Ergodic Theory and Statistical Mechanics Seminar AY20152016 (See current year)
Thursdays 2:003:30pm, Room 601, Fine Hall, Princeton University.
Contact Information:
Date: 
May 12^{th} 2016 
Speaker: 
WenLiang Tseng (National Taiwan University) 
Title: 
Ratner's theorems and applications. 
Abstract: 
In the early 1980s, Marina Ratner published three papers about horocycle
flows on the unit tangent bundle of a surface of constant negative curvature
with finite volume.
In the early 1990s, by expanding the ideas from her
study of horocycle flows, Ratner proved a series of beautiful results about
unipotent flows on homogeneous spaces.
These are Ratner Measure
Classification Theorem, Ratner Orbit Closure Theorem, and Ratner
Equidistribution Theorem.
These theorems are not only beautiful in
their own but have farreaching influence until today.
For example, the Oppenheim Conjecture proven by Gregory Margulis in 1987 can be viewed as
a special case of Ratner Orbit Closure Theorem.
The work about Arithmetic Quantum Unique Ergodicity proven by Elon Lindenstrauss in 2006 applied
Ratner Measure Classification Theorem and the Shearing propertya crucial part of
Ratner's proof.
In this talk, these theorems, the Shearing property, and how
they are used in the proof of Oppenheim Conjecture will be introduced.
If time permits, we will show how to use the Shearing property to get
finiteness of fibers of a quotient map.





Date: 
Tuesday, May 10^{th} 2016 
Speaker: 
Tuomas Sahlsten(Univeristy of Bristol) 
Title: 
Quantum ergodicity and BenjaminiSchramm convergence of hyperbolic surfaces. 
Abstract: 
Quantum Ergodicity Theorem of Shnirelman,
Zelditch and Colin de Verdière is an equidistribution result of eigenfunctions of the Laplacian in large frequency limit
on a Riemannian manifold with an ergodic geodesic flow.
We complement this work by introducing a Quantum Ergodicity theorem on hyperbolic surfaces,
where instead of taking high frequency limits, we fix an interval of frequencies and vary the geometric parameters of
the surface such as volume, injectivity radius and genus.
In particular, we are interested of such results under BenjaminiSchramm convergence of hyperbolic surfaces.
This work is inspired by analogous results for holomorphic cusp forms and eigenfunctions for large regular graphs.
Unlike in the QE theorem, our methods do not rely on pseudodifferential calculus but instead on a wave propagation approach,
which was recently considered by Brooks, Le Masson and Lindenstrauss in the graph theoretic setting.
We still employ ergodic theory in the form of exponential decay of correlations
for the geodesic flow on hyperbolic surfaces.
Joint work with Etienne Le Masson (Bristol).





Date: 
April 14^{th} 2016 
Speaker: 
Balázs Strenner (Institute for Advanced Study) 
Title: 
Algebraic degrees of pseudoAnosov stretch factors. 
Abstract: 
Consider a mapping of the torus that stretches and compresses it in two directions.
(These are called Anosov maps.)
The lift of such a map to the universal cover is the action of a matrix in SL(2,Z) on
the plane and the stretch factor is an eigenvalue of the matrix.
Therefore only quadratic algebraic integers can be stretch factors of the torus.
For higher genus surfaces, the topology of the surface still imposes constraints on
the possible algebraic degrees of the stretch factors,
but now a wider variety of degrees may appear.
In this talk, I will explain a construction that realizes stretch factors of all possible degrees.





Date: 
Friday, April 8^{th} 2016 
Speaker: 
Tim Austin (Courant Institute of Mathematical Sciences) 
Title: 
Sofic entropy and measures on model spaces. 
Abstract: 
Sofic entropy is an invariant for probabilitypreserving actions of sofic groups introduced a few years ago by Lewis Bowen.
It generalizes some parts of classical KolmogorovSinai entropy theory to actions of such groups.
But in other respects it behaves less regularly than KolmogorovSinai entropy.
After giving a short introduction to sofic entropy,
I will discuss conditions under which it is additive under Cartesian products.
It is always subadditive, but the reverse inequality can fail.
However, there is a general lower bound in terms of separate quantities for the two factor systems involved.
One of these quantities is a variant of sofic entropy,
defined using probability distributions on the spaces of good models of an action rather than individual good models.
This lower bound turns out to be optimal in a certain sense,
and it can be used to derive some sufficient conditions for the strict additivity of sofic entropy itself.





