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1 Chapter 1

1.1 JF: Definitions up to Shift Spaces

Lecture date: 2014/02/17.
A is an alphabet, a finite set of symbols, with #A > 1. A word W =

w1w2 . . . wn is any string of letters in A, and ε is the empty word. Let A∗ be
the collection of all words with letters in A, including ε. We endow A∗ with
concatenation as multiplication, i.e.

UV = u1 . . . unv1 . . . vm (1)

where U = u1 . . . un and V = v1 . . . vm. We let |U | denote the length (or size)
of U and |U |a denote the number of occurrences of a in U .

Definition 1.1. For N = {0, 1, 2, 3 . . . } ⊆ Z, the set

AF = {u : u = (un)n∈F and ∀n ∈ F, un ∈ A} (2)

where F ∈ {N,Z}, is the set of one-sided sequences when F = N and two-
sided sequences if F = Z.

For a sequence u, W = w0 . . . wn is a factor of u if there exists m so that

umum+1 . . . um+n = w0w1 . . . wn. (3)

In this case, we say that W occurs in position m in u. W is a factor of word
U if there exist (possibly empty) words V and X so that

U = VWX. (4)

The language of u is

L(u) = {W ∈ A∗ : W is a factor of u} (5)

and is the set of all factors of u. The set of all factors of length n of u is Ln(u).

Definition 1.2. u is recurrent if for each W ∈ L(u), the set of occurrences of
W in u is not bounded (from either above or below if u ∈ AZ).

Example 1.3. If A = {0, 1}, define u, v ∈ AN by

un =
{

0, n is even,
1, n is odd, and vn =

{
0, n ≤ 10,
1, n > 10. (6)

We see that Ln(u) = 2 for all n and u is recurrent. However,

Ln(v) = min{n+ 1, 12} (7)

and v is not recurrent.
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Definition 1.4. A sequence u is ultimately periodic if there exists t and n0

so that
∀|n| ≥ n0, un+t = un, (8)

and u is periodic if n0 = 0. We call u shift-periodic in either case usually
use ultimately periodic to mean n0 > 0.

Example 1.5. From Example 1.3, u is periodic with t = 2 and v is ultimately
periodic with t = 1 and n0 = 11.

Definition 1.6. For sequence u, the complexity function pu : N → N is
given by

pu(n) = #Ln(u) (9)

or pu(n) is the number of factors of length n in u.

There are some fundamental facts about the complexity function:

• If d = #A, then for each n ∈ N, 1 ≤ pu(n) ≤ dn.

Because u is an infinite sequence, there mus exist a factor of length n,
namely u1 . . . un. The total number of words of length n is dn.

• For each n, pu(n) ≤ pu(n+ 1).

If U is a factor of length n at position m, then the factor of length n+ 1
at position m is of the form Ux for x ∈ A. So for every factor of U length
n, there exists at least one factor of length n+ 1 that begins with U .

We will now define AN (or AZ) as a topological space.

Definition 1.7. For AN we use the product topology T given by the discrete
topology on A.

T may be defined by many equivalent means. Define a metric on AN(or AZ)
by

d(u, v) = 2−n (10)

where n = min{|n| : un 6= vn}. T is the topology generated by this metric.
Alternately, a cylinder for word W = w0w1 . . . wn, [W ] is the cylinder generated
by W in AN,

[W ] = {u ∈ AN : u0 = w0, u1 = w1, . . . un = wn}. (11)

T is the topology generated by basis {[W ] : W ∈ A∗}. We may do the same for
AZ by defining a cylinder [V.W ] by u ∈ [V.W ] if and only if u−m . . . un = VW
where m = |V | and n+ 1 = |W |.

The topological space (AN, T ) is a complete, metric, compact and to-
tally disconnected space. To have a topological dynamical system, we
need a continuous map on this space.

Definition 1.8. For AF, F ∈ {N,Z}, the (left) shift S : AF → AF is given by(
S(u)

)
n

= un+1, ∀u ∈ AF, n ∈ F. (12)
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Example 1.9. From Example 1.3, S(u) = 10101010 . . . and S(S(u)) = u. For
k ≥ 0,

Sk(v)n =
{

1, n ≤ 10− k
0, n > 10− k. (13)

In particular, Sk(v) = S11(v) = 0000 . . . for k ≥ 11.

By verifying that d(S(u), S(v)) ≤ 2d(u, v), we see that S : AF → AF is
continuous. Furthermore, if F = Z, S is a homeomorphism. If F = N, S is
surjective, but not injective.

In this way, (AF, T , S) is a topological dynamical system. We will typ-
ically look at subspaces, (X, T , S) for X ⊆ AF such that S(X) ⊆ X. There
will be some rule or method to generate X. Our first method will be to use an
element u.

Definition 1.10. If u ∈ AN, then the orbit of u under S is

OS(u) = {Sk(u) : k ∈ N}. (14)

The (symbolic) dynamical system associated to u is (Xu, T , S) where
Xu = OS(u).

What does it mean to belong to Xu?

Lemma 1.11. (Lemma 1.1.2 in the text) If w ∈ AN, the following are equiva-
lent:

1. w ∈ Xu,

2. for each n ∈ N, there exists kn ∈ N so that w0 . . . wn appears in position
kn in u,

3. L(w) ⊆ L(u).
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1.2 JF: Measure Theory

Lecture date: 2014/02/23.

Definition 1.12. A dynamical system (X, T , T ) is minimal if and only if for
every x ∈ X, OT (x) = X, or every orbit is dense in X.

Lemma 1.13. Let u ∈ AN and (Xu, T , S) its related shift space. Then the
following are equivalent:

1. (Xu, T , S) is minimal.

2. u is uniformly recurrent (minimal), or for every n ∈ N there exists
N = N(n) so that

∀U ∈ Ln(u),W ∈ LN (u), U is a factor of W. (15)

In other words, every word appears with with bounded gaps.

3. For every w ∈ Xu, L(w) = L(u).

Example 1.14. Let A = {0, 1}N and u ∈ AN be

u = 010011000111000011110000011111 . . . (16)

or given by

un =
{

0, ∃k ∈ N, k(k + 1) ≤ n < (k + 1)2

1, ∃k ∈ N, (k + 1)2 ≤ n < (k + 1)(k + 2). (17)

(Xu, S) is not a minimal shift space. The constant sequence 0 = 000 · · · ∈ Xu

and X0 = {0} 6= Xu. 1 ∈ L(u), but there exists longer and longer words of the
form 0n = 0 . . . 0, where 1 does not appear in u.

Definition 1.15. If (X, d) is a compact metric space, let C(X) be the vector
space of continuous functions from X to C. Then a finite (positive) Borel
measure on X is any map µ : C(X)→ C such that

1. µ is linear.

2. 0 < µ(1) <∞, where 1 is the constant function with value 1.

3. If f ≥ 0, then µ(f) ≥ 0.

µ is a probability measure on X if also µ(1) = 1.
We define the notation ∫

X

f(x)dµ(x) := µ(f). (18)

Example 1.16. If x ∈ X, then the Dirac Mass at x, δx : C(X)→ C, defined
by

δx(f) = f(x) (19)

defines a probability measure on X. So the space of all measures is non-empty.
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Definition 1.17. Let MX denote the set of probability measures of X. We
endow this with the weak-* topology, which is defined by

µn → µ ⇐⇒ ∀f ∈ C(X), µn(f)→ µ(f). (20)

MX is compact and metrizable, so it is also sequentially compact.

Definition 1.18. A measure µ ∈MX is T -invariant for continuous T : X →
X if

∀f ∈ C(X), µ(f ◦ T ) = µ(f). (21)

Equivalently, if we define the measure T∗µ by T∗µ(f) = µ(f◦T ) for all f ∈ C(X),
then we say µ is T -invariant if T∗µ = µ.

MX is convex, meaning for any µ, ν ∈ M(X) and t ∈ [0, 1], tµ + (1 − t)ν
defined by

(tµ+ (1− t)ν)(f) = tµ(f) + (1− t)ν(f) (22)

is an element of MX . In fact, the set of all finite measures has the structure of
a cone: for µ, ν finite measures and a > 0, µ+ ν and aµ are measures.

We now show the following useful fact for our space X, MX contains at
least one T invariant measure.

Lemma 1.19. (1.4.2 in Text) If (X,T ) is a topological dynamical system, with
X metrizable and compact, then there exists a T -invariant probability measure
µ.

Proof. Let x ∈ X and µN be given by

µN :=
1
N

N−1∑
j=0

δT jx. (23)

We check that each µn ∈ MX . By compactness, we may choose a convergent
sub-sequence KN ↗∞ and define

µ = lim
N→∞

µKN . (24)

We may check that for each f ∈ C(X), T∗µ(f) = µ(f) and so T∗µ = µ.

We have another notion of measure that is given in analysis courses. We will
talk about its definition, and how it relates to the above definition for our case.

Definition 1.20. For a set X, let P(X) be the power set of X. A set B ⊆ P(X)
is a σ-algebra if:

1. ∅ ∈ B.

2. ∀A ∈ B, X \A ∈ B.

3. ∀A1, . . . , An, · · · ∈ B,
∞⋃
n=1

An ∈ B.
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Generally, σ-algebras are difficult to write down. We would like to develop
such an algebra from a set that is easier to describe:

Definition 1.21. If B′ ⊂ P(X), then we define the σ-algebra generated by
B′ to be

B(B′) =
⋂
B′′∈Σ

B′′ (25)

where Σ = {B′′ ⊆ P(X) : B′′ ⊇ B′ and B′′ is a σ-algebra}.

Example 1.22. If X = [0, 1] and C = {[0, 1/n]}∞n=1, then B(C) is the collection
of all countable disjoint unions of sets

∅, {0}, (1/(n+ 1), 1/n] for n ≥ 1. (26)

When we already have a topological space (X, T ), we want to define a σ-
algebra on X that works well with the topology.

Definition 1.23. If (X, T ) is a topological space, then the Borel σ-algebra
is the one generated by T , or B = B(T ).

This shall be our σ-algebra: the Borel σ-algebra generated by the topology
generated by cylinders. We now will relate some ideas from topology to σ-
algebras.

Definition 1.24. A pair (X,B), X is a set with B a σ-algebra on X, is called
a measure space. A function T : X → X, is called measurable iff

∀A ∈ B, T−1(A) ∈ B. (27)

Also, A ⊆ X is measurable iff A ∈ B.

Likewise, f : X → Y is measurable if f−1(B)is measurable for any measur-
able B ⊆ Y . Furthermore, if X and Y are both topological spaces and are en-
dowed with their respective σ-algebras, then any continuous function f : X → Y
is measurable.

Much like a topological space, a measure space is defined by a set X and
a collection B of “good” subsets. However, once we have a measure space, we
may now define more.

Definition 1.25. If (X,B) is a measure space, then µ : B → [0,∞) is a finite
(positive) measure on (X,B) if and only if

1. ∀A ∈ B, µ(A) ≥ 0

2. For disjoint A1 . . . , An, · · · ∈ B,

µ

( ∞⋃
n=1

A1

)
=
∞∑
n=1

µ(An) (28)

3. µ(X) <∞.
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µ is a probability measure if µ(X).

Example 1.26. If X = [0, 1) with the Borel σ-algebra, then we have the
Lebesgue measure λ, which is defined by

λ((a, b)) = b− a.

This is a probability measure on X.

We consider measurable maps that preserve a given measure, also given a
measurable map we consider measures that do not change under this measure.

Definition 1.27. Let (X,B) be a measure space, T : X → X measurable and µ
a probability measure. Then we say that µ is T -invariant or T is µ-invariant
if

∀A ∈ B, µ(T−1A) = µ(A). (29)

Example 1.28. If (X,λ) are from Example 1.26, let T be the times two map
mod 1, or

T (x) =
{

2x, x ∈ [0, 1/2),
2x− 1, x ∈ [1/2, 1).

We may confirm that T is λ-invariant by checking intervals.

From a measure µ, we may develop the idea of an integral with respect to
µ. We begin with defining integrals on f : X → C that are simple. We then
say that a measurable function is integrable if we may express its integral as a
reasonable limit of simple functions.

For our compact metric space, the Reisz Represntation Theorem says
that our two notions of Borel measures are equivalent. Specifically, if µ is a
Borel probability measure, then

f 7→
∫
X

fdµ (30)

defined a linear functional from C(X) to C as given in Definition 1.15. Con-
versely, if there is a measure from that definition, there must exist a correspond-
ing µ : B → [0, 1] from Definition 1.25.
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1.3 JF: Ergodicity and Generic Points

Lecture date: 2014/03/03.

Definition 1.29. If (X,B, µ, T ) is a probability measure preserving space, it is
ergodic if

∀A ∈ B, T−1A = A⇒ µ(A) ∈ {0, 1}. (31)

Remark 1.30. Here are some equivalent notions to ergodic:

1. ∀A ∈ B, µ(T−1A∆A) = 0⇒ µ(A) ∈ {0, 1}.

2. ∀f : X → X measurable and f ◦ T = f , then f is constant µ-almost
everywhere.

There a number of beneficial properties follow from ergodicity. We will
present one here, the Birkhoff Ergodic Theorem.

Theorem 1.31. (Birkhoff’s Ergodic Theorem) If (X,µ, T ) is an ergodic prob-
ability system, then for every integrable f : X → C and µ-almost every x ∈ X,

lim
N→∞

1
N

n−1∑
j=0

f(T jx) =
∫
X

f dµ. (32)

So in particular, if f = χB for some measurable B, then for µ-almost every
x ∈ X,

lim
N→∞

#{0 ≤ j ≤ N − 1 : T jx ∈ B}
N

= µ(B). (33)

Example 1.32. In terms of our shift space (Xu,B, S), if µ ∈ MX , this says
that for µ almost every w ∈ Xu,

lim
M→∞

1
M
N(W,w|M−1

0 ) = µ([W ]) (34)

for every W ∈ A∗, where w|M−1
0 = w0w1 . . . wM−1 and N(W,V ) is the number

of occurrences of W in V .

So if we define the frequency of W in V as

δ(W,V ) =
N(W,V )
|V |

, (35)

then we say that w is generic for µ if for every W , δ(W,w|M0 ) → µ([W ]). By
Birkhoff’s Ergodic Theorem, if µ is an ergodic measure, generic points exist.

Remember that MX is convex, so we may talk about extremal points of
MX . These are points µ ∈MX so that for any ν1, ν2 ∈MX and t ∈ (0, 1)

µ = tν1 + (1− t)ν2 ⇒ ν1 = ν2 = µ. (36)

Theorem 1.33. The ergodic measures in MX , EX , are the extremal points.
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Proof. Suppose µ ∈ EX and µ = tν1 + (1− t)ν2 for t ∈ (0, 1) and ν1, ν2 ∈ MX .
Then for every measurable A, µ(A) = 0 ⇒ ν1(A) = ν2(A) = 0. Therefore each
measure νj has a Radon-Nikodym derivative fj with respect to µ, or

νj(B) =
∫
B

fjdµ (37)

for fj integrable (and therefore measurable). We may also show that fj(T ◦x) =
fj(x) for µ almost every x, and so fj is constant µ-almost everywhere by Remark
1.30.

So there is a µ full measure set E ⊆ X so that

f1(x) = c1 and f2(x) = c2 for all x ∈ E. (38)

Then because
µ(X \ E)⇒ νj(X \ E) = 0⇒ νj(E) = 1, (39)

we see that
νj(X) =

∫
E

fjdµ =
∫
E

cjdµ = cjµ(E) = cj . (40)

And so c1 = c2 = 1, which implies that ν1 = ν2 and so µ = ν1 = ν2. Therefore
µ is extremal.

If µ /∈ EX , then there exists T -invariant set A so that 0 < µ(A) < 1. Then
let ν1, ν2 be given by

ν1(B) =
µ(A ∩B)
µ(A)

and ν2(B) =
µ((X \A) ∩B)

µ(X \A)
. (41)

ν1, ν2 ∈MX , so µ is not extremal as

µ = tν1 + (1− t)ν2 (42)

where t = µ(A).

We will not formally state it here, but the Ergodic Decomposition The-
orem says that every µ ∈ MX is a “convex combination” or “barycenter” of
the extremal points EX . In light of these theorems, we may give the following
definition:

Definition 1.34. A measure space (X,B, T ) is uniquely ergodic if one of the
following equivalent conditions hold:

1. MX consists of one element.

2. EX consists of one element.

Back to sequences and shifts. This will be useful when proving unique er-
godicity of shift spaces.
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Proposition 1.35. If u ∈ AN and Xu is the associated shift, then Xu is
uniquely ergodic if and only if for each W ∈ A∗,

fk(W ) := lim
N→∞

δ(W,u|k+N−1
k ) (43)

exists for each k, agrees for each k and converges uniformly in k.
The unique invariant measure µ satisfies µ([W ]) = f(W ), where f(W ) is

the common limit above.

Proof. First assume f(W ) is well defined and is the uniform convergent limit of
Equation (43). Then for any µ ∈ EX , there exists w ∈ Xu so that w is generic
for µ. For each n, there exists kn so that w|n0 = u|kn+n

kn
, therefore for each

W ∈ A∗,

µ([W ]) = lim
n→∞

δ(W,w|n0 ) = lim
n→∞

δ(W,u|kn+n
kn

) = f(W ). (44)

Therefore any ergodic measure agrees with f on all cylinders. Therefore they
are all equal, or #EX = 1.

Now assume that Equation (43) does not converge uniformly, then there are
choices W ∈ A∗, `n ↗∞, kn and jn so that

lim
n→∞

δ(W,u|kn+`n
kn

) > lim
n→∞

δ(W,u|jn+`n
jn

). (45)

Choose a subsequence mn ↗∞ so that µ1 ∈MX is given by

µ1([V ]) = lim
n→∞

δ(V, u|kmn+`mn
kmn

) (46)

for each V ∈ A∗. Likewise we choose a subsequence m′n ↗∞ so that

µ2([V ]) = lim
n→∞

δ(V, u|
jm′n

+`m′n
jm′n

) (47)

for each V ∈ A∗ defines µ2 ∈ MX . Because µ1(W ) > µ2(W ), µ1 6= µ2 and
therefore MX contains at least two elements.
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1.4 RJ: Substitutions

Lecture date: 2014/03/03.
A substitution σ is an application from an alphabet A into A? − {ε}, the

set of non-empty finite words on A. We can extend substitutions to maps from
A? → A? by concatenation. In general, if W,W ′ are words of A?, then

σ(WW ′) = σ(W )σ(W ′). (48)

Similar extensions can be made to AN and AZ.

