z for k& >> 1 gives the
weaker inequality

Bp(mm?) rpe(mm}) _ rfo(mmy) 1
(49) Bom) ~ r(m) 2 relm)

p anisotropic and m is p-stable: By Lemma 2.3, p is anisotropic iff we have
equality in (4.9) above.

p isotropic and T" is p-stable: For convenience, we let v = ford,(m/T") and
let K = K(T') = pFo049Bed(72T"). By our p-stability assumption and repeated
application of the map 7z, we have

K K By (T")

(4.4) Bp(m) = K + P R e s L )
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Therefore
1\
fom) _ 1 K (7)1
(4.5) Bp(T')  qn=2¥ " B(T) = —1

= o [(1= G+ Gy 2]

where C = Cy(T") = Lo 5% Lemma 2.4 tells us that Cy > 0.

For our estimate, we would like to write

(4.6 0y < 1=Go) + Grg" 2"

< (v for all v > 0,

with a precise constant C,’J. Since this is 1 when v = 0 and approaches Cy, as v — oo
with no critical points, we may take Cj = min{1,C,}.

When ord, (T") < 1 we may easily compute Cy since there are no Zero-type or
Bad-type solutions. Then

qn—2 BpGood(m)
qn72 —1 ﬂpGood(Tl)

(4.7) Cp =

and a short computation with Lemma A1 gives the table:

Table 2 - Local constants C, for pt N appearing in (4.5)

C, for pt N n odd n even
n—2 n—2
p|T q'nq——2_1 h
n—3 n—2
"¢z 9, =N
p 1, T! q q’iI—Z—l (») n_—q2
7 —Pu(p)

Remark 4.1.0. From Table 2 we see that for n > 3 and p{ N, we have

n =3, or

c'(TY=1
(T =1 = {nz4,p+T', and B, (p) = (~1)"1,

When n = 3, we see that (4.6) is q% times qu;_ll_ L g”, or qu(‘;t% respectively.
This gives the explicit formula
Bp(m) = @" if p | T,
m .
48 = ¢ if ptT" and ¢(p) = 1,
b

¢ +2Y 0 q" if p1 7" and ¢(p) = —1,

which will be useful later.
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We now fix some T" € A,, with ord,(T") < 1 at all p t N and satisfying the
product formula [],|T'|, = 1, and consider m = T'(m')? € T'(A,,)* with m’
supported on Stable(7"). Combining our estimates fBy(m) > Cy(T")5,(T") and
(4.3), we see that

(+11) ap(m) > ap(I") Npo((m/T )= [[ o).

pEStable(T")
plso

When n = 3 and T' € t(A,, )? with ¢ square free, by Remark 4.1.0 this is

ag(T") Nrjg((mo)1so) H
NF/Q(( V Tl/t)ISO)

ag(m) > Cp(T),

peStable(T")
p|N,p Iso

and the first part of (a) follows by taking the minimum over all 7' € By with
T = t(A,;)? (which is a finite set by Remark 3.4.1).

For the remaining cases, we must establish a bound over all square classes
t(A,)2. This is related to the generic behavior of the local factors as t varies,
and depends on the parity of n. This was first investigated by Siegel [??7], who
showed that this generic behavior is related to certain special values of L-functions.

When n is even, the quadratic character ®,, associated to @ is independent of
m, and the generic part of [], 8,(m) here is essentially L(%, ®,). Explicitly, since
ordy (T") <1 at all p4 N, we can use Table 1 to compute

[ee= I1 (- =2) 11 (2 +2.0) (a2 - o9)

pIN pINT’ e p|T’, ptN 1
17 (1 20 (¢ +2.0) (s - 2.0)
a H 1 q% H n=2 n d
s w47 (45 000)
Z (1 - (I)nip)) II (1 - é
PtV ! p|T", ptN 77
@n(p)=—1
When n > 6 we can estimate this directly, getting
Npjo(T) "= T
CLE(TI) > 5/@( ) —_ H /8)3( ) H ,B'u(]-);
Le(5, ®a)Cr(55%) pin (1- 22 (1- Lz ) ol
a2 e
while for n = 4 we have
T (-2)
ag(T") > o ( 1-=).
pIN vloo pIT’,p’rN