Date: 
March 31^{st} 2016 
Speaker: 
Tarek Elgindi (Princeton University) 
Title: 
Propagation of Singularities for the 2D Euler Equations. 
Abstract: 
It is well known that the incompressible 2D Euler equations have global smooth solutions starting from smooth initial data.
Existence of weak solutions is also known; however, not much is known about finer properties of weak solutions. One question we will discuss in this talk is:
what can be said about solutions of the 2d Euler equations which are initially
singular at only one point? Further open questions will also be discussed.





Date: 
March 10^{th} 2016 
Speaker: 
Dong Chen (Penn State University) 
Title: 
Positive metric entropy arises between some KAM tori. 
Abstract: 
The celebrated KAM Theory says that if one makes a small perturbation of a nondegenerate completely integrable system,
we still have a huge measure of invariant tori with quasiperiodic dynamics in the perturbed system.
These invariant tori are known as KAM tori. What happens between KAM tori draws lots of attention.
In this talk I will present a Lagrangian perturbation of the geodesic flow on a flat 3torus.
The perturbation is C^m small (m can be arbitrarily large) but the flow has a positive measure of trajectories
with positive Lyapunov exponent.
The measure of this set is of course extremely small. Still, the flow has positive metric entropy.
From this result we get positive metric entropy between some KAM tori.





Date: 
March 3^{rd} 2016 
Speaker: 
Ilya Vinogradov (Princeton University) 
Title: 
Spherical averages in the space of marked lattices. 
Abstract: 
A marked lattice is a ddimensional Euclidean lattice,
where each lattice point is assigned a mark via a given random field on Z^d.
We prove that,
if the field is strongly mixing with a fasterthanlogarithmic rate,
then for every given lattice and almost every marking,
large spheres become equidistributed in the space of marked lattices.
A key aspect of our study is that the space of marked lattices is not a homogeneous space,
but rather a nontrivial fiber bundle over such a space.
As an application, we prove that the free path length in a crystal with
random defects has a limiting distribution in the BoltzmannGrad limit.





Date: 
February 25^{th} 2016 
Speaker: 
Alex Kontorovich (Rutgers University, IAS) 
Title: 
Equidistribution of Shears and Applications. 
Abstract: 
A ``shear'' is a unipotent translate of a cuspidal geodesic ray in the quotient of the
hyperbolic plane by a nonuniform discrete group (possibly of infinite covolume).
In joint work with Dubi Kelmer, we prove the regularized equidistribution of shears under
large translates.
We give applications including to moments of GL(2) automorphic Lfunctions,
and to effective counting of integer points on affine homogeneous varieties
(in particular resolving a missing case of the EskinMcMullen/DukeRudnickSarnak machinery).
No prior knowledge of these topics will be assumed.





Date: 
February 18^{th} 2016 
Speaker: 
Elon Lindenstrauss (Einstein Institute of Mathematics, Hebrew University of Jerusalem) 
Title: 
Symmetry of entropy and rigidity of higher rank actions. 
Abstract: 
In my talk I will describe (and prove) a property of the entropy of higher rank actions on homogenous spaces. Applications to measure classification will be discussed.
Joint work with Manfred Einsiedler.





Date: 
February 11^{th} 2016 
Speaker: 
Stefan Steinerberger (Yale University) 
Title: 
New interactions between Analysis and Number Theory. 
Abstract: 
I will discuss two new (unrelated) phenomena.
(1) Taking maximal averages of functions has connections to transcendental number theory and
(2) the Ulam sequence (1,2,3,4,6,8,11,...) defined via additive combinatorics has very strange distribution behavior when multiplied with 2.571....





Date: 
February 4^{th} 2016 
Speaker: 
Jacques Verstraete (University of California, San Diego) 
Title: 
Modern developments in probabilistic combinatorics. 
Abstract: 
The use of the probabilistic method, pioneered by P. Erd\H{o}s,
has led to many remarkable developments in modern mathematics, including
such recent breakthroughs as the existence of combinatorial designs and solutions to
old problems in Ramsey Theory. In this talk, I will touch on a variety of such results,
incorporating Martingale concentration inequalities, Ergodic Theory and
Combinatorial Number Theory.





Date: 
December 10^{th} 2015 
Speaker: 
Matthew De CourcyIreland (Princeton University) 
Title: 
Random Real Algebraic Geometry. 
Abstract: 
We discuss the work of Fedor Nazarov and Mikhail Sodin on zero sets of randomly generated functions of several real variables.
They prove that there is an asymptotic formula for the number of connected components of such a set.
The ability to handle functions of more than one variable is a major breakthrough and makes it possible to study many interesting questions.
If time allows, we will also explain subsequent work of Peter Sarnak and Igor Wigman.
They give universal laws governing more refined topological questions about zero loci of random functions such
as how many components have a prescribed topology or how the components are nested inside each other.