Example 1.36. Let A = {a, b} and let σ be given by σ(a) = aba and σ(b) =
baa. Here, we have

σ(a)σ(b) = ababaa = σ(ab). (49)

Remark 1.37. Substitutions are continuous maps from AN → AN (the same is
true for AZ → AZ). Suppose for two sequences u and v we have d(u, v) ≤ 2−n.
Then we know u and v agree on at least the first n letters. An application of
σ will map these n letters to the same word W which has length at least n,
and so σ(u) and σ(v) will agree on at least the first n letters. Thus, we have
d(σ(u), σ(v)) ≤ 2−n.

Definition 1.38. An (infinite) sequence u of a substitution σ is called a fixed
point if we have σ(u) = u.

Proposition 1.39. Let A be an alphabet, σ a substitution over A and a ∈ A a
letter such that |σ(a)| ≥ 2 and σ(a) = a∗ — that is, σ(a) begins with a. Then
there exists a fixed point u of σ that begins with a.

Proof. Let W (0) = a and W (n+ 1) = σ(W (n)). Then we have

W (n+ 1) = σ(W (n)) = σn+1(a) = σn(aba) = W (n)σn(b)σn(a). (50)

This shows that the sequence W (n + 1) begins with the sequence W (n). If we
define a sequence of sets by

Cn = [W (n)],

the cylinder defined by the sequence W (n), then we have Cn+1 ⊂ Cn, because
if v ∈ Cn+1, then v must begin with the sequence W (n), and so v ∈ Cn. Note
that cylinders are clopen sets in our topology. Because our topological space is
compact, closed subsets are also compact. Thus, we have that Cn is a compact
set, and so

· · · ⊂ Cn+1 ⊂ Cn ⊂ Cn−1 ⊂ · · · C0
is a sequence of nested, nonempty compact sets. By Cantor’s intersection the-
orem, we have

I =
∞⋂
n=0

Cn 6= ∅.

Furthermore, because we have |σ(a)| ≥ 2, the length of the sequence W (n) is
growing large as n→∞. Thus, the diameter diam([W (n)])→ 0 n→∞. Thus,
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because I is nonempty, we have |I| = 1. To conclude, note that if we have
u ∈ Cn, then σ(u) ∈ Cn+1, and thus σ(u) ∈ Cn because Cn+1 ⊂ Cn. Therefore,
because I contains one element, it must be a sequence such that σ(u) = u.

We now turn our discussion to the incidence matrix of a substitution.

Definition 1.40. Let A = {a1, . . . , ad} and let σ be a substitution over A. The
incidence matrix Mσ of σ is the d× d matrix with entries

Mσ(i,j) = |σ(aj)|ai ,

where |σ(aj)|ai is the number of occurrences of ai in σ(aj).

Example 1.41. Let A = {a, b} and let σ(a) = aba, σ(b) = baa as before. Then
the incidence matrix of σ is

Mσ =
(

2 2
1 1

)
.

Let 1 : A? → Zd denote the canonical homomorphism, defined for all
W ∈ A? by

1(W ) = (|w|ai)1≤i≤d ∈ Nd. (51)

The canonical homomorphism is useful because we have

Mσ = (1σ(a1)| · · · |1σ(ad)) , (52)

which gives the following commutative relation for all W ∈ A?:

1(σ(W )) = Mσ1(W ). (53)
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1.5 RJ: Primitivity

Lecture date: 2014/03/03.

Definition 1.42. A substitution σ is primitive if for all a, b ∈ A, there exists
some k > 0 such that a occurs in σk(b).

Primitivity is a nice property because of its close relationship to minimality.

Proposition 1.43. If u is a fixed point of a primitive substitution σ, then u is
minimal (or uniformly recurrent as given in Lemma 1.13).

Proof. Let u = au1u2 · · · be the fixed point beginning with a. For any k > 0,
we have

u = σk(u) = σk(a)σk(u1) · · · . (54)

Because σ is primitive, there exists some K > 0 such that a occurs in σK(b).
Thus, we know that a occurs in σ(u1) for each i and, obviously, σ(a). If we let

N = 2 ·max
b∈A
|σK(b)|,

we know that a appears in every factor of size N in u. But then, so does every
σn(a) in u = σn(u), hence so does every word in u. More precisely, if we let

N ′ = 2 ·max
b∈A
|σK+n(b)|,

then any factor of size N ′ contains σn(a) as a factor. Because u begins with
σM (a) for any M , we can choose n large enough such that σn(a) contains any
factor of u. Thus, u is minimal because every factor is recurrent with bounded
gaps.

A characterization of primitivity. Let us now add the following three as-
sumptions on substitutions.

(1) There exists a letter a ∈ A such that σ(a) = a∗.

(2) limn→∞ |σn(b)| =∞ for all b ∈ A.
Note: As we saw earlier, assumptions (1) and (2) guarantee the existence
of an infinite fixed point beginning with a.

(3) All letters in A occur in the fixed point beginning with a.

Proposition 1.44. Let σ be a substitution satisfying (1), (2), (3). The sub-
stitution is primitive if and only if the fixed point u of σ beginning with a is
minimal.

Proof. Proposition 1.43 proves the forward direction. Suppose u is minimal.
Every factor of u appears in u with bounded gaps. By assumption (3), every
letter b occurs in u = σ(u) so that σk(b) is a factor of u for every b ∈ A and
k ≥ 1. For K large, because of assumption (2) we know that σK(b) must contain
a. Because σK(b) contains a and, by assumption (3) σN (a) contains every letter
of A, we have that σK+N (b) contains σN (a) as a factor and, thus, every letter
c of A is contained in σK+N (b) for each b, c ∈ A. Thus σ is primitive.
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2 Chapter 5

2.1 PR: The Morse Sequence and its properties

Lecture date: 2014/03/10.
The Morse sequence, as described in Chapter 2 of the text, is motivated

by the desire to create a minimal word on {0, 1} which is neither periodic nor
ultimately periodic. We recall that a minimal sequence is one in which every
word of finite length appears with gaps of bounded size. We can define it in
three ways.

Definition 2.1. The Morse sequence can be defined using an arithmetic defi-
nition: for the binary digits of the binary representation of the natural number
x, let xj be the jth digit, which ranges from 0 to n. Let

f(x) =
n∑
j=0

xj ,

and let M be the infinite word on {0, 1}N such that

Mn =
{

0 , f(x) is even
1 , f(x) is odd.

Definition 2.2. The Morse sequence can also be defined using an iterative
limit process: we start with 0, and at each step, append the bitwise negation
of the current sequence to its end. We define the bitwise negation, or com-
plement, of a sequence sn on {0, 1}N as the sequence tn = 1− sn. The first few
steps of this process are shown below.

0(1)→ 01(10)→ 0110(1001)→ 01101001(10010110)→ ...

Definition 2.3. Finally, the Morse sequence can be defined using a set of
substitution rules:

σ : {0, 1} → {0, 1}2 : (55)
σ(0) = 01, (56)
σ(1) = 10. (57)

We call any word of the form σn(0) or σn(1) an n-word. It is important to
note two things: first, that σn(0) = σn−1(0)σn−1(1), and second, that σ(u) = u.
See Proposition 1.39 for a discussion about fixed points.

Proposition 2.4. u, the Morse Sequence, is minimal, and is neither periodic
nor ultimately periodic.

Proof. By Proposition 1.43, u is minimal as σ is primitive.
Referring to the binary digit sum definition of the Morse sequence, we know

that u2n+1 6= un, so n + 1 can’t be a period, for any n, so u can’t be periodic.
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Further, for any p, n0, we can always choose n ≥ n0 so that n = mp − 1 for
some m, so that n0 represents the length of the initial, nonperiodic portion
of the supposedly ultimately periodic sequence, so u is not ultimately periodic
either.

Definition 2.5. We define a notion of difference called the Hamming dis-
tance. The Hamming distance between two words of the same length, U and
V , is given by

d((u1...un), (v1...vn)) =
1
n
|1 ≤ i ≤ n;ui 6= vi|, (58)

that is, the proportion of letters at which the two sequences of equal length
disagree.

Proposition 2.6. If U , V are two n-words, and if W is a word of length 2n+1

which occurs in u at position i, and d(UV,W ) < 1
4 , then W = UV , and i is a

multiple of 2n.

Proof. The proof is immediate for n = 0. Suppose the proposition is true for
n−1. We check the case for n. For U, V,W, i as above, W = W1W2, with either
d(U,W1) < 1

4 , or d(V,W2) < 1
4 . Because both U and V are each comprised

of two (n − 1)-words, the induction hypothesis implies that there exists some
integer k such that i = k ∗ 2n−1. We can define W1 = W11W12, W2 = W21W22,
U = U1U2, V = V1V2. Then W11,W12,W21,W22 are all (n−1)-words, and must
be at Hamming distance at most 1

2 from U1, U2, V1, V2 respectively; since the
distance between any two m-words must be either 0 or 1, we must have W1 = U ,
W2 = V .

It remains to be proven that k is even. Suppose k is odd. For a word S be the
complement of S, defined as the word obtained by replacing every instance of
0 with 1 and 1 with 0 in S, be denoted by S′. Then let W = abb′c, U = U1U1

′,
V = V1V1

′. Then we must have that a′ = b = c, so a′abb′cc′ = bb′bb′bb′

would have to occur in u, which is impossible, as neither 000 nor 111 occurs, by
inspection, so neither can 010101 or 101010. Thus k must be even.

We call a word squarefree if no word in the language of that word is of
the form WW for any word W . We call a word cubefree if no word in the
language of that word is of the form WWW for any word W .

It seems like we should be able to prove that the Morse sequence is cubefree.
We can in fact do better! We say that a word is free of powers 2 + ε if for any
word V , with initial letter v, the sequence V V v never appears in the word.

Proposition 2.7. The Morse Sequence is free of powers 2 + ε.

Proof. Let l = |V |. First, we consider the possibility that l is odd and that V V v
occurs starting at an odd position in u. Let V = va1b1...apbp. We can put bars to
indicate the separation of the 1-words composing V like so: V = v|a1b1|...|apbp|.
Then we know that the sequence V V v = v|a1b1|...|apbp|va1|b1a2|...|bpv| must
occur in the Morse sequence, with bars as indicated. Thus exactly one of each
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pair can be 0, and the other must be 1: that is, v = a1 + b1 = ... = ap + bp =
v + a1 = ... = bp + v = 1, and v + a1 = bp + v, which is impossible, because
then every an and bn would have to be 0. The same reasoning applies for an
occurrence of an odd-length V at an even position, with the case that for V of
length 1, 000 and 111 are both impossible.

For even l and occurence of V V v at some position 2k, then we have V =
|vb1|...|apbp|. For W = va2..ap, σ(WWv) appears in the Morse sequence at
2k, so WWv must appear at position k. Then v is the first letter of W , and
|W | < |V |. But this is impossible: we can follow the same chain of reasoning to
find that another, smaller sequence of the form UUv must also appear at position
k
2 , and so on, infinitely, which is impossible. The same reasoning applies for the
occurrence of V V v in an odd position.

Remark 2.8. Interestingly, we can connect the cubefreeness of the Morse se-
quence to the first attempt at determining a draw in chess, which was draw
by threefold repetition of move sequence. If we used this definition, the fact
that the Morse sequence is cubefree implies an infinite game of chess without
threefold repetition would be possible from the very beginning of the game. To
see this, let black and white both make moves according to the Morse sequence
such that a 0 corresponds to a queenside knight move and a 1 corresponds to
a kingside knight move. Because the Morse sequence is cubefree, this sequence
of moves will never have a threefold repetition, and the game can continue for-
ever. This is why chess now uses draw by threefold repetition of only position,
rather than move sequence: because there are only a finite number of possible
boardstates in chess, no game can last for a number of moves longer than twice
the number of boardstates.

Proposition 2.9. The sequence defined by the difference of successive terms of
the Morse Sequence is an infinite squarefree word on three letters.

Proof. First, if the word AA = a1...aka1...ak appears at position i in v, then
since u2k+i − ui = 2 ∗ (a1 + ... + ak) is in {−1, 0, 1}, (a1 + ... + ak) = 0. But
then for e in {0, 1}, we would have to have the sequence in v consisting of
e(e+ a1)...(e+ a1 + ...+ ak−1) in v, which is impossible.

Proposition 2.10. Any factor of the Morse Sequence of size at least five has
a unique decomposition into 1-words, possibly with another letter before or after
it.

Proof. In essence, what this means is that there is only one way to draw the
bars used in the last proof. If our word contains a 00 or 11, we have a natural
place to draw a bar, and the proposition is true; otherwise, the word would have
to contain 01010 or 10101, and since the Morse sequence is free of powers 2 +
ε, neither of these sequences appear.

Recall that we define a complexity function pu(n) of a sequence u as the
function which maps each natural number to |Ln(u)|, that is, the number of
subwords of size n in u.
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Proposition 2.11. For u, the Morse Sequence, pu(n) is given by pu(1) = 2,
pu(2) = 4, and for n ≥ 3, if n = 2r + q + 1, for natural r, and 0 < q ≤ 2r, then
pu(n) = 3 ∗ 2r + 4q if 0 < q ≤ 2r−1, and pu(n) = 2r+2 + 2q if 2r−1 < q ≤ 2r.

Proof. We start by noticing that the previous proof implies that pu(n) = p0(n)+
p1(n), where we define p0(n) as the number of words appear immediately after
a bar, and p1(n) is the number of words appearing immediately before a bar.
Let n = 2k + 1 for a word W such that |W | = n. If W is in the first category,
then W = |a1b1|...|akbk|ak+1, with ai + bi = 1, and there are k + 1 such words,
so p0(2k + 1) = pu(k + 1). Similarly, p1(2k + 1) = pu(k + 1), p0(2k) = pu(k),
and p1(2k) = pu(k + 1), and thus pu(2k + 1) = 2 ∗ pu(k + 1), pu(2k) = pu(k) =
pu(k + 1).

We can then do induction on q: assume the formulae as given in the proposi-
tion are true for some q = 2m. Then for q = 2m+1, pu(n) = 2∗pu(2r−1+m+2).
If 0 < q ≤ 2r−1, then 0 < m ≤ 2r−2, and we have

2 ∗ pu(2r−1 +m+ 2) = 12 ∗ 2r−2 + 8m+ 4 = 6 ∗ 2r−1 + 4 ∗ (2q + 1).

Similarly, for the induction hypothesis q = 2m − 1, 0 < q ≤ 2r−1, for q = 2m
we have

pu(n) = pu(2r−1 + (m+ 1)− 1) + pu(2r−1 +m+ 1)
= 6 ∗ 2r−2 + 4m+ 4− 4 + 6 ∗ rr−2 + 4m
= 6 ∗ 2r−1 + 4q.

Now suppose instead that 2r−1 < q ≤ 2r. Then going through the induction
hypothesis as before for odd q, we will have 2r−2 < q ≤ 2r−1, and thus

2 ∗ pu(2r−1 +m+ 2) = 16 ∗ 2r−2 + 4m+ 2 = 8 ∗ 2r−1 + 2q,

and similarly, for even q, we will have

pu(n) = pu(2r−1 + (m+ 1)− 1) + pu(2r−1 +m+ 1)
= 8 ∗ 2r−2 + 2m+ 2− 2 + 8 ∗ 2r−2 + 2m = 8 ∗ 2r−1 + 2q.

In all cases, we note that pu(n) < 4n, and since by the induction, pu(n +
1)−pu(n) will only ever be 4 or 2, that expression indeed takes only two values.
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2.2 KD: Measure-theoretic Look at the Morse Sequence
and Topological Congujacy

Lecture date: 2014/03/10.
These lecture notes will be divided in two parts: those relating to the main

result of section 5.1 in the book, and results which will be used by people who
speak later.

2.2.1 KD: A theorem in measure theory regarding the Morse Se-
quence

As before, unless otherwise noted we will denote the Morse sequence by u and
its orbit closure as Xu.

Theorem 2.12. (Main result) There exists a measure µ such that the measure-
theoretic dynamical system (Xu, S, µ) is ergodic. Furthermore, with regards to
that measure, there exists a P ⊂ Xu such that µ(P ) = 1 and the shift S takes
P to P bijectively.

We will establish the proof of this result to the end of this section; we will
now prepare the ground with a few propositions. Our first job is to construct
the set P , and we will then establish the measure µ and show µ(P ) = 1.

Proposition 2.13. If v is a recurrent sequence, then the shift S is surjective
onto Xv.

Proof. Suppose w is a sequence in Xv where v is a recurrent sequence and
w = w0w1w2... Put Wi = w0w1w2...wi for i ≥ 0. As w ∈ Xv by a lemma from
previous lectures, we know that Λ(w) ⊂ Λ(v) (here, Λ(v) is the language of v).
Hence as v is recurrent, for each i, Wi occurs infinitely many times in v. We can
then find indices j0,i < j1,i < j2,i... such that Wi occurs in v at positions jk,i.
Then, we can easily see that for k ≥ 1, jk,i ≥ 1. Now, consider the sequence
vj1,i−1, vj2,i−1, vj3,i−1... (these are the letters which precede Wi in v). As all of
the elements of that sequence come from a finite alphabet, at least one element
from that sequence occurs infinitely many times; label one such element as ai.

To sum up so far, we have found a sequence ai such that for each i, aiWi

occurs infinitely many times in v. Again, the elements of the sequence a0, a1, ...
come from a finite alphabet, so there exists an element of that alphabet which
occurs infinitely many times in that sequence. Label that element as a. Hence,
for arbitrarily big i, aWi occurs in v; this means that for all i, aWi occurs in
v. Now observe that Λ(aw) = Λ(w) ∪ {aW0, aW1, aW2, ....}. We already know
that Λ(w) ⊂ Λ(v), and we just proved that for all i, aWi is in Λ(v). Hence,
Λ(aw) ⊂ Λ(v), which establishes aw ∈ Xv. To conclude the proof of the lemma,
remember that S(aw) = w, and as w was a random element of Xv we have
proven that the shift is surjective onto Xv.