x(p)=-1
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From Table 2 we see that Cy(T') = 1 unless p { T and ®,(p) = —1, in which
case Cy (T") is the local factor at p of (r(n—2)/Cr(252). When n > 6, this together
with (*¥11) and (4.3) gives

nmz Cp(n — 2) (Zw, DXXX) P By(T")
>N 2 R
aE(m) jatl F/Q(m) LF(%aq)n)CF(an)z MHIV (1 _ <I>"9:‘)) (1 _ "1_2>

and when n = 4 this gives

[F:Q]
Nig((m)1s0) (2ws DXXX) T')
ag(T") > o (T
2T 2 N (@) nine) Lo, H( ) II o
q pEStable(T")
p|N,pIso
1 1\ !
1—= 1+=] .
0 (-5) I (+)
p|T', ptN plm/T', ptN
x(p)=-1 x(p)=-1

Taking the minimum over all 7' € By as above gives (b) for n = 4 and the even
part of (¢) when n > 6.

When n is odd, then the generic factor is more complicated since the qua-

dratic character ®,, depends on m (or more precisely, its square free part t). Since
ordy(T'") <1at all p{ N, we have

o= I (+59) T (-2

ptN piT'N a: PN, p|T’
_ 2.(p)

_ Le("5h80) 1y L
= - —,

C-F(n 1) pIN 1

since ®,,(p) =0 for all p | T' where p4 N. From this we have

LF(”2;17¢7L) o2
— 2 ' N T Pl
Cr(n—1) F/Q( ) pl|_J[V1+ R

ag (T') >
From Table 2 we see that when n is odd, C,,(T") = 1 unless n > 5 and ®,(p) = 1,
in which case C},(T") is the local factor at p of {(n —2)/¢(25%). Combining this
with (x11) and (4.3) gives

-2 Lr("5 L 8n)(r(n—2) (n pDXXX [F:Q)

ap(m) > Npjg(m) "z 5Wn -
e R C SR HV 1+q 21

when n > 5. Taking the minimum of the 3,(T") at p | N over all T' gives (c).

NEED TO FINISH THIS...ESTIMATE FOR L(s,®,) as t =& co.....
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When n = 3 we have Cy(T") = 1 for all p{ N, so

1 [F:Q]
Nr/o(t(mo)3,,)? 2r DXXX T
ap(m) > F/QI 01 _le(l,w)( 2) Hﬂlp( ) II c@).
Nro((T'/t) Aniso) ™2 Cr(2) pIN +qp€Stab1e(T’)
p|N,pIso

If we know Lr(1,9) = Lr(1,x(t)) > C-Np/o(t)~*, then we have

F:
AP 0 L i W 9. R G
~ Nrplt)y 2) Np/o((T"/t) aniso) "% 5 1+ P
r/o(t) Cr(2) Np/o((T"/t) aniso) pIN 1 pEStable(T")
. .. . p|N,pIso
which similarly gives the second part of (a). O
Remark 4.1.1. When the class number of F' is 1, it is unnecessary to consider
the adelic square classes t(A,, )%, and we can freely replace them by the more
conventional square classes tor2. In particular, when F = Q we are dealing with
the square classes tZ2.

Remark 4.1(a). From the proof of Theorem 4.1, we can see that if m is locally
represented and p-stable, then

14

ap(mm”) — Cy(m) ap(m)q when p is isotropic,

monotonically as v — oo (meaning ag(mn3”)/q" — Cy(m) ag(m) monotonically),
and
ag(m Wg”) =ag(m) when p is anisotropic.

Lemma 4.2. Supposen =3 and F = Q.
a) We have the general inequality

laz(m)| < ap(m).

b) Given any set T C VStable(m), we have the refined inequality

lag(m)| < | I Chm) | ap(m).
p€eT,
P(p)#0

Suppose H(z) # 0 and t > 0 is the unique square free number such that ag(m) # 0
for some m € tZ?. Thent| N and

¢) ¥(p) = 0 for all anisotropic primes p.

d) If m is of exceptional-type (so m € tZ?), then Cj(m) = 1 for all primes
p € VStable(m) with ¢ (p) # 0.
Proof. To see (a), by the discussion after (3.8), if |ag(m)| > ag(m) then ag(m) >
ag(m) for some spinor genus in Gen(Q), contradicting (3.8)> 0.