Date: 
December 3^{rd} 2015 
Speaker: 
Tatyana Shcherbina (IAS) 
Title: 
Characteristic polynomials for 1D band matrices from the localization side. 
Abstract: 
The physical conjecture about the crossover for $N\times N$ 1D random band matrices with the band width
$W$ states that we get the same behavior of eigenvalues correlation functions as for GUE
for $W\gg \sqrt{N}$ (which corresponds to delocalized states),
and we get another behavior,
which is determined by the Poisson statistics,
for $W\ll \sqrt{n}$ (and corresponds to localized states).
The question is still open (there are some partial results only),
however,
the first part of the conjecture was proved for more accessible objects than
eigenvalues correlation functions, namely,
for the correlation functions of characteristic polynomials.
In this talk we complement this result and prove that for $W\ll \sqrt{n}$ the behavior of the second
correlation function of characteristic polynomials is different from those for $GUE$.
Joint work with Mariya Shcherbina.





Date: 
November 19^{th} 2015 
Time: 
11:00am12:00pm. 
Speaker: 
Vadim Kaloshin (University of Maryland) 
Title: 
Birkhoff Conjecture for convex planar billiards and deformational
spectral rigidity of planar domains. 
Abstract: 
The classical Birkhoff conjecture states that the only integrable convex planar domains are circles and ellipses. In a joint work with A. Avila and J. De Simoi we show that this conjecture is true for perturbations of ellipses of small eccentricity. It turns out that the method of proof gives an insight into deformational spectral rigidity of planar axis symmetric domains and gives a partial answer to a question of P. Sarnak. The latter is a joint work with J. De Simoi and Q. Wei. 




Date: 
November 12^{th} 2015 
Speaker: 
Subhro Ghosh (Princeton University) 
Title: 
Large deviations and random polynomials. 
Abstract: 
We consider large deviation principles (LDP) in the context of random polynomials. In one direction, we obtain a large deviations principle for the empirical measure of zeroes of random polynomials with i.i.d. exponential coefficients. One of the key challenges here is the fact that the coefficients are a.s. all positive, which enforces a growing number of highly nonlinear constraints on the locations of the zeroes. In another direction, we use LDP techniques to establish the existence of a surprising "forbidden region" in the intensity measure of zeroes of Gaussian random polynomials, when we condition on a "hole" of large radius. 




Date: 
October 29^{th} 2015 
Speaker: 
Maria Avdeeva (Princeton University) 
Title: 
TBD. 
Abstract: 
TBD.





Date: 
October 15^{th} 2015 
Speaker: 
InJee Jeong (Princeton University) 
Title: 
Polygonal Outer Billiards. 
Abstract: 
I will introduce the polygonal outer billiards problem,
presenting a bit of history, open problems,
and connections to other dynamical systems.
I will focus on the case of regular polygons.





Date: 
October 8^{th} 2015 
Speaker: 
Jon Fickenscher (Princeton University) 
Title: 
On Rauzy Induction: Bufetov's Questions. 
Abstract: 
Given an interval exchange transformation (IET) and a subinterval,
there arises a natural visitation matrix that relates the induced IET to the original IET.
We show that the original IET, up to topological conjugacy,
may be recovered from successive visitation matrices.
This answers a question by A. Bufetov and generalizes work
by W. A. Veech, which considered the case when the
matrices arise from Rauzy induction.
Furthermore, we provide an effective proof of Veech's result.
That is to say, we will show how to find the necessary data for an IET
given only a finite number of such visitation matrices.





Date: 
October 1^{st} 2015 
Speaker: 
Zeev Rudnick (Tel Aviv and IAS) 
Title: 
Divisor functions, function fields and Matrix Integrals. 
Abstract: 
I will examine some very classical questions on the statistics of divisor functions from a modern perspective of
function field arithmetic and Random Matrix Theory.
As a result one is able to probe new regimes in these problems, hitherto not understood even at a conjectural level.





Date: 
September 24^{th} 2015 
Speaker: 
Ilya Vinogradov (Princeton University) 
Title: 
Directions in hyperbolic and Euclidean lattices. 
Abstract: 
It is well known that the orbit of a lattice in hyperbolic nspace is uniformly
distributed when projected radially onto the unit sphere.
I consider the finescale statistics of the projected lattice points and express the limit distributions
in terms of random hyperbolic lattices.
This provides in particular a new perspective on recent results by Boca, Popa, and Zaharescu on
2point correlations for the modular group, and by Kelmer and Kontorovich for general lattices in
dimension n=2.
The results are markedly different from the analogues for Euclidean lattices,
where finescale statistics have been analyzed by Marklof and Strombergsson.
Joint work with Jens Marklof.












Last update: 20160930 