Proposition 2.14. Let v be a recurrent sequence, such that for all n ≥ 0
pu(n) ≤ Cn for some constant C. Denote by F the subset of all elements of Xv
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which have more than one sequence in their preimage under S i.e. F = {w ∈
Xu : |S−1(w)| ≥ 2}. Then, F is a finite set and |F | ≤ C + 1.

Proof. First, we will prove a helpful fact. Suppose the set {n ∈ N : pu(n+ 1)−
pu(n) ≤ C + 1} is bounded i.e. ∃M : ∀n ≥M,pu(n+ 1)− pu(n) > C + 1. Then
observe that for all k ≥ 0,

pu(M + k)− pu(M) =
k−1∑
t=0

pu(M + t+ 1)− pu(M + t) >

>

k−1∑
t=0

(C + 1) = k(C + 1).

Dividing the leftmost and rightmost sides of that inequality by M + k, we see
that

pu(M +K)− pu(M)
M +K

>
k(C + 1)
M +K

.

Now, we let k go to infinity; as the pu(M) term is constant and limk→∞
k(C+1)
M+k =

C + 1 we see that

lim inf
k→∞

pu(M +K)
M +K

≥ C + 1.

This clearly contradicts our assumption that pu(n) ≤ Cn for all n. Hence, the
set {n ∈ N : pu(n+ 1)− pu(n) ≤ C + 1} is unbounded.

Now, suppose that n is such that pu(n + 1) − pu(n) ≤ C + 1. As v is
recurrent, each word from Λn(v) occurs in v at least one in a position different
than the leftmost (0-th position). Hence, for each word W ∈ Λn(v) we can find
aW : aWW ∈ Λn+1(v); denote by Fn+1 the set of all W ∈ Λn(v) such that the
choice of aW is not unique i.e

Fn+1 = {W ∈ Λn(v) : ∃a, b ∈ A, a 6= b, aW ∈ Λn+1(v), bW ∈ Λn+1(v)}.

Clearly, as pu(n + 1) − pu(n) ≤ C + 1, Fn+1 is finite and |Fn+1| ≤ C + 1 (else
we would have more than pu(n) + C + 1 words in pu(n+ 1)).

Finally, let F be as defined in the statement of our proposition, and suppose
that |F | > C + 1. Hence, we can extract more than C + 1 sequences in Xv

with more than 1 preimage under S; those sequences will have to all have
different ”beginnings” after the first T letters for some big T such that pu(T +
1) − pu(T ) ≤ C + 1 (by beginnings, we mean the words formed by the first T
letters of the sequence). Denote a subset of those beginning words of length T
by W1,W2, .....WN where N > C + 1. Yet, as for each 1 ≤ i ≤ T , Wi is the
beginning of a sequence in F , Wi will have to belong to FT+1. As |FT+1| ≤ C+1,
and the Wi are N > C + 1 distinct words in FT+1, we get a contradiction with
our assumption for the size of F . Hence, F is finite and |F | ≤ C + 1.

Xu is a recurrent sequence, which by Proposition 5.1.9 (or the last proposi-
tion from Paul’s talk) satisfies the conditions of all of our propositions so far (for
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C = 4). Hence, we now proceed to define the set P , as previously mentioned in
Theorem 2.12, and to prove that P differs from Xu by a countable set and the
shift S defines a bijection from P to P .

Definition 2.15. Define F ∈ Xu as in Proposition 2.14 and define

P = Xu\ ∪n∈Z S
nF .

Lemma 2.16. P differs from Xu by a countable set, and S defines a bijection
from P to P .

Proof. As F is finite, clearly for n ≥ 0, |F | ≥ |SnF |. Also, as we are operating
on a finite alphabet, for n < 0, |F ||A||n| ≥ |SnF | (the LHS is simply the number
of words of length |n| over the alphabet A). Hence, Xu\P = ∪n∈ZS

nF is the
countable union of sets with finitely many elements, and is hence countable.

Next, we will show that S(P ) ⊂ P . Indeed, suppose ∃α ∈ Xu, α /∈ P :
∃w ∈ P, S(w) = α. Hence, α ∈ ∪n∈ZS

nF and then w ∈ S−1(∪n∈ZS
nF ) =

∪n∈ZS
nF , which contradicts w ∈ P . Hence, S(P ) =⊂ P . It is clear that that

S−1(P ) ∩Xu ⊂ P ; if α ∈ ∪n∈ZS
nF = Xu\P , S(α) ∈ ∪n∈ZS

nF . As S(P ) ⊂ P
and S−1(P ) ⊂ P , by Proposition 2.13, S(P ) = P surjectively.

Finally, we will establish that S restricted to P is injective. Indeed, suppose
w1, w2 ∈ P,w1 6= w2 : S(w1) = S(w2) = α. Hence, by the definition of F from
before, α ∈ F ⊂ ∪n∈ZS

nF i.e. α /∈ P . Still, we just proved that if w ∈ P ,
S(w) ∈ P ; we reach a contradiction about the existence of such w1, w2 and α.
Then, the shift is injective on P , which concludes the proof of our lemma.

We now reach the measure-theoretic content of the talk. The point of the
next few technical propositions is to prove that (Xu, S) is uniquely ergodic with
sole ergodic measure µ.

Proposition 2.17. Let σ be the Morse substitution and N(W,V ) be the number
of occurrences of the word W in the word V. Then, for any factor W , the
following limits exist and are equal:

lim
n→∞

N(W,σn(0))
2n

= lim
n→∞

N(W,σn(1))
2n

.

Proof. Define the sequence

an =
N(W,σn(0)) +N(W,σn(1))

2n+1
.

We now know that σn+1(0) = σn(0)σn(1) and σn+1(1) = σn(1)σn(0). Hence
for any factor W and e = {0, 1},

2n+1an + |W | = N(W,σn(0)) +N(W,σn(1)) + |W | ≥

≥ N(W,σn+1(e)) ≥

≥ N(W,σn(0)) +N(W,σn(1)) = 2n+1an

22



(the lower inequality is obvious from the decomposition of σn+1(e) into σn(0)
and σn(1); the upper inequality comes from the same decomposition and the
fact that there may be no more than |W | occurrences of W in σn+1(e) which
start in the first half of the string and end in the second half).

Summing the corresponding lower inequalities for e = 0 and e = 1 and
substituting by the sequence an where we can, we see that for all n,

2n+2an+1 = N(W,σn+1(0)) +N(W,σn+1(1)) ≥ 2n+2an.

It remains for us to note that N(W,σn(e)) ≤ |σn(e)| = 2n, which means that
an ≤ 2n+2n

2n+1 = 1. Then, the sequence an is non-decreasing and bounded, and
hence for each W , that sequence converges to some limit; denote it by fW . Now,
we reiterate from above we have that for e = {0, 1},

an +
|W |
2n+1

≥ N(W,σn+1(e))
2n+1

≥ an;

since W is fixed, |W | is constant and hence as we let n go to infinity, by the
sandwich theorem we get that limn→∞

N(W,σn(e))
2n = fW , which concludes the

proof of the proposition.

Proposition 2.18. For any factor W , limn→∞
N(W,ukuk+1...uk+n)

n+1 = fW uni-
formly in k.

Proof. Fix k and write V = ukuk+1...uk+n. Hence, by the recursive properties
of the Morse sequence, for each p we can write

V = Aσp(uj)σp(uj+1)...σp(uj+l−1)B

where |A| < 2p and |B| < 2p. We then have n + 1 = l2p + |A| + |B| and
l2p ≤ n + 1 ≤ (l + 2)2p. By the decomposition of V into at most (l + 2)
strings of length at most 2p, we can employ considerations similar to those in
our previous proposition to obtain the following sequence of inequalities:

j+l−1∑
i=j

N(W,σp(ui)) ≤ N(W,V ) ≤
j+l−1∑
i=j

N(W,σp(ui)) + |A|+ |B|+ (l + 1)|W |.

These are true for all n and all p, with l defined accordingly. We will consider
the left inequality and the right inequality separately; for both cases, fix ε > 0
and pick p big enough so

|N(W,σp(e))− fW | < ε.

For the left inequality, observe that

N(W,V )
n+ 1

≥ N(W,V
(l + 2)2p

≥ 1
l + 2

j+l−1∑
i=j

N(W,σp(ui))
2p

≥ l

l + 2
fw − ε.
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For the right inequality, see that

N(W,V )
n+ 1

≤ N(W,V )
l2p

≤ 1
l

j+l−1∑
i=j

N(W,σp(ui))
2p

+
|A|+ |B|

2p
+

(l + 1)|W |
2p

 ≤
≤ 1
l

(
l(fW + ε) + 2 +

(l + 1)|W |
2p

)
≤ fW + ε+

2
l

+
(l + 1)|W |

l2p

≤ fW + ε+
2
l

+
|W |
2p−1

.

Combining both results, we see that for p big enough so that |W |2p−1 < ε,

l

l + 2
fw − ε ≤

N(W,V )
n+ 1

≤ fW + 2ε+
2
l
.

Clearly with ε (and p big enough) fixed, l is monotonically increasing in n and
goes to infinity as n goes to infinity; pick n big enough so that 2

l < ε (here, we
will use that (l+ 2)2p ≥ n+ 1 or l ≥ n+1−2p+1

2p ; thus, 2
l ≤

2p+1

n+1−2p+1 ). Hence, as
fW ≤ 1, for n big enough,

l

l + 2
fW = fW −

2
l + 2

fW ≥ fW −
2

l + 2
≥ fW −

2
l
≥ fW − ε.

Hence, for k,W fixed and n big enough (choice depending only on ε), we get

fW − 2ε ≤ N(W,V )
n+ 1

≤ fW + 3ε;

this clearly establishes the convergence of N(W,V )
n+1 uniformly in k to fW .

Corollary 2.19. The system (Xu, S) is uniquely ergodic with measure µ which
satisfies µ([W ]) = fW for each factor W . As a consequence, the measure pre-
serving system (Xu, S, µ) is ergodic.

Proof. The first point of the corollary is a direct consequence of Proposition 2.18
and a theorem from Jon’s talks (Theorem 5.1.21 from the book). The second
point is also a direct consequence of the theorem that if there is a unique S-
invariant measure, the system defined by it is ergodic.

We will now establish that the measure µ is non-atomic.

Proposition 2.20. If W is a word of length l occurring in the Morse sequence,
µ([W ]) < 6

l .

Proof. Fix p, n ∈ N, p > n, e = 0, 1 and f = 0, 1 and put H = σp(0), U = σn(e)
and V = σn(f). By a proposition in Paul’s talk (Proposition 5.1.4 in the book),
UV can occur in H only in positions divisible by 2n; in H there are exactly
2p−n such positions and hence we get

N(UV,H) ≤ 2p−n.
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Now, remember that how we defined µ:

µ([UV ]) = fUV = lim
p→∞

N(UV,H)
|H|

= lim
p→∞

N(UV,H)
2p

≤ 2−n.

Fix W , put l = |W |. If l ≤ 5 we are trivially done; if l ≥ 6, find n ≥ 1 such
that 3.2n ≤ l < 3.2n+1 = 6.2n. Hence, as l ≥ 3.2n, W will contain at least
one block which looks like σn(e)σn(f) (to see that, find an occurrence of W in
u and then divide u into blocks of size 2n starting from the start; at least 2
consecutive blocks will fall within W , and those will correspond to σn(e)σn(f)
for some e, f ∈ 0, 1). Hence,

µ(W ) ≤ µ(σn(e)σn(f)) ≤ 2−n <
6
l

(we use the upper bound l < 6.2n) as desired.

Corollary 2.21. If w ∈ Xu, µ(w) = 0.

Proof. If Wn = w0w1...wn−1 is the word composed of the first n letters of
w ∈ Xu, then by the properties of the measure and Proposition 2.20 we see

µ(w) ≤ µ([Wn]) <
6
n

;

letting n go to infinity yields the desired result.

We are now ready to prove Theorem 2.12.

Proof. The existence of µ : (Xu, S, µ) is ergodic is the statement of Corol-
lary 2.19. With P as constructed for the purposes of Lemma 2.16, all we have
left to prove is that µ(P ) = 1. By Lemma 2.16, P differs from Xu by a countable
set. As the measure is non-atomic(Corollary 2.21), the measure of that count-
able set is 0, which implies µ(P ) = 1, concluding the proof of our theorem.

2.2.2 KD: Topological conjugacy

We now turn our attention to material which will be useful for later.

Definition 2.22. Two topological dynamical systems (X,T ) and (Y, S) are
topologically conjugate if there is a homeomorphism φ : X → Y such that
φ ◦ T = S ◦ φ.

Proposition 2.23. Topological conjugacy preserves unique ergodicity.

Proof. First, suppose that µ is an ergodic measure on (X,T ). In this proof, we
will utilize the definition of the measure on the Borel algebra; the proof using
the definition as a linear functional on the set of functions is analogous. Define
the measure ν on (Y, S) as ν(I) = µ(φ−1(I)) for each I in the Borel algebra of
Y (by the continuity and bijectivity of φ and φ−1, φ−1(I) is an element of the
Borel algebra of X). We then have that ν(Y ) = µ(φ−1(Y )) = µ(X) = 1 by the
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ergodicity of µ. The monotonicity, sub-additivity and disjoint-sum properties of
ν are immediate conseruenceses of the corresponding properties of µ; the only
thing we have to prove is that ν is S-invariant. Let I be an element of the Borel
algebra of Y . Then, by topological conjugacy and the T -invariance of µ we have

ν(S(I)) = µ(φ−1S(I)) = µ(Tφ−1(I)) = µ(φ−1(I)) = ν(I),

as we desired. Hence, if X has a T -invariant measure, Y has a S-invariant
measure.

The construction above, by the bijectivity and continuity of φ−1, easily re-
veals that if µ1 and µ2 are two distinct ergodic measures on (X,T ), then the
measures ν1 = µ1 ◦φ−1 and ν2 = µ2 ◦φ−1 will be two distinct ergodic measures
on (Y, S). This concludes the proof of the proposition.

We conclude this lecture with two properties of topological conjugacy which
relate to our discussion of recurrent sequences.

Proposition 2.24. Suppose u and v are two sequences on finite alphabets and
(Xu, Su) and (Xv, Sv) are topologically conjugate through the homeomorphism
φ : Xu → Xv. Then, there is an integer q such that (φ(w))i depends only on
the word wiwi+1...wi+q.

Proof. Define φ′p : Xv → Av as the projection onto the p-th letter in the se-
quence; clearly these functions are continuous. Put φp : Xu → Av, φp = φ′p ◦ φ;
clearly those maps are continuous as well.

We will first show that φ0(w) depends only on the first ”few” letters in w.
Indeed, enumerate the elements of Av by a1, a2, ...ad. By the continuity of φ0

and the fact that each ai is both a closed and an open subset of Av with respect
to any proper metric defined on the finite set Av, we know that for each i,
φ−1

0 (ai) is a set which is both open and closed. Since the space Xu is compact,
the set φ−1

0 (ai) can then be covered by a finite union of cylinders; denote those
as [Wi,1], [Wi,2]...[Wi,ti ]. Put q + 1 = max1≤i≤d (max1≤j≤ti |Wi,j |); by the way
we select the cylinders Wi,j it is clear that φ0 will depend only on the first (q+1)
letters of the input.

Now observe that by the definition of φp and topological conjugacy

φp = φ′p ◦ φ = φ′0 ◦ Spv ◦ φ = φ′0 ◦ φ ◦ Spu = φ0 ◦ Spu.

Now, as φ0(w) depends only on the first q + 1 letters of w, φp(w) = φ0 ◦ Spu(w)
will depend only on the first q + 1 letters of Spu(w), or equivalently only on
wpwp+1...wp+q as desired.

Corollary 2.25. Under the same hypothesis as in Proposition 2.24, if pu(n +
1) − pu(n) is bounded then so is pv(n + 1) − pv(n); if pu(n) ≤ Cn + C ′, then
pu(n) ≤ Cn+ C ′′ for some constant C ′′.

Proof. Without loss of generality, assume that v = φ(u). Then, by Proposi-
tion 2.24, for each k, n, the word vkvk+1...vk+n−1 depends only on the word

26



ukuk+1...uk+n+q−1. Hence, we obtain that there is a surjection from Λu(n+ q)
to Λv(n) and hence pu(n+q) ≥ pv(n). Analogously, as (Xv, Sv) and (Xu, Su) are
topologically conjugate through φ−1, we can find q′ such that pu(n) ≤ pv(n+q′).

Now, suppose pu(n+ 1)− pu(n) ≤M for all n. Hence, by the above, we get
that for n ≥ q′+1, pv(n+1)−pv(n) ≤ pu(n+1+q)−pu(n−q′) ≤ (q+q′+1)M .
Then, pv(n+ 1)− pv(n) is bounded by

max{(q + q′ + 1)M, max
1≤i≤q′

(pv(i+ 1)− pv(i))}.

Suppose that pu(n) ≤ Cn+C ′ for some constants C,C ′. Then, by the above,
pv(n) ≤ pu(n+ q) ≤ C(n+ q) +C ′ = Cn+C ′′, where C ′′ = C ′+Cq; this point
concludes the proof of our corollary.
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2.3 ZQ: Preliminaries for Rokhlin Stacks

Lecture date: 2014/03/24.
This note will pave the way for the definition of rank 1 systems and the

Rokhlin Stack that generates the Morse system. We will first review a few
simple facts covered in previous lectures. They seem trivial, but are in fact all
the ingredients that go into the results in this note. All sequences and words
will be in the space Xu where u is the Morse sequence, unless otherwise noted.

Lemma 2.26. ∀n ∈ N, u2n = un and u2n+1 = 1− un.
At position k2n of the sequence occurs σn(0) if uk = 0, and σn(1) if uk = 1.

We recall Proposition 2.6. In particular, if a word starts with two consecutive
n-words, then it must occur at a position that is a multiple of 2n. Henceforth,
the above proposition will be referred to as the recognizability property.

Recall also that the system (Xu, S) is uniquely ergodic by Theorem 2.12,
and the shift S is bijective on a subset of Xu of measure 1.