For (b), welet S = {p € T | ¥(p) # 0 and Cp(m) < 1} and consider the numbers
meeS p?» with v, > 0. By simultaneously taking v, — oo for all p € S, we see
from Remark 4.1(a) that

(4.17) ag (m Hpespz”f‘) —  ag(m) H Cp(m) Hp"”,

pES peES
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and

(4.18) ‘aH (m HPESPM)

i) |aH | Hp”p
pES

Therefore (b) follows from part (a).

For (c), notice that if H(z) # 0 and ¢ (p) # 0 then ag(m) # 0 for some very
p-stable m. By Remark 4.1(a) we have ap(mp?’) = ap(m) when p is anisotropic,
while from above |ag (mp?”)| = |ag(m)|p”. Thus by (a) we must have 3(p) = 0.

Finally, if m is of exceptional-type then we have equality in (a), hence (a) and
(b) coincide and Cp(m) > 1 for all p € VStable(m) with ¢(p) # 0, proving (d). O

Remark 4.2.1. From Table 2 we see that C}, = 1 for all p{ N, so only those p | N
contribute to Lemma 4.2(b).

Remark 4.2.2. Since the character 1(-) = ®3(-) = (=22) is associated to the pair
(Q,tZ?) while the anisotropic primes are related only to @, we do not expect a
general relationship between the anisotropic primes and those primes with ¢ (p) = 0.
However, for the unique square class tZ? associated to H(z), Lemma 4.2(c) and (d)
gives that Iso C {p € VStable(T') | C,(T') = 1} C {p | ¥(p) = 0}, assuming
T' € tZ? is of exceptional-type.

Theorem 4.3. Suppose n = 3, F = Q, T € N with ag(T) # 0 and let T C
VStable(T). Then for all m = Tm? € TZ2 C tZ.2 with t square free, i supported
on T, and y(m) # 0, we write m = tm3 and have the following lower bounds for
ag(m) + an(m):

a) If T is not of exceptional-type, then

ap(m) + ag(m) > Ko(T) (mo) 150,

where
Ko(T) = (T/t);, ) [[ ¢)(T) - lau(T)|
peS
¥(p)#0
and

S = {primes p € T with p| N}.

b) If T is of exceptional-type and m is non-exceptional, then

ap(m) + am(m) > Ki(T) > 2#PESIP G | () s, Uss) atso

dl(m)s_us,
1Sd<(77l)ﬁ_ usy

where
Sy={peT|v(p)=1andptNT},
_={peT|¢(p)=—1andp{ NT},
Si={peT|ptN and ord,(T) =1},
Se={peT|p|N orord,(T) > 2},
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and

Ki(T) = ap(T) min {17 (Cp(T) —1)(g —1) } .
PES2 q
¥(p)#0
Cp(T)>1
with the minimum min' taken over all non-zero numbers.
Proof.

Suppose T is not of exceptional-type: By Lemma 4.2(c), we see that if
H(z) # 0 and ¢(p) # 0 then p is isotropic. Since 1(m) # 0, combining this with
Remark 4.1.1 and the proof of Theorem 4.1 through Remark 4.1.0, we have that

ap(m) + an(m) > ap(T) (M) 1,0 [[ C4(T) — lan(D)|

PES
P(p)#0

This together with m = mo\/t/Tv gives (a).