Note that a cylinder in Xu, denoted by [W ], denotes all sequences in Xu that
start with the word W . Given a cylinder [e] where e is 0 or 1, σn[e] represents
sequences of the form σn(e)σn(w′) where ew′ is some sequence in Xu. On the
other hand, [σn(e)σn(f)] where e, f ∈ {0, 1}, denotes words in Xu that start
with σn(e)σn(f).

We first give a very simple lemma concerning [σn(e)σn(e′)] and σn+1[e].

Lemma 2.27. The cylinder σn+1[e] is strictly contained in [σn(e)σn(e′)]. The
elements in [σn(e)σn(e′)] that are not in σn+1[e] are exactly the closure of⋃
k∈N S

(2k−1)2n(u).

Proof. It is obvious that σn+1[e] is in [σn(e)σn(e′)]. However, a priori, the latter
could begin with the form σn(e)σn(e′)σn(e)σn(e) . . . whereas the former, being
σn+1 of a sequence, cannot.

The recognizability property tells us that if a sequence v in Xu starts with
two n-words then it must occur at a position i = j2n for some j, or that v is
the limit limm→∞ Sjm2nu for some sequence jm that goes to infinity. In other
words, v is in the closure of the space

⋃
k∈N S

k2n(u).
We write vm = Sjm2nu = σn(e)σn(e′)ab . . . . then a occurs in u at a even

position, a 6= b, ujm = e, and vm = σn(Sjmu) ∈ σn[e]. Since v = limm→∞ vm,
v will be in σn+1[e] if we can find a subsequence of even numbers jmp that
diverges, since then vmp ∈ σn+1[e], and limp→∞ vmp = v ∈ σn+1[e].

However, if all of jm are odd, then Sjmu cannot be equal to σ(ew) for any
w in Xu, so vm /∈ σn+1[e], and so v /∈ σn+1[e]. In conclusion, the elements
in [σn(e)σn(e′)] that are not in σn+1[e] are exactly those that start at posi-
tion j2n in u for odd j, or the limit of such sequences, that is, the closure of⋃
k∈N S

(2k−1)2n(u).

We now give a lemma that concerns the partition of Xu into disjoint cylin-
ders.
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Lemma 2.28. We have

Xu = ∪e=0,1 ∪2n−1
k=0 Skσn[e], (59)

and this union is disjoint.

Proof. First, note that the set on the right is closed, being a finite union of
shifted cylinders. Therefore, to show the inclusion, we need to show that Smu ∈
∪e=0,1∪2n−1

k=0 Skσn[e] for all m ∈ N. We can write m = 2na+b where 0 ≤ b < 2n.
So Smu = SbSa2nu. Moreover, Sa2nu = ua2nua2n+1 · · · = σn(uaua+1 . . . ) ∈
σn([ua]), so Smu ∈ Sbσn([ua]).

We now prove that Spσn[a] ∩ Sqσn[b] = ∅ for any letters a, b, if p 6= q.
Without loss of generality, we may assume p > q. Suppose that on the contrary,
there is some element in the intersection. This element can be written in two
forms: Spσn(w) for some w ∈ [a], and Sqσn(w′) for some w′ ∈ [b]. As a
consequence of bijectivity, σn(w) = Sq−pσn(w′). By definition, w′ = limSmiu
and w = limSpiu. For i large enough, Sq−p(σn(umi . . . umi+i)) will be a prefix
of σn(upi . . . upi+i). Hence σn(umi . . . umi+i) will occur at position j2n + q − p
for some j. By the recognizability property, q− p must be a multiple of 2n, and
since p, q < 2n, p = q, a contradiction.

The next lemma further decomposes each disjoint Skσn[e] into smaller sets.

Lemma 2.29. For every n ≥ 0, we have

σn[e] = [σn(e)σn(0)] ∪ [σn(e)σn(1)] (60)

for e = 0 or 1. If e+ e′ = 1, then

σn[e] = σn+1[e] ∪ S2nσn+1[e′] (61)

Moreover, the measure of the cylinder [0] is µ([0]) = 1/2, and µ(σn[e′]) =
µ(σn[e]).

Proof. If w ∈ σn[e], then w = σn(w′), with w′0 = e. So w ∈ [σn(e)σn(w′1)].
Conversely, if w ∈ [σn(e)σn(f)], and w = limp→+∞ Skpu, then for large

enough kp, the first p letters of w will cover the word σn(e)σn(f), i.e.

w0 . . . w2n+1−1 = σn(e)σn(f) = ukp . . . ukp+2n+1−1,

and, because of the recognizability property, kp is a multiple of 2n. So kp = lp2n.
Define w′ = limSlp(u). Note that the limit exists, because limp→+∞ Skpu exists.
Moreover, σn(w′) = σn(limSlp(u)) = lim(σn(Slp(u)) = limSkp(u) = w. Since
w′ ∈ [e], the converse is proved.

We will first show the second decomposition is included in the first one. That
σn+1[e] ⊂ [σn(e)σn(e′)] was established in our simple lemma at the beginning.
It is also obvious that S2nσn+1[e′], whose elements start with σn(e), is contained
in [σn(e)σn(e′)] ∪ [σn(e)σn(e′)].
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Now, we show the first decomposition is included in the second. It is obvious
that [σn(e)σn(e)] is included in S2nσn+1[e′], since the latter consists of sequences
that begin with σn(e).

From Lemma 2.27, we know that the elements in [σn(e)σn(e′)] that are
not in σn+1[e] is the closure of

⋃
k∈N S

(2k−1)2n(u). The key of this proof is the
realization that, such an element w can be written as limits of sequences of
the form σn(e | e′e . . . ) = σn(vj) where the bar is to indicate that the letter
preceding it is at an odd position, and the letter after it is at an even position.
Because vjs start at an odd position, we know that the sequences e′vj occur
at an even position pj in u. So the sequences sj starting from positions pj/2
satisfy S2nσn+1(sj) = S2nσn(e′vj) = σn(vj) which converges to w, so that
w ∈ S2nσn+1[e′], hence [σn(e)σn(e′)] is included in the second decomposition.

We now proceed to show the claims about the measure. Since the Morse
sequence is defined up to a change of 0 and 1, the symmetry forces µ([1]) = µ([0])
and so µ([0]) = 1/2. Similarly, if we exchange the role of e′ and e, we get
µ(σn[e′]) = µ(σn[e]). The proof is complete.

The lemmas introduced here will be useful in our definition of rank 1 systems
and Rokhlin stacks.
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2.4 AY: Spectral Theory

Lecture date: 2014/03/24.

2.4.1 AY: Hilbert Spaces and L2(X,µ)

Definition 2.30. A Hilbert Space is a set H satisfying the following:
(i) H is a vector space over C or R
(ii) H is equipped with inner product (·, ·) such that
• the map f 7→ (f, g) is linear on H for fixed g ∈ H
•(f, g) = (g, f)
•(f, f) ≥ 0 for all f ∈ H
and define ‖f‖ = (f, f)1/2

(iii) ‖f‖ = 0 if and only if f = 0
(iv) Cauchy-Schwarz inequality and triangle inequality hold for all f, g ∈ H:

|(f, g)| ≤ ‖f‖‖g‖ and ‖f + g‖ ≤ ‖f‖+ ‖g‖

(v) H is complete in the metric d(f, g) = ‖f − g‖
Note that any separable Hilbert space has an orthonormal basis, a subset

{ei}∞i=1 of H such that every two elements in the set are orthogonal and finite
linear combinations of elements in the set are dense in H. This follows from the
separability assumption and using induction with the Gram-Schmidt algorithm.
If the basis is finite, then the Hilbert space is said to be finite-dimensional
and otherwise it is said to be infinite-dimensional

Definition 2.31. Given a measure space (X,M, µ), we can define a space
L2(X,µ) as the set of all equivalence classes of measureable functions (where
f ∼ g if and only if f = g a.e.) for which∫

X

|f(x)|2dµ(x) <∞

with norm given by

‖f‖L2(X,µ) =
(∫

X

|f(x)|2dµ(x)
)1/2

and inner product given by

(f, g) =
∫
X

f(x)g(x)dµ(x)

and it can be shown that L2(X,µ) is in fact a Hilbert Space.
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2.4.2 AY: Unitary Operators and Spectrum

Definition 2.32. A bounded linear operator U : H → H on Hilbert Space H
is called a Unitary Operator if U is surjective and ‖Uf‖ = ‖f‖ for all f ∈ H

Definition 2.33. For measure-theoretic dynamical system (X,T, µ) where both
T and T−1 are measureable and measure-preserving, we can define a special
unitary operator UT on the Hilbert space L2(X,µ) by f 7→ f ◦ T . To show
that UT is indeed a unitary operator, note that UT is surjective because for
any f ∈ L2(X,µ), we have UT (f ◦ T−1) = f . Moreover, ‖UT f‖ = ‖f‖ for all
f ∈ L2(X,µ) because T is measure-preserving. To be more explicit, recall that
the integral

∫
X
fdµ(x) is defined by a limit of integrals of simple functions of

the form Σki=1akχEi for which∫
X

(Σki=1akχEidµ(x)) = Σki=1akµ(Ei)

Notice that UT (χEi) = χT−1Ei so that∫
X

(Σki=1akUT (χEi)dµ(x)) = Σki=1akµ(T−1Ei) = Σki=1akµ(Ei)

We see that ‖UT f‖ = ‖f‖ for simple functions f ∈ L2(X,µ). For a general f ∈
L2(X,µ), we may assume that f is real valued and non-negative (by considering
the positive and negative part of f separately). Then there exists a sequence
{fn} of simple functions increasing to f so that∫

X

UT fdµ(x) = limn→∞

∫
X

UT fndµ(x) = limn→∞

∫
X

fndµ(x) =
∫
X

fdµ(x)

Definition 2.34. The eigenvalues of (X,T, µ) are defined to be the eigen-
values of UT and similarly the eigenfunctions of (X,T, µ) are defined to be
the eigenvectors of UT . The spectrum of (X,T, µ) is the set of eigenvalues of
UT . An eigenvalue is said to be a simple eigenvalue if the dimension of its
eigenspace is 1.

Proposition 2.35. Given S = (X,T, µ), the following hold:
(i) If UT f = λf, f ∈ L2(X,µ), f 6= 0 then |λ| = 1
(ii) S is ergodic if and only if the eigenvalue 1 is a simple eigenvalue for UT
(iii) If S is ergodic, then |f | is constant a.e. for any eigenfunction f. If

f, g are eigenfunctions corresponding to eigenvalue λ then f = cg a.e. for some
constant c.

(iv) Eigenfunctions corresponding to different eigenvalues are orthogonal

Proof. (i) We have ‖f‖ = ‖UT f‖ = |λ|‖f‖ and since f 6= 0 then |λ| = 1.
(ii) Suppose S is not ergodic. Then there exists an invariant set E such that

µ(E) 6= 0 and µ(E) 6= 1. We show that χE is a eigenfunction with eigenvalue
1. Indeed, UTχE = χET = χT−1E = χE . Moreover, χE is not constant a.e. so
the eigenvalue 1 is not simple. Suppose the eigenvalue 1 is not simple. Then
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there exists and eigenfunction f with eigenvalue 1 such that f is not constant
a.e. We show that f is T -invariant. Indeed, f ◦ T = UT f = f so by Remark
1.30 S is not ergodic.

(iii) If λ is the eigenvalue of f then |λ| = 1 by (i). We have |UT f | = |λ||f | =
|f | so |f | is T -invariant and by Remark 1.30 |f | is constant a.e. If g is another
eigenfunction with eigenvalue λ then |g| is constant a.e. and since g 6= 0 then
f/g is T -invariant and hence constant a.e. by Remark 1.30.

(iv) Take distinct eigenvalues λ, µ with corresponding eigenfunctions f, g
such that UT f = λf, UT g = µg. Then

(f, g) = (UT f, UT g) = (λf, µg) = λµ(f, g)

and since λµ 6= 1 then (f, g) = 0

Definition 2.36. The spectrum of (X,T, µ) is said to be discrete if L2(X,µ)
admits a Hilbert basis of eigenfunctions. Thus, if L2(X,µ) is separable, then
there are at most a countable number of eigenvalues.

An important contribution of the spectral theory is that it provides useful
tools for distinguishing between isomorphism classes of topological dynamical
systems or measure-theoretic dynamical systems.

Definition 2.37. A property of a topological (measure-theoretic) dynamical
system is said to be an invariant if both (X1, T1) and (X2, T2) have the property
if and only if the two topological dynamic systems are topologically conjugate
(measure-theoretically isomorphic).

Before continuing the discussion of invariants, we describe the analogue of
spectrum for topological dynamical systems.

Definition 2.38. Let (X,T ) be a topological dynamical system, where T is a
homeomorphism. Let C(X) be the set of non-zero complex-valued continuous
functions on X. Then f ∈ C(X) is said to be an eigenfunction of T if there
exists λ ∈ C called the eigenvalue of f such that ∀x ∈ X, f(Tx) = λf(x).
The set of all eigenvalues corresponding to these eigenfunctions is called the
topological spectrum of T . If the eigenfunctions of T span C(X) then we say
that T has topological discrete spectrum.

Theorem 2.39. (i) Any invertible and minimal topological dynamical system
with topological discrete spectrum is topologically conjugate to a minimal rotation
on a compact abelian metric group.

(ii) Two minimal topological dynamical systems (X1, T1) and (X2, T2) with
topological discrete spectrum, where T1, T2 are homeomorphisms, are topologi-
cally conjugate if and only if they have the same eigenvalues.

To prove Theorem 2.39(i), we first need to define the notion of a transitive
topological dynamical system, which is similar to but weaker than minimality.

Definition 2.40. A topological dynamical system (X,T ) is topologically
transitive if there exists x ∈ X such that OT (x) = {Tn(x)|n ∈ Z}.
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Proof of Theorem 2.39(i) (Theorem 5.18 in [4]). Suppose (X,T ) is a minimal
topological dynamical system with discrete spectrum. Clearly, (X,T ) is transi-
tive. Let d be the metric on X. We show that T is an isometry for other metric
ρ on X. Let K denote the unit circle in C. Since (X,T ) has discrete spec-
trum, we may choose a sequence of functions {fn} where each fn : X → K has
fn(T ) = λnfn, and fn is a basis for C(X). By Stone-Weierstrass, fn separates
points of X. Thus, we may define the metric ρ by:

ρ(x, y) = Σ∞n=1

|fn(x)− fn(y)|
2n

Moreover,

ρ(Tx, Ty) = Σ∞n=1

|λnfn(x)− λnfn(y)|
2n

= ρ(x, y)

since |λn| = 1 as shown before. Thus, T is an isometry.
We show that ρ generates the same topology d on X. It suffices to show

that the identity map (X, d)→ (X, ρ) is continuous, since a bijective continuous
map from a compact space onto a Hausdorff space is a homeomorphism. Fix
ε > 0 and take N large enough so that Σ∞n=N+1

2
2n < ε

2 . Since the functions
fn, 1 ≤ n ≤ N are continuous there exists δ > 0 such that d(x, y) < δ implies
|fn(x) − fn(y)| < ε

2 , for all 1 ≤ n ≤ N . Then d(x, y) < δ implies ρ(x, y) <
ΣNn=1( ε

2n+1 ) + ε
2 ≤ ε.

Next, we show that T is topologically conjugate to a minimal rotation on
a compact abelian metric group. Since (X,T ) is transitive, there exists some
x0 ∈ X such that OT (x0) = X. Now, we define a group structure by defining
multiplication ∗ on OT (x0) by Tn(x0) ∗ Tm(x0) = Tn+m(x0). Then

ρ(Tn(x0) ∗ Tm(x0), T p(x0) ∗ T q(x0))

= ρ(Tn+m(x0), T p+q(x0))

≤ ρ(Tn+m(x0), T p+m(x0)) + ρ(T p+m(x0), T p+q(x0))
= ρ(Tn(x0), T p(x0)) + (Tm(x0), T q(x0))

which implies that the map ∗ : XT (x0)×XT (x0)→ XT (x0) is uniformly contin-
uous, and since OT (x0) = X then ∗ may be extended uniquely to a continuous
map ∗ : X ×X → X. Moreover, the inverting map Tn(x0) 7→ T−n(x0) has

ρ(T−n(x0), T−m(x0))

= ρ(T−n+m+n(x0), T−m+m+n(x0))
= ρ(Tm(x0), Tn(x0))

and hence the inverting map is uniformly continuous and can be extended to a
continuous map on X. Thus, X is a topological group and is abelian since the
subgroup {Tn(x0)|n ∈ Z} is abelian and dense in X. Finally, since T (Tn(x0)) =
Tn+1(x0) = T (x0)∗Tn(x0) then T (x) = T (x0)∗x so we see that T is the rotation
by T (x0). Then if we define S : X → X by S(x) = T ∗ x then it is easy to see
that φ : X → X, the identity map (X, d)→ (X, ρ), has φ ◦ T = S ◦ φ.
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Before proving part (ii), we need a lemma first which is proved in proposition
2.54 in Kurka:

Lemma 2.41. If (X,Ra) is a minimal rotation on a compact group, where
Ra(x) = a ∗ x then λ is an eigenvalue of Ra if and only if λ is the eigenvalue
corresponding to an eigenfunction which is a multiple of a character f of X, in
which case λ = f(a).

Proof of Theorem 2.39(ii) (Theorem 2.56 [3]). Suppose (X1, T1) and (X2, T2)
have the same spectrum. By part (i), we may assume that the two systems are
minimal rotations on compact Abelian groups (X,Ra), (Y,Rb). By the lemma,
we have {f(a)|f ∈ X̂} = {g(b)|g ∈ Ŷ }. Define the map ψ : Ŷ → X̂ by
(ψ(g))(a) = g(b). It is easy to see that ψ is a bijective group homomorphism.
By Pontrjagin duality theorem, there exists a bijective gorup homomorphism
ϕ : X → Y such that ϕ̂ = ψ, or ψ(g) = g ◦ ϕ. Now, for any g ∈ Ŷ , we have
g(ϕ(a)) = (ψ(g))(a) = g(b). Since Ŷ separates points, and g is arbitrary, then
we must have ϕ(a) = b. Now, it is easy to see that ϕ : (X,Ra) → (Y,Rb) is a
conjugacy. For any x ∈ X,

ϕRa(x) = ϕ(a ∗ x) = ϕ(a) ∗ ϕ(x) = b ∗ ϕ(x) = Rbϕ(x)

Suppose (X1, T1) and (X2, T2) are topologically conjugate. Then there exists
ϕ : X → Y such that ϕ ◦ T1 = T2 ◦ ϕ. Suppose we have an eigenfunction
f ∈ C(Y ) such that f ◦ T2 = λf . Then f ◦ ϕ ◦ T1 = λf ◦ ϕ so that f ◦ ϕ is an
eigenfunction in C(X) with eigenvalue λ. Thus, (X1, T1) and (X2, T2) have the
same spectrum.

It turns out that this theorem has an analogue for measure-theoretic dy-
namical systems. Before we can describe this analogue, we must define a new
notion of isomorphism.

Definition 2.42. Measure-theoretic dynamical systems (X,T, µ) & (Z,R, ρ)
are measure-theoretically isomorphic if there exists X1 ⊆ X,Z1 ⊆ Z and a
bimeasureable bijection φ : X1 → Z1 such that µ(X1) = ρ(Z1) = 1, φµ = ρ and
Rφ = φT

The proof of the following analogue theorem appears in [2]:

Theorem 2.43. (Von Neumann)
(i) Any invertible and ergodic system with discrete spectrum is measure-

theoretically isomorphic to a rotation on a compact abelian group, equipped with
Haar measure.

(ii) Two invertible and ergodic transformations with identical discrete spec-
trum are measure-theoretically isomorphic.

Definition 2.44. Given a unitary operator U on Hilbert space H, the cyclic
space generated by f ∈ H is the closure of the subspace generated by the set
{Un(f)|n ∈ Z}. Let H(f) denote the cyclic space generated by f .
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Theorem 2.45. If L is a separable Hilbert space approximated by an increasing
sequence of cyclic spaces, then L itself is a cyclic space.

Proof. By assumption, L = ∪(H(fn)). We show the existence of g ∈ L such
that L = H(g). Since L is separable, there exists a dense sequence {gn} in L. To
show L = H(g), it suffices to show that ∩n,p{g|d(gn, H(g) < 1/p} is non-empty.
By Baire’s theorem, we can show this by showing that given fixed f ∈ L and
ε > 0 that {g|d(f,H(g)) < ε} is dense in L. Take any h ∈ L, and without loss
of generality we may assume that ‖h‖ = 1. Since f, h ∈ L then there exists
an integer m such that d(f,H(fm)) < ε and d(h,H(fm)) < ε. The second
inequality implies that there exists a polynomial P such that d(h, P (U)fm) < ε.
We show that there exists a polynomial Q such that d(h,Q(U)fm) < 2ε. Write

P (U)fm = Πk
i=1(U − ai)(fm)

Consider ε0 such that 0 < ε0 < 1 and define

Q(U)fm = Πk
i=1(U − ai + ε0)(fm) = P (U)fm + Σki=0(ε0)i(pi(U))(fm)

where the pi(U) are polynomials in U . Notice that

|Q(U)fm| ≤ |P (U)fm|+ Σki=0|(ε0)i(pi(U)(fm))|
≤ |P (U)fm|+ (ε0)Σki=0|(pi(U)(fm))|

On the unit circle K,

|Q(U)fm − P (U)fm| ≤ |Q(U)fm| − |P (U)fm| ≤ ε0Σki=0|(pi(U)(fm)| ≤ ε0M

where we have used the fact that |(pi(U)(fm)| is bounded by some constant
M , being a real function on a compact set. Thus, there exists Q such that
d(P (U)fm, Q(U)fm) < ε. By triangle inequality, we have d(h,Q(U)fm) <
d(h, P (U)fm) + d(P (U)fm, Q(U)fm) = 2ε. Since Q(U) is non-zero on K, then
Q(U) is invertible on K, and we may approximate this inverse by polynomials
in U . Let {Si} be a sequence that approximates Q−1(U). Let g = Q(U)fm. By
the above, d(h, g) < 2ε. We show that d(f,H(g)) < 2ε. To do so, we first show
d(H(fm), H(g)) < ε. We have

limn→∞(Sj(U)g) = fm

For some j, d(H(fm), H(Sj(U)g)) < ε and d(H(Sj(U)g), H(Q−1(U)g)) < ε,
and clearly d(H(Q−1(U)g), H(g)) = 0 so that

d(H(fm), H(g)) < d(H(fm), H(Sj(U)g)) + d(H(Sj(U)g), H(Q−1(U)g))
+d(H(Q−1(U)g), H(g))

< 2ε
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2.5 AZ: The Morse Sequence and Rokhlin Stacks

Lecture date: 2014/03/31.
Motivation: To provide a geometric interpretation of the Morse dynamical

system (Xu, S). The interpretation covered today will break the Morse system
into a series of stacking “towers.” It turns out that, at each step of the series,
the Morse system comes out to be two disjoint towers that are twice the height
of each of the towers in the previous step.

Definition 2.46. A sequence of partitions Pn = {Pn1 , ..., Pnkn} of X generates
a measure-theoretic dynamical system (X,T, µ) if there exists a set E with
µ(E) = 0 such that, for every pair (x, x′) ∈ (X \E)2, if x and x′ are in the same
set of the partition Pn for every n ≥ 0, then x = x′.

Figure 1: A diagram of a rank one transformation.

Next, we define what it means for a system to be of rank one. Refer to
Figure 1.

Definition 2.47. We say that a system (X,T, µ) is of rank one if there exist
sequences of positive integers (qn)n∈N, (an,i)n∈N,1≤i<qn , and (hn)n∈N and sub-
sets of X, denoted by (Fn)n∈N, (Fn,i)n∈N,1≤i≤qn and (Cn,i,j)n∈N,1≤i<qn,1≤j≤an,i
such that, for every fixed n,
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(a) (Fn,i)1≤i≤qn is a partition of Fn,

(b) the sets (T kFn)1≤k≤hn−1 are disjoint

(c) ThnFn,i = Cn,i,1 if an,i 6= 0 and i < qn,

(d) ThnFn,i = Fn,i+1 if an,i = 0 and i < qn,

(e) TCn,i,j = Cn,i,j+1 if j < an,i,

(f) TCn,i,an,i = Fn,i+1 if i < qn,

(g) Fn+1 = Fn,1.
Additionally, hn must satisfy both the recurrence relation h0 = 1 and hn+1 =

qnhn +
∑qn−1
j=1 an,i and the inequality

+∞∑
n=0

hn+1 − qnhn
hn+1

< +∞, (62)

and the sequence of partitions {Fn, TFn, ..., Thn−1Fn, X \∪hn−1
k=0 T kFn} gen-

erates the system (X,T, µ).

Definition 2.48. The union of the disjoint (T kFn)1≤k≤hn−1 from the last def-
inition is called a Rokhlin stack of base Fn. We say also that the system is
generated by sequence of Rokhlin stacks with bases Fn.

The following lemma is given without proof.

Figure 2: nth stage
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Lemma 2.49. 5.2.4 in the text Every substitution σ defines a continuous map
from Xu to Xu.

We now proceed to the main result. We may build the sets Fn,e = σn[e] and
their images (SkFn,e)0≤k≤2n−1 in the following way:

(1) Conventionally, for fixed e and n, we denote the set SkFn,e by dots drawn
one above the other as k increases.

(2) At stage n, we have two Rokhlin stacks (each n-stack being ∪2n−1
k=0 SkFn,e,

with e = 0 or 1) with bases Fn,0 and Fn,1, with height 2n, whose levels
SkFn,e are disjoint sets of measure 2−n−1.

(3) The shift map S sends each level of each stack, except the top ones, onto
the level immediately above; S is not explicit on the top levels.

(4) In the beginning, F0,0 and F0,1 are two disjoint sets of measure 1/2.

(5) At stage n, we cut Fn,e into two subsets of equal measure Fn+1,e and
Hn+1,e. The shift map S becomes explicit on part of the levels where it
was not yet so, as it sends S2n−1Fn+1,0 onto Hn+1,1 and S2n−1Fn+1,1 onto
Hn+1,0. This defines the (n+ 1)-stacks, which will have height 2n+1.

The process is illustrated in Figure 2. In the diagram, Fn,0 denotes σn[0], and
Fn,1 denotes σn[1]. From Lemma 2.29, we have σn[e] = σn+1[e] ∪ S2nσn+1[e′],
where e+ e′ = 1. Note that the top stack associated with Fn,0 is thus

S2n−1σn[0] = S2n−1σn+1[0] ∪ S2n+1−1σn+1[1]. (63)

Applying S to both sides gives us

S2nσn[0] = S2nσn+1[0] ∪ S2n+1
σn+1[1]. (64)

Likewise, we have

S2nσn[1] = S2nσn+1[1] ∪ S2n+1
σn+1[0], (65)

and combining these two statements shows how the stacks are rearranged from
the nth step to the (n+ 1)th step, see Figure 3.

We must prove a proposition to conclude that the stacks indeed generate
(Xu, T, µ).

Proposition 2.50. There exists a countable set E such that for every pair
(w,w′) ∈ (Xu \ E)2, if w and w′ are in the same stack and the same level
SkFn,e, for all n ≥ 0, 0 ≤ k ≤ 2n − 1 and e = 0, 1, then w = w′.

Proof. If w and w′ are always in the same level of the same stack, they are in the
same Sknσn[en] for all n; and hence the sequences w and w′ coincide between
the indices 0 and wn − 1− kn; this implies w = w′ if 2n − 1− kn → +∞.

The proof of the case where 2n−1−kn remains bounded is omitted for now
because the solution provided in the book is unclear.
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Figure 3: (n+ 1)th stage

2.6 JC: The dyadic rotation

Lecture date: 2014/03/31
The goal of this lecture is to compare the Morse system to geometric systems.

We will focus on the most elementary case of this, systems on intervals. Kubrat
mentioned topological conjugacy in his lecture as well as some interesting prop-
erties of it. In particular, topological conjugacy preserves unique ergodicity. We
will define new notions of isomorphism, since topological conjugacy turns out
to be too strong.

We recall from Definition 2.42 that a measure theoretic isomorphism
φ between systems (X,T, µ) and (Z,R, ρ) is a bimeasureable bijection from
X1 ⊆ X to Z1 ⊆ Z such that µ(X1) = ρ(Z1) = 1, φµ = ρ and Rφ = φT .

We note that topological conjugacy implies that two systems are measure-
theoretically isomorphic. This notion of measure-theoretically isomorphic is
weaker than topological conjugacy since X1 and Z1 are more general. For

40



these isomorphisms, we remove sets of measure zero and then conjugate the
spaces through an invertible measureable transformation. We now define a
more moderate notion of isomorphism:

Definition 2.51. Two systems (X,T ) and (Z,R) are semi-topologically con-
jugate if there exist X1 ⊂ X, Z1 ⊂ Z, and φ abicontinuous bijection from X1

to Z1 such that X \X1 and Z \ Z1 are countable, and R ◦ φ = φ ◦ T . In that
case, if (X,T ) is a symbolic system, we say that it is a coding of (Z,R).

Proposition 2.52. Semi-topological conjugacy preserves unique ergodicity and,
for uniquely ergodic systems, the semi-topological conjugacy of (X,T ) and (Z,R)
implies the measure-theoretic isomorphism of (X,T, µ) and (Z,R, ρ).

Proof. The proof that semi-topological conjugacy preserves unique ergodicity is
similar to the proof of Proposition 2.23 and is omitted here.

We now introduce rotations.

Definition 2.53. A rotation is the dynamical system (G,R, λ) where G is a
compact group, R is a translation of G, and λ is the Haar measure on G.

Example 2.54. Let G be the torus T1, and Rx = x+α modulo 1 for irrational
α. Here the point x is getting translated by α, taking the decimal part if
necessary. A common result is to show that this is ergodic.

Now we will introduce the Van der Corput map. It is a map from Y0 =
[0, 1] to itself defined by

R0(1− 1
2n

+ x) =
1

2n+1
+ x, for 0 ≤ x < 1

2n+1
, n ∈ N and R0(1) = 0. (66)

The Van der Corput map preserves the Lebesgue measure λ0.
Every number in [0, 1] has a binary decimal representation 0.ω0ω1.... We

note that the sequence after the decimal is an element of Y = {0, 1}N. More
formally, we define the mapping

χ(x) = (ω0ω1...) whenever x =
∑

ωj2−j−1 (67)

Definition 2.55. The dyadic rotation is a mapping R from Y = {0, 1}N to
Y = {0, 1}N defined as

R = χR0χ
−1 (68)

Then we see that R takes a binary sequence, sends it to the decimal fraction,
Van der Corput maps it, then sends the result back to a binary representation.
If we apply R to a point of the form 0abc, it gets sent to a point of the form
1abc.

The set Y with addition in base two is a compact group. It contains a copy
of N by φ(1) = 10...0..., φ(2) = φ(1) + φ(1). It also contains a copy of Z since
we see that 10...0... + 11111... = 00000... so we can define φ(−1) = 111.... We
call (Y,+) the group of 2-adic integers. Then R is the rotation ω 7→ ω + 1.
Using the terms we defined before, we see that (Y0, R0) and (Y,R) are semi-
topologically conjugate.
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Definition 2.56. A character on a group G is a homomorphism γ : G→ T1.
If G is a topological group, we also require that γ is continuous.

Proposition 2.57. The system (Y,R) is uniquely ergodic, and hence the system
(Y,R, λ) is ergodic.

Proof. For each measure ν on Y , we can define a Fourier transform ν̂(γ) =∫
g∈Y γ(g)dν. If µ is invariant under R, we have ˆµ(γ) =

∫
g∈Y γ(Rg)dµ =

γ(1)µ̂(γ). Thus, if µ̂(γ) 6= 0,γ(1) = 1. Then we have that γ(n) = 1 for all
integers since γ is a homomorphism, so γ must be identically 1. Then we have
that µ̂ is zero on characters which are not the identity and one on the character
1. Thus, µ is the Haar measure λ. Then by Proposition 5.1.22 in the book, the
system (Y,R, λ) is ergodic.

Next, we consider the action of the operator U : L2(Y, λ)→ L2(Y, λ) defined
by Uf(w) = f(Rw).

Proposition 2.58. The system (Y,R) has a discrete spectrum. Its eigenvalues
are e2iπα for all the dyadic rationals α = p2−k, for p, l ∈ Z.

Proof. It is a classical result that for a compact group, the characters generate
a dense subspace of L2(Y, λ). Since γ is a character, γ(Rg) = γ(1)γ(g). Thus
all the characters are eigenfunctions and all the eigenvalues are the γ(1). Then
it is sufficient to find all the characters of Y . The integers are dense in Y ,
so a character of Y must also be a character of Z, hence γ(n) = e2iπnα for
an α ∈ [0, 1]. Then if we can extend this γ continuously to Y , it will remain
what we want. Next, we have that ω = ω0ω1... = limk→+∞ ω0...ωk00...0...
= limk→+∞

∑k
j=0 ωj2

j . Then we need to find all the α such that for all ω,

e2πiαβk converges as k → +∞ where βk =
∑k
j=0 ωj2

j . We then write α =∑+∞
k=0 αk2−k−1. The αi are ultimately equal to 0 or for infinitely many k,

αk = 1, αk+1 = 0. The sequence cannot converge if it is the latter, so α must
have a dyadic expansion that terminates. This means it is a dyadic rational
number. Each α yields an eigenvalue e2πiα.
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2.7 JF: Morse Shift as a Two-Point Extension

We recall the uniquely ergodic rotation (Y,R, λ) on the 2-adic integers from
Definition 2.55. If (Y0, R0) is the Van der Corput map, we recall that (Y0, R0, λ0)
(where λ0 is Lebesgue measure) is semi-topologically conjugate to (Y,R, λ), and
therefore these maps are also measure theoretically isomorphic.

Proposition 2.59. The system (Y,R) is rank one.

Proof. Let G0 = Y and for n ≥ 1, let

Gn = [0 . . . 0︸ ︷︷ ︸
n

].

We see that for 0 ≤ k < 2n the images RkGn are disjoint and

{Gn, RGn, . . . , R2n−1Gn}

partition Y . We also have that Gn = Gn+1 + R2nGn+1, which shows us how
to achieve the stack for n + 1 from the stack for n. To confirm then that this
system is rank one by these stacks, we need that these partitions generate the
system.

Suppose for each n ∈ N,

w,w′ ∈ RknGn for some 0 ≤ kn < 2n.

Then as RknGn is a cylinder on a word of length n,

w0w1 . . . wn−1 = w′0w
′
1 . . . w

′
n−1

for all n. Therefore w = w′.

We will now show a relationship between the uniquely ergodic Morse Shift
(Xu, S, µ) and the system (Y,R, λ). On Xu, define the map τ : Xu → Xu by
τ(w) = w′, where wn +w′n = 1 for all n ∈ N. τ is a homeomorphism on Xu and
s ◦ τ = τ ◦ S. We define an equivalence on Xu by

w ∼ w̃ ⇐⇒ w = w̃ or w = τ(w̃)

and letXu be quotient ofXu under this equivalence. This covering π : Xu → Xu

is two-fold, and we call the induced system (Xu, S, µ) a factor with fiber two
of (Xu, S, µ).

Furthermore, we may also define a map φ : Xu × Z2 → Xu, by

φ(w, e) = w

where π(w) = w and w0 = e. φ defines a topological conjugacy, and the measure
on Xu×Z2 is µ times uniform measure m on Z2. The action of S in Xu induces
an action on Xu × Z2 by

S(w, e) = (Sw, z(e, w))
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where z(e, w) = (w, e)1. This map is measurable and continuous. We say that
(Xu, S) is a skew product of (Xu, S) by Z2.

Consider the sequence of two stacks that generate the system (Xu, S) from
Lecture 2.5. These were of the form SkFe,n, where 0 ≤ k < 2n and Fe,n = σn[e].
Because π(F0,n) = π(F1,n), call this mutual image Fn with stack S

k
Fn for

0 ≤ k < 2n. Under these stacks, we see that (Xu, S, µ) is rank one.
We now come to the relationship between (Xu, S) with (Y,R). We call

(Xu, S) a two-point extension of (Xu, S), as it is homeomorphic to the second
system times a two point space. If we show that (Xu, S) is topologically semi-
conjugate to (Y,R), then we have also that (Xu, S) is a coding of a two-point
extension of (Y,R) as follows. Recall from Definition 2.51 that a topological
semi-conjuacy is called a coding if one system is a shift.