Suppose T is of exceptional-type: From the proof of Theorem 4.1 through
(4.8), we have

(¥1)
ag(m) = M)s, [[ | @+ D> 2d| [ | @)+ D d |as@(@)3,),
PES- d(m), | PES1 d| () p
1<d<(m)p 1<d<(m)p

and because (i) # 0 and 7 is supported on T C VStable(T'), Lemma 4.2(d) and
Remark 4.1.0 together imply

(x2) ap(T(M)3,) > ap(T) (M), 1.,
Since T is of exceptional-type, we also know
(x3) |lar(Tm?)| = ap(T) m

However, since m is not of exceptional-type, either (m)s_yus, or (Mm)s, is > 1.
For the first case we suppose (m)s_yus, > 1. Then combining (x1 — 3) gives

ap(m) — lag(m)| > an(T) (M)s,usynise p, 2FWPS-IPldg

d|(m)s_us,
15d<(77l)s_ usy
For the second case, we assume that (m)s, > 1 and (m)s_yus, = 1. Since m is not
of exceptional-type, m must be divisible by some prime p with 1(p) # 0 such that

C,(T) > 1. (Lemma 4.2(d) gives that C,(T) > 1.) For such a prime,

ap(Tp™) + an(Tp™) > ap(T)(L + Cp(T)(¢" — 1) — lan(D)l¢"

= ap(T)(Cp(T) = 1)(g" = 1)
(@@—MWDL,

> O,E(T) q
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However T'(m)2 is not of exceptional-type, so we can use (x1 — 2) to estimate

ag(m) + ag(m) from this. Taking the minimum over all such primes p, we have

S|

~ ~ ~ Co(T)=1)(g—1) |
ap(Tp™) + au(Tp™) > ap(T) ITEHSH {17( v q ) )} (m)%S+USg)ﬁIso'
1/112@920
Cp(T)>1

By combining these two cases and substuting m = mqg/t/ T, we obtain (b). O

Remark 4.3.1.

(1) It is possible that the constant Ko(T) = 0 in Theorem 4.3(a). This would
require C), < 1 for at least one prime p | N with ¢(p) # 0, and is extremal in
the sense of Lemma 4.2(b). If Cp, < 1 for more than one such prime p, then
we may still obtain a non-zero lower bound by restricting the p-divisibility
of m at any one of these primes. However if there is only one such C, < 1,
then from (4.5) for all ¥ > 0 we have

~ -, ap(D[1=Cy) +2C,p*] if an(Tp*) > 0,
waT) oy = | D= G 4261 an(Tr)

ae(T)(1 - C,) if ag(Tp*¥) < 0.

Since ap(Tp?) + ag(Tp*) > ap(T) + ag(T) by (3.8), we necessarily have

1(p) = 1. (The same argument applied to any prime with v (p) # 0 shows

that in this situation Cp(T) <1 = 4(p) = 1.) Therefore
Cp(f) ap(T) +ag(T) =0 = ap(Tp*) + ag(Tp?) is constant.

If Cp(T) ag(T) = au(T) then Theorem 4.3(a) holds with Ko(T) > 0 by
requiring ord,(m) < v for some fixed v > 0 and replacing C,(T) with

7, 2v! ~
% in the definition of Ky(T'), because these ratios are monotonically
p

decreasing to C,(T) = CZ'D(ZIN") (see Remark 4.1(a)).

(2) The constant K1(T) > 0 in Theorem 4.3(b).

Theorem 4.4. Supposen =3, F = Q, t is square free, T € tZ? is non-exceptional,
and T C VStable(T). Then for m € TZ? with m/T supported on T, we write
m = tm3 and ezactly one of the following is true:

a) There is some constant C > 0 such that

ag(m) +ag(m) > C(mo)rso for all m as above,

b) C =0 in (a) but there is a finite set of isotropic primes S' C T dividing N
(namely those where Y(p) # 0 and Cp < 1) such that (a) is true if we require m to
have a priori bounded divisibility at any given p € S'.

¢) C =0 in (a), Cp <1 only at one prime p with y(p) # 0, and

ap(Tp*) + axr(Tp®) is constant for all v > 0.

Proof. This follows from taking 7' = T in Theorem 4.3(a) and Remark 4.3.1(1). O

This occasionally bounded behavior of the main term within a spinor genus (or
more properly a half genus) motivates the following definition:
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Definition 4.5. We say that a prime p is spinor anisotropic if either p is
anisotropic or p is isotropic and there is some T' € N such that Theorem 4.4(c)
holds. If p is not spinor anisotropic we say that it is spinor isotropic. We denote
the set of spinor anisotropic (resp. spinor isotropic) primes by SpnAniso (resp.
Spnlso), and notice that p € SpnAniso = p| N.

For convenience, we collectively refer to the primes in Theorem 4.4(b) and (c)
with ¢(p) # 1 and C, < 1 as weakly spinor anisotropic. We note that the
weakly spinor anisotropic primes also divide N.

§5 MAIN RESULTS

We now state some effective lower bounds which are sufficient to ensure that a
number m is represented by a positive definite quadratic form @ in n > 3 variables.

Theorem 5.0.1. Suppose n =3, F = Q, t is square free, and tZ2 is not a spinor
square class. Then any sufficiently large locally represented m € tZ2 with a priori
bounded divisibility at the anisotropic primes is represented by Q. In fact, m is
represented when

M > M3 T((mo)Aniso)2\/m’

7((mo) 150)?

where Ms = i |7,~|)/5’3 with Cs from Theorem 4.1(a), and the ~; are defined
as in Remark 3.6 with g = Shi(f,t) and f as in (3.4).

Proof. By taking the m'* Fourier coefficients of (3.4) for any m € tZ? we have
(5.1.1) ro(m) = ag(m) + a(m).

Using Theorem 4.1(a) we obtain the non-zero lower bound

(5.1.2) agp(m) > Cs (mo)rso

with K as above.
Combining (5.1.2) with the upper bound (3.20), we see rg(m) > 0 exactly when

(5.1.5) Cs (mo)1so > T(mo)Q\/”To Z il

This simplifies to

(516) (mO)Iso T((mO)Aniso)Cj V (mO)Aniso i |72|,
3 i=1

T((m0)1s0)2

proving our assertion. O
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Theorem 5.0.2. Suppose n =3, F = Q, and tZ? is a spinor square class. Then
any sufficiently large locally represented non-exceptional m € tZ2 with a priori
bounded divisibility at the spinor anisotropic primes is represented by Q, provided
m # Tp? where T € Byz> is non-exceptional and not represented by Q, and pt N
is a prime with ¥ (p) = —1.

In fact, if m has a priori bounded divisibility at any one of the weakly spinor
anisotropic primes, say P, then m is represented when

MB 7_((WLO )Aniso’ )2 (mO)Aniso’

1 .
S N 2 min (mO)Iso’; (mO)Iso’fS_ Z d 3
7((mo)1s0) TeB,,» _
T’lrﬁ d|(mo)s_,\/T/t|d
0<d<(mo)s _

where M3 = (3;_, |vi])/Ds with D3 defined in (5.2.3), Aniso' = Aniso U {py},
Iso' = Iso — {py}, and the vy; are defined as in Remark 3.6 with g = Shi(f,t) and
f asin (3.4).

Proof. By taking the m'® Fourier coefficients of (3.4), we have
(5.2.1) rg(m) = ag(m) + ag(m) + a(m).

For each T € Biz2, we can use some part of Lemma 4.3 to establish a lower
bound for ag(m)+ag(m). Since m has bounded divisibility at some weakly spinor
anisotropic prime p,,, the lower bound in Lemma 4.3(a) is non-zero (using Remark

4.3.1(1)). By choosing T = VStable(T) — {p,} for each T and combining these
bounds, we obtain

(5.2.2) ap(m)+awm(m) > Dzmin {(M)s_,o((M)s_) — (M)s_} (M) 1s0—(5_U{pw})

where o(m) =3, 450 @ and

(5.2.3) D3 = min {K.(T)}
TEBtZQ

with € = 0 or 1 depending on the exceptional-type of T.

For convenience we let Aniso’ = Aniso U {p,} and Iso' = Iso — {py}. By
combining (5.2.2) with the upper bound (3.20), we see rg(m) > 0 exactly when

D3 min {(m)s_,o((M)s_) — (M)s_} (M)1sor—s_, > T(mg)*\/mo Z |vil-

Using m = moy\/t/ f, this can be rewritten more conveniently as

M3 T((mO )Aniso’ )2 (mO)Am'so’

1 .
< iy e i (mO)ISO'a (mO)Iso’—S_ Z d
7_((THO)I&O’) TEBWQ _
T|m d|(mo)s_, V/T/t|d

0<d<(mo)s _
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Notice that as (m)rs,r — 0o our condition for representability is satisfied unless
m = Tp2 with T € B,z2 of exceptional-type and not represented, and p prime with
pt N and ¢(p) = —1. In fact, by the proof of Lemma 4.2(b) we can see that our
lower bound (5.2.2) is only sharp if T is anti-exceptional, and otherwise we at least
have the bound from Lemma 4.2(a).