Proposition 2.60. (Xu, S) is topologically semi-conjugate to (Y,R)

Proof. Given w ∈ Xu, let (kn)n∈N be given by w ∈ SkFn. Note that either

kn+1 = kn or kn+1 = kn + 2n (69)

For each n, let Uk,n = Rk[0 . . . 0︸ ︷︷ ︸
n

] ⊆ Y for 0 ≤ k < 2n. By (69),

Ukn+1,n+1 = [z1z2 . . . zne] where Ukn,n = [z1z2 . . . zn] and e ∈ {0, 1}. (70)

or Ukn+1,n+1 ⊆ Ukn,n. Therefore, φ : Xu → Y given by

ψ(w) =
∞⋂
n=1

Ukn,n

is well-defined and onto. The function ψ is continuous as

ψ−1([m]) = S
m
Fn

where 2n−1 ≤ m < 2n and m is the representation of integer m in Y . Also,
ψ(S

k
Fn) = Uk,n, and so the image of an open set is open as well.

Let X1 ⊆ Xu be the image under π of the set of w in Xu such that the
position of w in each n-stack pair uniquely determines w and Y1 = ψ(X1). Then
Xu\X1 and Y \Y1 are countable and ψ defines a topological semi-conjugacy.

Because ψ is onto, we may define ψ−1 by making a choice for each y ∈ Y
such that ψ−1(y). This will not be an issue, as we will only use the effective
composition ψ ◦ψ−1, which will be the identity. As we see in Figure 4, we may
define a skew-product Y × Z2 over (Y,R, λ) by

(y, e) 7→ (R(y), z̃(e, y)) for z̃ = z ◦ ψ̃−1. (71)

The system (Xu, S, µ) is topologically semi-conjugate to (Y ×Z2, Ro z̃, λ×m),
a two point extension of (Y,R, λ), by ψ̃ ◦ φ.
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(Xu × Z2, S o z, µ×m)

id1

''

ψ̃=ψ×id2
��

(Xu, S, µ)
φoo π // (Xu, S, µ)

ψ

��
(Y × Z2, Ro z̃, λ×m)

id1

// (Y,R, λ)

Figure 4: The diagram of maps. Here ψ is an onto topological semi-conjugacy,
φ is a topological conjugacy, π is a factor map of fiber two, and idj represents
projection onto coordinate j.

We end this section with a discussion about the spectrum of the Morse Shift.
To do this, we use the association between the factor (Xu, S) and the rotation
(Y,R). Recall from Proposition 2.58 that the spectrum of (Y,R) has discrete
spectrum with the set of eigenvalues to be all values of the form e2πıα for dyadic
rationals α.

Proposition 2.61. The Morse Shift has non-discrete simple spectrum, and the
eigenvalues are the values e2πıα for each dyadic rational α.

Proof. Consider vector space L = L2(Xu, µ) with unitary operator U : L → L
given by Uf = f ◦S. Consider another linear operator V : L→ L by V f = f ◦τ .

Let H1 = {f ∈ L : V f = f} and H−1 = {f ∈ L : V f = −f}. It follows that

H = H1 +H2 and H1 ⊥ H−1. (72)

Furthermore, H1 ' L2(Xu, µ). Because S and τ commute, H±1 is U invariant.
Because (Xu, S, µ) and (Y,R.λ) are measure theoretically isomorphic, the

eigenvalues in the spectrum H with eigenfunctions in H1 are all values e2πıα

where α is a dyadic rational. Because (Xu, S, µ) is ergodic, all these eigenvalues
are simple.

Suppose by contradiction that there are eigenfunctions f ∈ H \ H1 of U .
Because such a function may be expressed as f = f1 + f−1 where f±1 ∈ H±1

and f−1 6= 0, then Uf = e2πıβf would imply that Uf±1 = e2πıβf±1, as H±1

are U invariant. Therefore, our contradictory assumption may without loss of
generality consider an eigenfunction f ∈ H−1. But then g = f · f ∈ H1, and so
Ug = e2πı2βg implies that 2β is a dyadic rational. And so β is a dyadic rational.
Because there exists a e2πıβ-eigenfunction g′ ∈ H1, the dimension of the e2πıβ-
eigenspace must be at least two, as g′ ⊥ g. This however is a contradiction to
ergodicity.

Therefore, the eigenvalues are all simple and of the desired form, but the
span of the eigenfunctions are not dense in H (just H1).
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Figure 5: The automaton that generates the Morse sequence.

2.8 JC: Automata and the Rudin-Shapiro sequence

Lecture date: 2014-04-07.
The goal of this lecture is to define what automata and automatic sequences

are and to introduce some properties of the Rudin-Shapiro sequence.
First we will define what a k-automaton is.

Definition 2.62. A k-automaton is represented by a directed graph (digraph)
with a finite set S of vertices called states, k oriented edges labeled from 0 to
k − 1 called transition maps from S to itself, and a set Y and a map φ from
S → Y called the output function or exit map. One of the states in S is
called the initial state.

Definition 2.63. We call a sequence (un) k-automatic if it is generated by
a k-automaton such that when taking the base k expansion of the integer n =∑j
i=0 rik

i, we can follow the digits r0, r1...rj along the oriented edges starting
from the initial state to get to the state a(n). Then the term un of the sequence
is u(n) := φ(a(n)).

We say that the automaton generates this k-automatic sequence in reverse
reading because the digits are read in increasing order of powers. We can give
an equivalent definition of k-automaticity by reading the digits in a decreasing
order of powers. This is proved in Proposition 1.3.4 in the textbook.

Example 2.64. Here we show how a 2-automaton generates the Morse sequence
in direct reading. The state A exits as 0 and the state B exits as 1. See Figure
5

Now we will introduce the Rudin-Shapiro sequence.

Definition 2.65. The Rudin-Shapiro sequence (εn) over alphabet {−1,+1}
is defined by ε0 = 1 and for n ∈ N, ε2n = εn and ε2n+1 = (−1)nεn.
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We discussed how the Morse sequence gives the parity of the sum of digits
of n, or the parity of the number of occurences of 1 in the dyadic development
of n.

Similarly, the Rudin-Shapiro sequence gives the parity of the number of
words 11 in the dyadic development of n. We shall see this in the next propo-
sition.

Proposition 2.66. For integer r with dyadic development r =
∑k
i=0 ri2

i with
ri ∈ {0, 1}, we have that

εr = (−1)
P
i≥0 riri+1 . (73)

Proof. We will proceed by induction on the number of digits. It is clear when
k = 0. Then assuming the proposition is true for k, we will prove it is true for
k+ 1. We define e(r) to be the sum

∑
i≥0 riri+1 where r =

∑k
i=0 ri2

i. First, we
note that (−1)e(2r) = ε2n = εn = (−1)e(r) since we are just shifting the digits.
We note that this is not in mod 2. Similarly, e(2r+ 1) = r+ e(r) simply by the
properties of exponents.

Then we know that the formula to be proven works for r =
∑k
i=1 ri2

i−1

because r has k digits by our inductive hypothesis. Then we will show it works
for a number 2r + r0 where r0 = 0 or 1.

We get the equation

e(2r + r0) = r0r + e(r) = r0r1 + e(r) =
k−1∑
i=0

riri+1. (74)

Then we can say that in the Rudin-Shapiro sequence counts the number of
times the word ′11′ appears in the binary expansion.

Example 2.67. The first few terms of the Rudin-Shapiro sequence are

+1,+1,+1,−1,+1,+1,−1,+1... (75)

Example 2.68. This is the Rudin-Shapiro sequence automaton. The states A
and B map to +1 and the states C and D map to −1. See Figure 6.

Then again thinking of integers as words over the alphabet {0, 1}, this 2-
automaton in reverse or direct reading with exit map φ(a) = φ(b) = 1 and
φ(c) = φ(d) = −1 generates the Rudin-Shapiro sequence.

Remark 2.69. Over the four-letter alphabet {a, b, c, d}, the Rudin-Shapiro
sequence is the fixed point u (starting with the letter a of the substition

a 7→ ab b 7→ ac c 7→ db d 7→ dc (76)

If we let v be the sequence obtained by applying φ to u, we can say that v
is the limit of the words φ(σn(a)) We see quickly that φ(σn(c)) = −φ(σn(b))
where the − sign flips the bits. Then we can say that v is given by the limit of
the recursion formula An+1 = AnBn and Bn+1 = An(−Bn).
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Remark 2.70. We can say that v is a 2-automatic sequence, but it is not the
fixed point of a substitution.

Using the notion of primitivity from Jack’s first lecture, we can quickly verify
that for any two letters l,m there is some k such that l occurs in σk(m). Then
since u is defined as the fixed point of σ and σ is primitive, by Prop. 1.43, u is
minimal.

Remark 2.71. The complexity of u is 8n− 8.

We can also calculate its complexity in a similar way as the Morse sequence.
We will not do the calculation during the lecture. To connect to notions that
Kubrat mentioned, we have the following remark.

Remark 2.72. Xu and Xv are topologically conjugate.

To connect the Rudin-Shapiro sequence to Jay’s first lecture, we have the
following remark.

Remark 2.73. The dynamical system generated by the Rudin-Shapiro se-
quence (u or v) is uniquely ergodic. We can prove this following the way this
was proved for the Morse sequence last week.

Now we will study some spectral properties of the system (Xu, S, µ) gener-
ated by the Rudin-Shapiro sequence.

We want to answer the question “Could a function with a spectral type
equivalent to the Lebesgue measure and with simple spectrum exist?”

We answer this question positively with the next proposition.

Definition 2.74. The spectral type of f or of the generated cyclic space is
the finite positive measure ρ on T1 defined by ρ̂(n) = (Unf, f). Its total mass
is ‖f‖2H
Proposition 2.75. Let f be a function defined over Xv such that f(w) = w0

and let fN =
∑N−1
n=0 zne

2πinx where zn = 1 when vn = 1, 0 otherwise. Its
spectral type is the weak-* limit of the measures with density (Radon-Nikodym
derivative from lecture 3) 1

N |fN |
2 with respect to the Lebesgue measure λ.

Figure 6: The automaton that generates the Rudin-Shapiro sequence
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Proof. The spectral type ρf is defined by

ρ̂f (p) = (f, Upf) = µ({w;w0 = 1, wp = 1}) (77)

There is a large section in chapter 1 of the book which discusses ”correlation”
measures. Suffice it to say that the frequency of the words a0...ap where a0 =
ap = 1 is exactly

lim
N→+∞

1
N

N−1∑
n=0

1vn=vn+p=1 (78)

We check that ρ̂N (p) = 1
N

∑N−p−1
n=0 znzn+p where znzn+p = 1 only if vn =

vn+p = 1. Lastly, from a result from real analysis, the convergence of Fourier
coefficients is equivalent to the weak-star topology convergence of measures.
Then we can conclude that ρf is the weak-* topology limit of ρN .

Proposition 2.76. The associated operator U has a spectrum with multiplicity
at most four; all the dyadic rationals are eigenvalues; there exist functions the
spectral type of which is equivalent to the Lebesgue measure.

Proof. (X,S) is a four-point extension of a system with a simple spectrum, so
L2(X,µ) is a limit of H1

n+H2
n+H3

n+H4
n where Hi

n are cyclic space which can be
empty and not orthogonal. One can generalize Theorem 2.45 from Alex’s first
lecture to show that L2(X,µ) is generated by at most four cyclic spaces. One
of these contains eigenvectors of the dyadic rotation, so the dyadic rationals are
the eigenvalues by Proposition 2.58 of Jay’s first lecture.

If we normalize f from the previous proposition to be orthogonal to con-
stants, then

∫
fdµ = 1/2. Then letting g = 2f − 1, we use the previous propo-

sition to get that ρg is the vague limit of ρ′n = 2−n|gn|2λ, where gn(x) =∑2n−1
j=0 vke

2πijx (recall that v is the sequence deduced from the Rudin-Shapiro
sequence by letter-to-letter projection). If Bn = wn,0...wn,2n−1, then we let
hn(x) =

∑2n−1
j=0 wn,ke

2πijx. Then based on the discussion before, we have that
gn+1(x) = gn(x) + e2πi2nxhn(x) and hn+1(x) = gn(x)− e2πi2nxhn(x), so we can
say |g2

n+1(x)|+ |h2
n+1(x)| = 2(|g2

n(x)|+ |h2
n(x)|) and for n = 0, it is equal to 2n+1

for all x. Then we get the inequality |gn|
2

2n+1 ≤ 1 for all n and the densities of ρ′n
must converge in L2(X,µ). Lastly, the density of ρg must be strictly positive,
since |gn|

2

2n+1 → 0 implies |hn|
2

2n+1 → 1, which contradicts the recursion formula.
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2.9 AY: The Unique Ergodicity of Primitive Substitutions

Lecture date: 2014-4-14.

Definition 2.77. The substitution σ over alphabet A is primitive is there exists
k such that for each pair a, b ∈ A the letter a occurs in σk(b)

Our first result tells us that if we take repeatedly apply a primitive substitu-
tion to a fixed letter in A, the frequencies of each letter in the resulting images
A stabilize to a limit.

Lemma 2.78. For each a ∈ A and e ∈ A, if N(e, σn(a)) = |σn(a)|e denotes the
number of occurrences of the letter e in the word σn(a), then N(e,σn(a))

|σn(a)| tends
to a positive limit fe independent of a in the limit as n→∞.

Proof. For a given word V , let 1(V ) denote the vector (|V |e, e ∈ A). Let Mσ

denote the incidence matrix of σ defined by Mσ = (mi,j)i,j∈A where mi,j =
N(i, σ(j)). Recall that for any word V , we have 1(σ(V )) = Mσ1(V ). Since
σ is primitive, then there exists integer k such that Mk

σ has only positive in-
teger entries. By Perron-Frobenius theorem, Mσ has a positive eigenvalue α
corresponding to eigenvector u such that the following hold: α > 1 since Mσ

has all integer entries, α is simple, α > λ for any other eigenvalue λ By the
Power-iteration algorithm, we know that Mn

σ 1(a)
αn converges to a positive mul-

tiple ua of u. To be explicit, we can write 1(a) = c1v1 + c2v2 + ... + cNvN
where v1 = (1, 0, ..., 0)t is the vector u expressed under the Jordan basis, and
vi, 2 ≤ i ≤ N are generalized eigenvectors. By Perron-Frobenius, c1 is real and
positive. Write Mσ = V JV −1 where J is the Jordan form. Then

Mn
σ 1(a)
αn

(79)

=
V Jn

αn
(c1v1 + c2v2 + ...+ cNvN ) (80)

= c1u+
V Jn

αn
(c2v2 + ...+ cNvN ) (81)

Now, Jn

αn → E1,1 where E1,1 is the matrix with entry 1 at (1, 1) and 0
everywhere else, since α dominates all other eigenvalues.

Then
c1u+

V Jn

αn
(c2v2 + ...+ cNvN )→ c1u as n→∞ (82)

Note that we can write |σn(a)| = 1(σn(a)) · e where e = (1, ..., 1). Then we
have the limit N(σn(a))

|σn(a)| →
ua
〈ua,e〉 where N(σn(a)) = (N(e, σn(a))e∈A. Since this

is a multiple of u whose coordinates sum to 1, then this limit is independent of
a.

Our next result will extend the previous result to show that the frequencies
of words occurring in the fixed point of the primitive substitution σ also stabilize
in a similar fashion.
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Lemma 2.79. Let u be a fixed point of the primitive substitution σ. Let Al be
the alphabet whose letters are the words of length l that occur in u. For each
letter a ∈ A, and any word W ∈ Al, the N(W,σn(a))

|σn(a)| tends to a positive limit fW
independent of a as n→∞.

Proof. Define a new substitution ζl by the following: given W ∈ Al where
W = w1...wl, σ(W ) = w′1...w

′
m, and q = |σ(w1)|, then define

ζl(W ) = (w′1...w
′
l)(w

′
2...w

′
l+1)...(w′q...w

′
q+l−1) (83)

which is well-defined since q + l− 1 ≤ m since |σ(e)| > 0,∀e ∈ A We show that
Ul = (u0...ul−1)(u1...ul)...(un...un+l−1)... is a fixed point for ζl. Let q0 = |σ(u0)|.
We can write σ(u0) = u0...uq0−1 since u is a fixed point of σ. Let f(i) denote
the factor of u of length l beginning at index i. Now,

ζl(u0...ul−1) = (f(0))(f(1))...(f(q0 − 1))
= (u0...ul−1)(u1...ul)...(uq0−1...uq0+l−2) (84)

Continuing in this fashion, we can define q1 = |σ(u1)| and repeat the argument
above to obtain

ζl(u1...ul) = (f(q0))(f(q0 + 1))...(f(q0 + q1 − 1))
= (uq0 ...uq0+l−1)...(uq0+q1−1...uq0+q1+l−2) (85)

And repeating this argument indefinitely shows that Ul is fixed by ζl Next we
show that ζl is primitive. Recall the assumption that all letters in A occur
at least once in the fixed point u. Since u is a fixed point of σ, then for any
a ∈ A and integer p ∈ Z the word σp(a) is a factor of u. Since u is a fixed
point of a primitive substitution, then u is minimal. Since Al is finite (|Al|
is clearly bounded above by |A|l, and since |σp(a)| → ∞ as p → ∞ then we
can pick p sufficiently large so that each W ∈ Al is a factor of σp(a). Since
σ is primitive, there exists an integer m > 0 such that for any b ∈ A we
have that a occurs in σm(b). Take any V,W ∈ Al. By primitivity, we know
a occurs as the first letter (in the alphabet A) of one of the letters (in the
alphabet Al) of ζml (V ). By the choice of p, we know that ζm+p

l (V ) contains
the letter W ∈ Al. Write V = v1...vl. It is clear by the definition of ζl that
|σn(v1)| = |ζnl (V )|. As n→∞ we see that N(W, ζnl (V )) differs by at most l from
N(W,σn(v1)) because we can write σn(v1) = uQuQ+1...uQ+R as some factor of
u, and ζnl (V ) = (uQ...uQ+l−1)(uQ+1...uQ+l)...(uQ+R...uQ+R+l−1). Thus, by the
previous lemma, there exists some positive limit fW such that

N(W,σn(a))
|σn(a)|

→ N(W, ζnl (V ))
|ζnl (V )|

→ fW (86)

Third, we prove a general result regarding symbolic dynamical systems in-
duced by fixed points.
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Proposition 2.80. If v is a fixed point of a primitive substitution σ then the
symbolic dynamical system (Xv, T ) is uniquely ergodic

Proof. Let u be the eigenvector associated to the dominating eigenvalue α of
Mσ. Recall from the proof of Lemma 2.78 that for each a ∈ A there exists some
positive constant ca

Mn
σ 1(a)
αn

→ ua = cau as n→∞ (87)

Thus, for p sufficiently large,

|σp(a)| = Mp
σ1(a) · e = αpcau · e (88)

Thus, there exists constants c, d such that

cαp < infa∈A|σp(a)| < supa∈A|σp(a)| < dαp (89)

Recall that if s is the Morse sequence then for any factor W of s,

N(W, sk...sk+n)
n+ 1

→ fW ,uniformly in k (90)

We can prove analogously that for our fixed point v of σ,

N(W, vk...vk+n)
n+ 1

→ fW ,uniformly in k (91)

where we use the inequalities cαp < infa∈A|σp(a)| < supa∈A|σp(a)| < dαp

instead of |σp(si)| = 2p. By Proposition 1.35, the symbolic dynamical system
(Xv, T ) is uniquely ergodic with measure µ defined by µ([W ]) = fW for all
cylinders associated with each factor W of v.