Finally, since the weakly spinor anisotropic prime p,, was chosen arbitrarily, if
Pw 18 not spinor anisotropic then by choosing other primes p,, we can see that any
sufficiently large m (with bounded divisibility at the anisotropic primes) will be
represented, since for all but finitely many m some such bound will apply. O

Theorem 5.0.3. Suppose n = 3, F' = Q, m is not in a spinor square class, and
L(1,x()) > Cat™® for some e > 0 as t > 0 runs over square free numbers. Then
under Assumption 1, m = tmJ is represented by Q) when

tﬂ_(s"‘sl),/ m s0 o~
(mo)s > Ms T((mO)Anz’so)2 vV (Mo) Anisos

T((m0)180)2

where J/\/I\3 = 5§1B5 Y la;(d;)?| with 6'3 from Theorem 4.1(a), n and B as in
Assumption 1, and the a;(d?) as defined in Remark 3.6 with g = Shi(f,t) and f as
in (3.4).

Proof. Writing rg(m) = ag(m) + a(m) as in (3.4), we have the lower bound

!

ag(m) > Catz® (mo)1s0

from Theorem 4.1(a) and the upper bound (3.21). Our result follows by combining
these bounds to ensure ag(m) > a(m). O

Remark 5.1.1. Since f has weight 3/2 we know 4 | N, sop | N < p| N/2 and
the levels of f and g = Shi(f) are divisible by exactly the same primes.

From Theorems 5.0.1 and 5.0.2, we have a good understanding of which numbers
are represented by @ within any given square class tZ2, though our information is
not complete if tZ2 is one of the finitely many (spinor) exceptional-type square
classes. Assuming the Riemann hypothesis for Dirichlet L-functions (or at least
that they have no Siegel zeros) gives the effective lower bound L(1, x()) > Cct™*°
necessary for Thoerem 5.0.3, and allows us to uniformly understand the represen-
tation behavior across all but finitely many square classes. Obtaining complete
information about the representation behavior within the (spinor) exceptional-type
square classes is more subtle and depends on understanding the behavior of the
Fourier coefficients of the cusp form f(z) in (3.4). We take up this issue in [Ha2].

Theorem 5.2. Supposen =4 and F' = Q. Then any sufficiently large locally repre-
sented m with a priori bounded divisibility at the anisotropic primes is represented
by Q. In fact, m is represented when

(M) 150 s p—1

—~ > M. niso niso — 4

iz~ Mo oanie 11525
x(p)=—1
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where My = 6;1 Sy vl Cy > 0 is as in Theorem 4.1(b), and the ~; are defined
as in Remark 3.6 with k(z) = f(z2).

Proof. By taking the m* Fourier coefficients of (3.3), we have

(5.7) ro(m) = ag(m) + a(m).
From Theorem 4.1(b) we obtain the non-zero lower bound
~ -1
(5.8) ap(m) > Ci (M) [] 1%,
PIN, p|m
x(p)=—1
while (3.11) gives the upper bound
-
(5.9) la(m)| < 7(m) vVm Y yil.
i=1
Combining these, we see that rg(m) > 0 exactly when
~ -1 r
(5.10) Citmrso [T > 7lm)vim 3~ il
ptN, plm =1
x(p)=-1

which simplifies to

(5.11) e ST | =t
4 “ p+1

7(m)

=1 ptN, p|m

x(p)=—1
giving the desired bound. O

For completeness, we state an explicit bound for the case n > 5 as well, though
there are already many such bounds available in the literature. (See [Wa] and
[Hs-Ic] for example.)