52



Proposition 2.81. If u is a non-periodic fixed point of a primitive substitution,
then the unique invariant probability measure of the symbolic dynamical system
(Xu, T ) is non-atomic

Proof. Suppose there exists w ∈ Xu with µ(w) = η > 0. Then for all cylinders
Wn, n ∈ Z, we have µ([Wn]) ≥ η. Write Wn = w0...wn. Since µ([Wn]) = fWn

then for each n, there exist integers jn, in sufficiently large such that jn > in
and jn − in < 1

η such that Wn occurs in u at indices jn and in. If n > 2
η >

jn − in then w0...wbn/2c = wjn−in ...wjn−in+bn/2c. Since 0 < jn − in < 1
η then

jn − in takes on finitely many values and hence there exists an integer k such
that w0...wbn/2c = wk...wk+bn/2c for infinitely many n. Since this is true for
arbitrarily large n, then actually w0...wbn/2c = wk...wk+bn/2c holds for all n,
which implies w is periodic. By Lemma 1.13, for any initial word u0...un in
u, there exists N such that u0...un = wN ...wN+n. Thus, if w is periodic with
period k then so is u, a contradiction since u is non-periodic.

Proposition 2.82. If σ is primitive, then its fixed points have an at most linear
complexity.

Proof. Let u be a fixed point of σ. For all a ∈ A, we know that |σn(a)| → ∞
as n → ∞, so we may find p such that infa∈A|σp−1(a)| ≤ n ≤ infa∈A|σp(a)|.
These inequalities imply that any factor of length n in u appears in either in
some σp(a) or some σp(ab). Given fixed a, b ∈ A, there are at most |σp(ab)|
factors of length n in σp(a) or σp(ab), counting according to the position of
the first letter of the factor. Clearly, there are at most K = |A|2 possible pairs
a, b ∈ A. Recall from Proposition 2.80 above, that we may choose p large enough
so that

cαp < infa∈A|σp(a)| < supa∈A|σp(a)| < dαp (92)

Then |σp(ab)| < 2dαp so that for n sufficiently large,

pu(n) ≤ K|σp(ab)| < 2Kdαp (93)

By Proposition 2.80 and the inequality we established earlier, we have the in-
equalities

cαp−1 < infa∈A|σp−1(a)| < n (94)

Thus, we have

pu(n) ≤ K|σp(ab)| < 2Kdαp < 2K
d

c
αn (95)
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2.10 ZQ: Rauzy Induction and irrational rotation

Lecture date: 2014-04-14.
To put things in perspective, we have already seen that the Morse system is

a coding of a two-point extension of the dyadic rotation. The two main results
presented in this talk are that the Fibonacci system is a coding of a particular
irrational rotation, and that the complexity function of the Fibonacci sequence
is n+ 1, the smallest possible for a non-periodic sequence.

We begin with simple observations and definitions. Denote by T1 the unit
circle centered around the origin in the complex plane. Given a real number
r ∈ [0, 1), we can associate this number with the point e2πir on the torus. With
this association, and given an irrational number α, we define the irrational
rotation of T1 of angle α by R(x) = xe2πiα. Similarly, given the fundamental
domain [0, 1), we define the rotation by R(x) = x + α if x ∈ [0, 1 − α), and
R(x) = x+α−1 if x ∈ [1−α, 1). Note that (T1, R) and ([0, 1), R) are naturally
semi-topologically conjugate, with the bicontinuous map φ from [0, 1) to T1

defined as φ(r) = e2πir.

Definition 2.83. Let Q be a partition of X into two sets P1 and P2. For
every point w ∈ X, its P -name is the sequence P (w) such that P (w)n = i if
Tnw ∈ Pi. P (w) is also sometimes called the itinerary of w. We shall use these
two interchangeably.

Definition 2.84. For a transformation T on X, a set A ⊂ X, and a point
x ∈ A, we call first return time of x in A and denote by nA(x) the (possibly
infinite) smallest integer m > 0 such that Tmx ∈ A. The induced map of T on
A is the map TnA(x)x defined on A ∩ {x;nA(x) < +∞}.

The particular irrational rotation we are going to look at is α = 1
2 (
√

5− 1).
Let P1 be the set [0, 1 − α) and P0 the set [1 − α, 1). Let v be the P -name of
the point α under R. We are interested in the trajectory of the rotation. Note
that α ≈ 0.62, so that we have the ordering 0 < 1 − α < 0.5 < α < 1. Also,
1
α = 2√

5−1
= 2(

√
5+1)
4 =

√
5+1
2 = α+ 1.

The following proposition gives a representation of the P -name as the image
of a particular sequence under substitution and shift. It will be useful later
when we show that v is in fact the Fibonacci sequence. Furthermore, the Rauzy
induction used is interesting itself.

Proposition 2.85. The sequence v is the image by Sτ0 of the fixed point of
the substitution τ , where S is the shift, τ0(0) = 10, τ0(1) = 0, τ(0) = 001,
τ(1) = 01.

Proof. Note that α = R(0), so that by definition, vn = 1 if Rn+1(0) ∈ [0, 1−α)
and vn = 0 if Rn+1(0) ∈ [1 − α, 1). So we can write v = Sv′′ where v′′n = 0 if
Rn(0) ∈ [1− α, 1), and v′′n = 1 if Rn(0) ∈ [0, 1− α).

Let I be the interval [0, α) and R′ the induced map of R on I, n(x) being
the first return time of x in I.

We further partition [0, α) and look at the itinerary of 0 in that partition.
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If x ∈ [0, 1−α), then x+α ∈ [α, 1), which is the complement of I. x+ 2α ∈
[2α−1, α) ⊂ I, so that n(x) = 2, and R′(x) = x+ 2α−1. On the other hand, if
x ∈ [1−α, α), then x+α ∈ [0, 2α− 1), so that n(x) = 1, and R′(x) = x+α− 1.

Let v′ be the sequence defined by v′n = 0 if R′n(0) ∈ [0, 1 − α), v′n = 1 if
R′n(0) ∈ [1− α, α). The goal is to show that v′′ = τ0(v′), and that τ(v′) = v′.

For the first part, it is useful to define the second return time of an x in I
as n2(x) = n(x) + n(Rn(x)(x)), and in general, the ith return time as ni(x) =
ni−1(x) + n(Rni−1(x)(x)). Please note that this return time is with respect to
R, not R′, as every application of R′ to a point in I is guaranteed to result in
a point in I.

Suppose v′i = 0; then R′i(0) is in [0, 1 − α); hence Rni(0)(0), which is the
same point, is in [0, 1− α), Rni(0)+1(0) is in [α, 1) ⊂ [1− α, 1), and Rni(0)+2 is
in [2α− 1, α), which is again in [0, α), so it must be R′i+1(0), or in other words,
Rni+1(0)(0). Therefore, ni+1(0) − ni(0) = 2. By definition, since Rni(0)(0) ∈
[0, 1− α), v′′ni(0) = 1, and since Rni(0)+1(0) ∈ [1− α, 1), v′′ni(0)+1 = 0.

Suppose v′i = 1; then R′i(0) is in [1 − α, α), so Rni(0)(0) is in [1 − α, α) ⊂
[1−α, 1) and Rni(0)+1(0) is in [0, α), so it must be Rni+1(0). So we have ni+1(0)−
ni(0) = 1 and v′′ni(0) = 0.

The above analysis tells us that if v′i = 0, then we need to apply R twice to
get back to I, but we also know the itenerary of the point under these two R.
If v′i = 1, then we need to apply R once to get back to I. Therefore, v′′ = τ0(v′)
where τ0(1) = 0 and τ0(0) = 10. So v = Sτ0(v′).

Now we need to show that v′ is the fix point of τ . We do this by looking at
R′ in a different context.

We do not change v′ if we make a homothety of the interval [0, α) of ratio
1/α. Remembering the action of R′ on the interval [0, α), we know that R′

becomes a rotation of (2α− 1)/α = 2− 1/α = 1− α on the interval [0, 1). And
v′n = 1 if R′n(0) ∈ [α, 1), v′n = 0 if R′n(0) ∈ [0, α).

Let Q be the induced transformation of R′ on [0, α), m(x) being the first
return time; by a similar argument, we have Q(x) = x+ 1− α and m(x) = 1 if
x ∈ [0, 2α− 1), and Q(x) = x+ 1− 2α and m(x) = 2 if x ∈ [2α− 1, α).

Let w be the sequence defined by wn = 0 if Qn(0) ∈ [0, 2α − 1), wn = 1 if
Qn(0) ∈ [2α−1, α). By the same method as above, we can check that v′ = τ1(w),
where τ1(0) = 0, τ1(1) = 01.

We use the same transformation on Q, multiplying by 1
α again. Then Q

becomes (1−α)/α = 1
α − 1 = α, which is the rotation R itself, and that wn = 1

if Qn(0) = Rn(0) ∈ [1− α, 1), and wn = 0 if Rn(0) ∈ [0, 1− α). Note that w is
the “complement” of v′′, meaning that wi + vi = 1 for all i.

Now we apply the Rauzy induction again to come back to R′ and v′, and
see w = τ2(v′), where τ2(0) = 01, τ2(1) = 1.

Hence v′ = τ1τ2(v′) = τ(v′), where τ(0) = 001, τ(1) = 01.
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2.11 ZQ: Geometric Representation of the Fibonacci Sub-
stitution

Lecture date: 2014-04-14.
In this section, σ is the Fibonacci substitution 0 7→ 01 and 1 7→ 0.
Its unique fixed point u is the Fibonacci sequence 0100101 . . . Note that the

length of σn(0) is the nth Fibonacci nubmer fn, given by the recursion formulas
f0 = 1, f1 = 2, fn+1 = fn + fn−1. This elementary result follows directly from
the fact that σn+1(0) = σn(0)σn−1(0).

We give some remarks on the ergodic and spectral properties without proofs,
since they have been presented in earlier talks.

Remark 2.86. The substitution σ is primitive, so by Proposition 5.4.4(pre-
sented by Alex) the system (Xu, S) is uniquely ergodic. The dominant eigen-
value of the incidence matrix is the golden ratio α0 = 1+

√
5

2 = 1+α, which when
we apply the Perron-Frobenius theorem tells us the limit of the frequencies of
the letters 0 and 1 in u.

Let R and R be the irrational rotation of angle α defined respectively on the
interval [0, 1) and on the torus T1. The irrational rotation R is a translation
on a compact group(the unit circle on the complex plane with the subspace
topology); hence, by the same proof as in Proposition 5.2.17(presented by Jay),
it is uniquely ergodic. The invariant measure, which is the pushforward measure
of the Lebesgue measure on [0, 1), gives a strictly positive measure to every
open set. This, together with unique ergodicity, which tells us that every point
is equidistributed with respect to the Lebesgue measure, imply that R, as a
dynamical system, is minimal, meaning that for every point x ∈ T1, the orbit
of x is dense in T1.

It is easy to check that these properties of R are shared by R.

Now we give a result on the relation of the Fibonacci sequence and v, the
P -name of α under the rotation R. We show that they are in fact the same
sequence.

Proposition 2.87. We have un = 0 whenever Rn(α) ∈ [1 − α, 1), un = 1
whenever Rn(α) ∈ [0, 1− α). In other words, u is the P -name of α under R.

Proof. We just have to identify the sequence u with the sequence v in the
previous proposition. Recall that v′ is the fix point of the substitution τ , where
τ(0) = 001 and τ(1) = 01, so that v′ starts with 00100101 . . . . We have τ0τ(0) =
10100, τ0τ(1) = 100.

We will prove by induction that τ0τ
n(0) is made with a 1 followed by

σ2n+1(0) minus its last letter, and that τ0τ
n(1) is made with a 1 followed

by σ2n−1(1)σ2n−1(0) minus its last letter. For n = 1, σ3(0) = 01001, and
σ(1)σ(0) = 001, so that the base case is established. The induction step follows
once we write u in its reverse decomposition of u : σ2n+1(0) = σ2n(0)σ2n−1(0) =
σ2n−1(0)(σ2n−2(0)σ2n−1(0)). Hence v begins with σ2n+1(0) for all n, and so
v = u.
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Corollary 2.88. The complexity function of the Fibonacci sequence is

pu(n) = n+ 1 (96)

for every n. We say that the Fibonacci sequence is a Sturmian sequence; it
has the lowest possible complexity for a nonperiodic sequence.

Proof. Recall that P1 = [0, 1−α) and P0 = [1−α, 1), and we have shown that u,
the fix point of the Fibonacci substitution, is the P -name of the point α under
R. We first show that a word w0 . . . wn−1 occurs in u if and only if ∩n−1

i=0 R
−iPwi

is nonempty.
If a word w0 . . . wn−1 occurs in u, then by definition there exists m such that

Rm(α) ∈ Pw0 , Rm+1(α) ∈ Pw1 , . . . , Rm+n−1(α) ∈ Pwn−1 . Remembering that
R is invertible, we have ∩n−1

i=0 R
−iPwi 6= ∅.

Conversely, suppose ∩n−1
i=0 R

−iPwi is not empty, so that there is some b ∈
∩n−1
i=0 R

−iPwi . Since α is irrational, for suitable sequence k, Rk(α) is as close
to b as possible. Then Rk−i(α) ∈ R−iPwi , for all i, so that uk+i = wi, and
w0w1 . . . wn−1 occurs in u.

The sets ∩n−1
i=0 R

−iPwi , when w ranges over Ln(u), are disjoint intervals, and
they partition [0, 1). The partition of the interval [0, 1) by them is the partition
of the interval by the points R−i(0), 1 ≤ i ≤ n, or more explicitly, −nα mod
1. This can be seen by applying the map −α to the end points of the intervals
[0, 1−α) and [1−α, 1). There are n+ 1 nonempty intervals, so there are n+ 1
words with length n in u.

Proposition 2.89. The system (Xu, S, µ) associated with the Fibonacci se-
quence is a coding of the rotation R on the interval, or R on the torus, preserving
Lebesgue measure λ.

Proof. To prove that a dynamical system is a coding of the other, we just need to
find a homeomorphism which is defined outside a set that is at most countable,
and commutes with the transformations on the two dynamical systems.

Let P be the partition P1 = [0, 1 − α), P0 = [1 − α, 1) and P (x) be the
P -name of x. We will prove that P (x) is a homeomorphism between [0, 1) and
Xu.

First please recall the definition of the topology on Xu. It is the subspace
topology of the product topology on {0, 1}N, or equivalently defined by the
metric d(u, v) = 2−m where m = min{|n| : un 6= vn}. A basis for open sets in
Xu are the cylinders in Xu. The topology on [0, 1−α) is just the usual topology
given by the Euclidean metric.

We first show that P (x) is continuous on the set [0, 1[/D for a countable set
D. We will use the fact that P (α) = u and P (Rn(α)) = Snu.

Suppose Rnk(α)→ x, using the metric definition, it is clear that

P (Rnk(α))→ P (x). (97)

The reason is that the linear function x→ x+ α preserves the metric on [0, 1),
so that if the sequence can get as close to x, then applying the transformation
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R repeatedly ensures that x and the sequence end up in the same interval Pi.
There is a caveat: If x is in the orbit of α, then this continuity may fail, because
P0 and P1 are semi-closed. For example, 1−α is in the orbit of α, if we allow Rn

for negative n. If we have a sequence that oscillates around 1−α and converges
to 1− α, then the limit of the P -names does not converge.

As a consequence, P (x) = limP (Rnk(α)) = limSnku is then a point of
Xu. The set {nα, n ∈ N} is dense in [0, 1), so we see that P ([0, 1[/D) ⊂ X,
where D is the countable set {nα, n ∈ Z} mod 1 in [0, 1). Note that this also
shows PR(x) = SP (x) for all x ∈ [0, 1), since PR(x) = P (limRnk+1(α)) =
limP (Rnk+1(α)) = limS(Rnk(α)) = S lim(Rnk(α)) = SP (x).

Next we show that P is invertible. Note that the observation from the
previous corollary tells us that the interval [0, 1) is partitioned into disjoint
intervals by the points R−i(0), 1 ≤ i ≤ n, and each word of length n corresponds
to one of these n intervals. If two points have the same P -name, then they must
appear in the same interval in the partition for all n. The fact that α is irrational
guarantees that the partitions will have decreasing lengths as n increases. As a
result, two points in [0, 1) with the same P -name are identical. This guarantees
that P (x) is invertible on P ([0, 1[/D).