Theorem 5.2.1. Suppose n > 5 and F = Q. Then any sufficiently large locally
represented number m is represented by Q. In fact, m is represented when

n—2

mo< > > i il
(m) = C

if n is even,
n

and under Assumption 1 when
T (mo) T Be Sy [ai(d})|
7(mo)? - Cn
with the v; and a;(d?) defined at the end of §3, and C, as in Theorem 4.1(c).

Proof. Using (3.3) we can write rg(m) = ag(m) + a(m), and Theorem 4.1(c) gives
the lower bound

if n is odd,

with some én > 0. Our result follows by combining this with the upper bound
(3.20) when n is even and (3.21) when n is odd. O
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Theorem 5.3. Suppose m is locally represented and either p is anisotropic and m
is p-stable, or p is spinor anisotropic and m is very p-stable. Then

ro(mp*) = rg(m) for all v > 0.

Proof. Tt suffices to prove this for v = 1, since the theorem follows by repeated
application of this result. Notice that since every representation QQ(Z) = m gives rise
to a representation Q(pZ) = mp?, we have the general inequality rg(mp?) > rg(m).

Suppose p is anisotropic. Then by Remark 4.1(a) we have ag(mp?) = ag(m).
However (3.7) expresses ag(m) as an average of rg(m) over all Q' € Gen(Q), so
ag(mp?) = ag(m) implies rg (mp?) = rgr(m) for all Q' € Gen(Q).

Suppose p is spinor anisotropic. Then by Remark 4.1(a) and Theorem 4.4(c) we
have ag(mp?) + ag(mp?) = ag(m) + ag(m). Finally, the averaging formula (3.8)
implies rg (mp?) = rgr(m) for all Q' € Spn(Q). O

Theorems 5.1 and 5.2 allow us to determine a finite set of numbers to check
for representability, assuming bounded growth at anisotropic primes. Once this is
done, for each m which is not represented we may use Theorem 5.3 to determine the
representation behavior allowing anisotropic factors. While this does not guarantee
the existence of only finitely many numbers which are not represented (given local
representability), it does provide a practical procedure for determining the numbers
represented by a positive definite integral quadratic form in 4 variables, and also
in 3 variables assuming we restrict ourselves to a non-exceptional square class. For
computational purposes, we now state some useful inequalities.

Lemma YYY. For some fited N € N and quadratic Dirichlet character x, let
vm p—1
F. = —.
m) = o II 5

ptN,p|m
x(p)=-1

Then Fy(m) is a multiplicative function and for any prime p, we have

Fy(mp”) > Fi(m)
when either p> 11l andv > 1, p=T7or5andv>2,p=3andv >5, orp=2
and v > 11.

Proof. Clearly Fy(ab) = Fy(a)Fy(b) when gcd (a,b) = 1, so Fy(m) is multiplicative.
For the second part, we write m = m;p”* where p{m;. Then

Fy(mp”) = /i 11 —
1+ v +v)r(my) p+1
p'tN,p'|mp
x(p')=-1
v/2 (0 _
S p2(p—-1) 1+ Fy(m),
- p+1 1+wv+v

v/2
P (p—1) 14w st ;
T Thty > 1. The most restrictive case is

when 11 = 0, and we can see that this is true when either p or v is sufficiently large.
For p > 11, we see that any v > 1 will do, while for p = 2, 3,5, or 7 we must have
v > 11,5,2, or 2 respectively. O

and we are interested in when

Remark. The function Fy(m) in Lemma YYY is just the right side of the expression
in Theorem 5.2 when m = (m) s, and N is the level of Q.
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§6 EXAMPLES

We now consider the form Q = 2 + 3y? + 522 + Tw?. This form has level
N =420, and its only anisotropic place is v = co. Checking locally at p = 2,3,5,7,
we see that there are no congruence obstructions since all congruence classes (mod
8,3,5,7 respectively) have Good-type solutions. This form was originally described
by XXXX

and it is conjectured to represent all numbers which it locally represents, with the
sole exceptions 2 and 22.

Using the QFlib package for Pari/GP [Hal], we see that the relevant constants
for Theorem 3.8 are >.._, |v;| = 39.34 and C; = 2/9. Since @ has no anisotropic
primes, it suffices to simply check the representability of all m with

Jm
7(m)

< 3588,

or perhaps more easily,
Fy(m) < 177.03

To impliment this, we first check all square free numbers less than this bound.
We do this by first computing the primes involved in such a computation, and then
forming the list of square free numbers divisible only by these primes which again
satisfy our bound. With the bound 177.03 above, we find that the first — primes
are involved in our search, which leads to — square free numbers to check. The
largest of these is —.

Due to the size of these numbers, computing that many terms of the theta
function (even for a diagonal form) can be very time consuming. Since we have a
sparse set of numbers to check, we can compute individual terms of the theta series
using (—*-), where ag(m) is computed by Siegel’s formula and a(m) is computed
from explicit knowledge of the constants ; and a list of the Hecke eigenvalues of
the f; at all of the primes of interest.

Computation of the local factors at p = 2 are particularly time consuming (due
to the absence of an explicit Gauss sum), and so we list these ahead of time and
require m to have a priori bounded divisibility at 2 (which it does since it is square
free).

§7 APPENDIX

It will be useful to have on hand the following straighforward Gauss sum compu-
tations (originally due to Siegel) to compute the local densities S, (m) when p 1 2.

Lemma 7.1. Let Q(Z) = Y, a;z? be an integral quadratic form defined over a
number field F' with p { a;, and let ry(m) denote the number of solutions Q(Z) =m
(mod p). Then

g if n is odd,
0 = n—=2 %a @ . .
TP( ) qnfl 4 (q — ]_)qT ((_1)%) zfn 18 even,
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G (W) if n is odd,
rp(u) =
e ((1)%) if n s even,
where u € (o /p)* =TFy.
Proof. We let r7}(m) = ry(m) above and proceed by induction on n.
When n = 1 we check by hand that

r0)=1, riw=1+ ("p“) .

When n > 1 we assume by induction that

(7.1) P () = gt + Dot (%)

for all u € Fy where Cp41,Dny1 are independent of u, and that r”+1(0) = Cpt1
when D,, = 0.

We begin with the solutions Q(#) = 0. By allowing all but the last variable to
be freely chosen, we have

o= S r;‘(m)(1+(§>>.
m-iT-na’nzfiFgZO

Rewriting the relationship between m and z as m = —a, 412 gives
z
z an_Hz + Z an+1z (—)
z€F, z€lF, p

Since z = —an+1% is a permutation of IF, we are summing over all possible values
of @, so the first term is just ¢". To analyze the other term, we substitute (7.1,)
which gives the preliminary formula

r0) = ¢ + (g — 1)D, (“‘T+) .

We now compute r(u), and justify our inductive assumption (7.1). Suppose
7y (u) is independent of u (i.e., D, = 0), then by a similar argument to the previous
computation, we have

o 5 ()

m—+an+12=u

3 rpm) + Y rrm) (%)

meF, meF,

i (52) - 5o (=)

m#u
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Therefore r,’}“(u) has the form Cp41 + Dpga (%) where

(72) Cn+1 = qn, Dn+1 = (r;‘(O) — Cn) <%) .

Comparing this with our previous result about r}/(0) we see that in fact (7.1,1)
holds for all m € F, when D,, = 0.
Now suppose 7} (u) depends on u (i.e., D,, # 0). By induction we assume

(7.3) r(m) = Cp + Dy (%)

for all m € ;. Therefore

= 2 (e (5)) 0+ ())

m,z€F,
m-+an+12=QuU

R I )
m,z€F, p p
am—+aan4+12=Qu

perga(y) 5 () 20 )
2€F, z€F, p meF, P m,z€F, P P
m+tan+12=u

By reparameterizing, we see that each of the terms is independent of . So when
D,, # 0, (7.1,4+1) holds and D,,+1 = 0. To compute C,, in this case, we use the
formula

n+l __ rn—i-l (0) —a
4 n+1 — q p —g" =D n+1 .
(7.4) Ty (u) -1 9 S
All that remains is to determine D,. Since D; = 1, we see that Ds, =

0. When n is odd, substituting (7.4) into (7.2) we obtain the relation D,; =
q (%) D,,_1, therefore

—1)"qy ---

Dopy1 =" (()a%) o
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