Now we show P−1 is also continuous. This will actually be a result of the
continuity of P . After deleting a countable number of points, which are the
points in the orbit of u under the shift S, every point v ∈ Xu can be written
under the form v = limSnku, for a diverging sequence nk. By the sequential
compactness of real numbers, the bounded sequence Rnk(α) has a convergent
subsequence, so we can choose a subsequence n′k such that Rn

′
k(α) converges.

Then v = limSnk(u) = limSn
′
k(u) = limP (Rn

′
k(α)) = P (limRn

′
k(α)) where in

the last equality we have used the fact that P is continuous. Applying P−1 on
both sides yields the result that P−1 is continuous.

Hence P (x) is a bicontinuous bijection, except on a countable set, and PR =
SP , while P sends the only invariant measure λ for R to the only invariant
measure for S.

As for R, it is semi-topologically conjugate to R, and semi-topological con-
jugacy is transitive.

Remark 2.90. The systems (Xu, S), ([0, 1), R) and (T1, R) are not mutually
topologically conjugate: R and S are continuous while R is not, which is seen
by looking at points on both sides of the point α, but topological conjugacy
must preserve continuity of transformation.

Between S and R, the topology of Xu is generated by clopen sets while
the topology of T1 is not, since its topology is the subspace topology of the
Euclidean topology on complex plane.

The system (T1, R) has a discrete spectrum and the eigenvalues are all the
e2iπnα, n ∈ Z. For a proof of this fact, see results in Lemma 1.6.2 in the
book. Also, R has rank one, though no explicit sequence of stacks generating
the system has been found. Note that the Fibonacci substitution can be used
to produce a sequence of stacks, in the same fashion as the Rokhlin stacks were
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constructed for the Morse sequence, but this would only give R a rank at most
2.
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2.12 KD: Chacon Sequence - Mixing Properties

Lecture date: 2014-04-21.
The upshot of this discussion will be to state the definitions of two different

properties of ergodic systems - namely weak and strong mixing - and then
demonstrate a symbolic dynamical system which is weakly, but not strongly
mixing.

Definition 2.91. A system (X,T, µ) is weakly mixing if for any two measur-
able sets A,B we have:

lim
n→∞

1
n

n−1∑
k=0

|µ(A ∩ T kB)− µ(A)µ(B)| = 0.

Definition 2.92. A system (X,T, µ) is strongly mixing if for any two mea-
surable sets A,B we have:

lim
n→∞

µ(A ∩ T kB) = µ(A)µ(B).

It is a simple exercise in elementary analysis to see that strong mixing implies
weak mixing. To see how both notions relate to ergodicity, we will state the
following two results without giving their proof (the interested reader will find
them, respectively, to be Theorem 1.17 and 1.26 in [4]).

Lemma 2.93. A system (X,T, µ) is ergodic iff for any two measurable sets
A,B we have:

lim
n→∞

1
n

n−1∑
k=0

µ(A ∩ T kB) = µ(A)µ(B).

Lemma 2.94. A system (X,T, µ) is weakly mixing iff all the eigenfunctions in
L2(X,µ) are the constants and 1 is a simple eigenvalue.

From more simple considerations, weak mixing and strong mixing both imply
ergodicity, but the converse is not the case.

We will now proceed to construct the apparatus necessary to demonstrate
that weak mixing does not imply strong mixing.

Definition 2.95. Over the alphabet A = {0, 1, 2}, the Chacon substitution
δ is defined by:

0→ 0012, 1→ 12, 2→ 012.

Clearly, the Chacon substitution is a primitive one; if we label the fixed
point of δ starting with 0 by v, then (Xv, Sv) is a uniquely ergodic system (by
Alex’s second talk). We will briefly digress and study what the starting blocks
of v look like through a study of δ.

Lemma 2.96. For n ≥ 0,

δn(1)δn(2) = 12Sv(δn(0)).
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Proof. We proceed to prove the lemma by induction. For n = 0 we get

δ0(1)δ0(2) = 12 = 12Sv(0) = 12Sv(δ0(0)),

as desired.
Now suppose that for some n ≥ 0 we have

δn(1)δn(2) = 12Sv(δn(0)).

Applying δ to both sides preserves the equality. The LHS then easily equals
δn+1(1)δn+1(2). The RHS transforms as follows:

δ(12Sv(δn(0))) = δ(1)δ(2)δ(Sv(δn(0))).

We can now observe that δ(Sv(δn(0))) = S4
v(δn+1(0)), as the single shift in

Sv(δn(0)) eliminates the leading 0 in δn(0), and under δ that 0 maps to a 4-
letter word. Hence,

δ(12Sv(δn(0))) = δ(1)δ(2)S4
v(δn+1(0)) = 12012S4

v(δn+1(0)).

Finally, the S4
v in the last expression removes the string 0012 from the begin-

ning of δn+1(0), which implies that 012S4
v(δn+1(0)) = Sv(δn+1(0)). Combining

everything, we get
δn+1(1)δn+1(2) = 12Sv(δn+1(0)),

as desired.

Corollary 2.97. If we put wn = δn(0), then we have wn+1 = wnwn12Sv(wn)
for all n ≥ 0.

Proof. For n ≥ 0,

wn+1 = δn+1(0) = δn(δ(0)) = δn(0012) =

= δn(0)δn(0)δn(1)δn(2) = wnwnδ
n(1)δn(2).

By the preceding Lemma, we have δn(1)δn(2) = 12Sv(δn(0)) = 12Sv(wn), which
gives us

wn+1 = wnwn12Sv(wn),

as desired.

It would serve us well to define the numbers hn = 3n+1−1
2 ; clearly by the

preceding Corollary, |wn| = hn.
Having constructed the system (Xv, Sv) we will now proceed to demonstrate

a system which is topologically semi-conjugate to it, which will be weakly, but
not strongly mixing.

Definition 2.98. Let the substitution σ on the alphabet A = {0, 1} be defined
as follows:

0→ 0010, 1→ 1.
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It is easy to check that if we denote bn = σn(0), then

bn+1 = σn+1(0) = σn(σ(0)) = σn(0010) =

= σn(0)σn(0)σn(1)σn(1) = bnbn1bn.

Hence, |bn| = hn. If we then take a sequence of sequences un with first hn
letters given by bn, these will converge to a limit, which we will denote by u. It
is worth noting that u is the fixed point of σ; unfortunately, σ is not a primitive
substitution, so we will have to resort to other means of establishing the unique
ergodicity of the system (Xu, Su). The next Lemma and its Corollary will suffice
to that end; we defer the rather technical proof of the lemma to the end of the
exposition.

Lemma 2.99. (Xv, Sv) and (Xu, Su) are semi-topologically conjugate.

Corollary 2.100. (Xu, Su) is a uniquely ergodic system with a measure µ which
is precisely the factor-frequency measure on cylinders.

Proof. The unique ergodicity of the system follows from the preceding Lemma
and the fact that topological semi-conjugacy preserves unique ergodicity. The
second part of the claim will follow once we construct the conjugating map
f : Xv → Xu in the proof of the Lemma.

We will now demonstrate that (Xu, Su) is a rank one system. Consider the
following geometric construction, illustrated in Figure 7. All the intervals that
we are working with are left-closed-right-open.

Step 1) Put P0 = [0, 2
3 ), P1 = [ 2

3 , 1) and F0 = P0. Here, F0 is the base of
out 0-th stack and the whole 0-th stack itself.

Step 2) At each successive step, vertically cut stack n into three equal
columns and take the leftmost part of P1 which has not been used up yet and
has length equal to 2

3n+2 ; call that piece an+1. Note that the length of an+1 will
coincide with the lengths of all the intervals obtained from the cutting of the
n-stack. With all the pieces thus defined, obtain the (n + 1)-stack by putting
the second column of the n-stack on top of the first, then putting an+1 on top
of the second column, and finally putting the third column of the n-stack on
top of an+1.

Going back to the definition of a rank one system, it is worth noting how our
geometric construction fits in it before we proceed to identify it with (Xu, Su).
Clearly, the heights of the stacks satisfy the relationship

hn+1 = 3hn + 1,

(these are the same hn’s as before). Furthermore, if we write αn,1 = 0, αn,2 = 1
and Cn,2,1 = an+1, then by directly substituting into the definition of a rank one
system, we see that the transitions and equations match exactly. The inequality

∞∑
n=0

hn+1 − 3hn
hn+1

< +∞
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is satisfied as the LHS equals to
∞∑
n=0

1
hn+1

=
∞∑
n=0

2
3n+2 − 1

,

which trivially converges by a comparison to a geometric series. It is also worth
noting that if we label the transition map between levels of the stacks by T , we
have ascribed an image under T to each point in [0, 1) as the sum of the lengths
of the an equals to 1

3 .
If we now map each point in [0, 1) to its P -name under T we obtain (up to

sets of measure 0) a bijection between [0, 1) and Xu. Furthermore, by a simple
induction, we can check that the measure of each level in the geometric stacks
will coincide with the measure of the points in Xu which give the P -names of
the level. All of those facts pieced together give us that (Xu, Su) is a rank one
system; for simplicity we will keep thinking of the method of construction of the
stacks in terms of ”cutting” and ”columns.” We will also duplicate the notation
of Fn as the base of the n-stack of (Xu, Su).

Lemma 2.101. For p ≥ n ≥ 1,

µ(Shpu Fn ∩ Fn)− (µ(Fn))2 ≥ 1
12
µ(Fn).

Proof. First of all, observe that

µ(Fn) =
2

3n+1
≤ 1

4
for n ≥ 1. Hence, to prove the lemma, it suffices to demonstrate that

µ(Shpu Fn ∩ Fn) ≥ 1
3
µ(Fn).

Figure 7: Geometric construction of the stacks.
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For the next point reference Figure 8. For p ≥ n, consider the p-stack cut into 3
”equal” columns. In the p-stack, all of the pieces of Fn were stacked vertically
(with many other levels between them); when we cut the p stack into 3 equal
parts, we cut each level in it which used to belong to Fn into 3 equal parts
as well. Then, applying Shpu to the small sub-levels (thirds of the levels in the
p-stack) in the first column just sends them over to the same level in the p stack,
but in the second column. Hence, Shpu sends a subset of Fn of measure at least
1
3µ(Fn) back into Fn which finalizes our proof.

Figure 8: Visualization of the action of Shpu on the subsets of Fn in the p-stack.

Corollary 2.102. (Xu, Su, µ) is not strongly mixing.

Proof. The preceding Lemma gives us that

limsupm→∞µ(Smu Fn ∩ Fn)− (µ(Fn))2 ≥ 1
12
µ(Fn),

for n ≥ 1, which means that the limit limm→∞µ(Smu Fn∩Fn) cannot be (µ(Fn))2.
Applying the definition of strong mixing, we reach the conclusion of the Corol-
lary.

To conclude the main point of this section, we will demonstrate that (Xu, Su)
is weakly mixing.

Lemma 2.103. (Xu, Su) is weakly mixing.

Proof. To prove the result, we will resort to the spectral deinition of weak
mixing. Let λ be an eigenvalue of (Xu, Su) with an eigenfunction f : ‖f‖ = 1. By
an argument similar to those encoutered in every integration theory textbook,
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we can approximate f in the L2 sense by functions fn: ‖fn‖ = 1, fn is constant
on the levels of the n-stack and supported only on the levels of the n stack. Let
C1,n, C2,n, C3,n be the three columns in which the n-stack is cut. Then, by all
the properties of fn and the fact that µ(C1,n) = µ(C2,n) = µ(C3,n), it follows
that ∫

C1,n

|fn|2 =
∫
C2,n

|fn|2 =
∫
C3,n

|fn|2 =
1
3
.

A few more preliminaries are in order. First, applying Shnu to the sub-levels
in C1,n just sends them to the same level of the n-stack in C2,n. Similarly,
applying Shn+1

u to the sub-levels in C2,n just sends them to the same level of
the n-stacl in C3,n (the difference comes from the addition of one extra level
corresponding to the interval an+1).

Now, consider the expression∫
C1,n

|fn(Shnu )− λhnfn|2.

On one hand, by our last comment and the fact that fn is constant on the levels
of the n-stack, fn(Shnu ) = fn on C1,n. Hence,∫

C1,n

|fn(Shnu )− λhnfn|2 =
∫
C1,n

|fn|2|1− λhn |2 =
1
3
|1− λhn |2.

On the other hand, we have the following estimates (we use |a+ b|2 ≤ 2[|a|2 +
|b|2]): ∫

C1,n

|fn(Shnu )− λhnfn|2 ≤

≤ 2

[∫
C1,n

|fn(Shnu )− f(Shnu )|2 +
∫
C1,n

|f(Shnu )− λhnfn|2
]

=

= 2

[∫
C1,n

|fn(Shnu )− f(Shnu )|2 +
∫
C1,n

|λhnf − λhnfn|2
]
≤

≤ 2
[∫

Xu

|fn(Shnu )− f(Shnu )|2 +
∫
Xu

|λhnf − λhnfn|2
]

=

= 4‖f − fn‖2,

where we use that f is a λ eigenfunction, |λ| = 1 and Su is measure-preserving.
As the fn approximate f in the L2 sense, 4‖f − fn‖2 goes to 0 as n goes to

∞. Combining this with our prior result, we get that |1 − λhn | goes to 0 as n
goes to ∞, which means that λhn goes to 1 as n goes to ∞. Repeating exactly
the same argument but for C2,n will yield that λhn+1 goes to 1 as n goes to ∞.
This implies that λ = 1 and since our system is ergodic (by unique ergodicity),
1 is a simple eigenvalue (by Alex’s first talk). This fits exactly in the spectral
definition of weak mixing and concludes our proof.

65



To bring closure to this presentation, we provide a proof of the fact that
(Xv, Sv) and (Xu, Su) are topologically semi-conjugate.

Proof. First, observe that all 2’s in v occur after 1’s, and all 1’s occur exactly
before 2’s. Hence, the following argument reconstructs sequences in Xv from
just the positions of the 1’s in them; the forward and backward transitions will
satisfy the conditions of topological semi-conjugacy.

Define the map f : Xv → Xu : f(α)i = αi (mod 2). In other words, we zero
all the 2’s. It is clear that f is continuous and f ◦ Sv = Su ◦ f . Furthermore,
by the structural properties of v and u we established earlier, both v and u are
minimal and f(v) = u. This in turn implies that if we naturally extend the
deinifition of f to words, f(L(v)) = f(L(u)). Hence, the range of f is trully a
subset of Xu, and furthermore, the map is surjective.

The next fact we will use is Proposition 5.5.5 in [1]; we have that pu(n) =
2n − 1 for n ≥ 2. Hence, by my previous lecture, there will be no more than
3 sequences in Xu with more than one pre-image under Su. Denote the set of
those sequences by P, |P | ≤ 3. Also denote all the set of all sequences in Xv

that map to P by F ; it is clear that F is an at most countable set. We will
show that f defines a bijection between Xv\F and Xu\P , and its inverse is also
continuous (which will suffice for topological semi-conjugacy).

Let g be the map from Xu to sequences over A = {0, 1, 2} which sends the
first digit of the sequence to 0, then simply copies all the 1’s, and writes a 2 in
each position where a 0 was preceded by a 1 in the argument sequence. All the
remaining zeros are left as they are.

Now f−1 = Sv◦g◦S−1
u is a continuous function with domain Xu\P and range

the sequences over A = {0, 1, 2} (the continuity follows from the continuity of
S−1
u , which is trivially established by looking at long-enough prefixes). Our

problem is reduced to showing that f ◦ f−1 = IdXu on Xu\P , f−1 ◦ f = IdXv
on Xv\F and that the range of f−1 is a subset of Xv.

1) f(f−1(t)) = f(Sv(g(S−1
u (t)))) = Su(f(g(αtt)) for some αt ∈ {0, 1}. Now,

Su ◦ f ◦ g just erases the first digit of the sequence (as f ◦ g only changes the
leading digit); hence, we get f(f−1(t)) = t for all t ∈ Xu\P .

2) f−1(f(q)) = Sv(g(S−1
u (f(q)))). In that expression, first, f zeros all the

2’s in q producing an element of Xu\P ; then S−1
u returns the unique preimage of

f(q) in Xu by appending a digit to the start of the sequence. Finally, Sv◦g erases
the first appended digit, but only after correctly and uniquely reconstructing
q from the structure of the 1’s in S−1

u (f(q)) (here, we use that f(q) ∈ Xu\P
to claim the uniqueness of the reconstruction). Hence, f−1(f(q)) = q for all
q ∈ Xv\F .

3) Finally, by the surjectivity of f and 2) we have that the range of f−1 is
exactly Xv, which concludes our proof.

66



3 Chapter 6

Lecture date: 2014-05-05.

3.1 RJ: Sturmian Sequences: Frequency and minimality

In this section, we will discuss the notion of the frequency of 1 in a Sturmian
sequence. We will see that is is well-defined, irrational, and that if two sequences
have the same frequency, then they have the same language. Furthermore,
we will also see that the frequency of a sequence is only dependent upon the
language, which we will use to deduce that Sturmian sequences are minimal.

Theorem 3.1. The frequency of 1 in a Sturmian sequence u, defined as the
limit of

|u0u1 · · ·un−1|1
n

as n tends to infinity, is well defined and irrational.

Proof. Let u be Sturmian. Write an as the minimum number of 1 that occurs
in a factor of length n of u. Because u is Sturmian it is balanced. Thus, we
know that

|u0u1 · · ·un−1|1 ∈ {an, an + 1}.

Thus, it is enough to show that the limit of an/n exists and is irrational.
A word of length kq + r can be split into k words of length q and one word of
length r. Thus, we get the inequality

kaq ≤ akq+r ≤ k(aq + 1) + r.

Let n > q2. Then we can write n = kq+ r where k ≥ q and 0 ≤ r < q. Because
r < k, we have

r

n
<
k

n
≤ 1
q
.

The second part of this inequality gives

an
n

=
akq+r
kq + r

≤ aq
q

+
2
q
.

It is also immediate that raq − n is negative, because we have

n ≥ an ≥ kaq > raq.

Thus, we have
n

q
(aq − 1) = kaq +

1
q

(raq − n) ≤ an.

We divide by n and obtain

aq
q
− 1
q
≤ an

n
≤ aq

q
+

2
q
.
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Thus, we see that {an/n}n∈N is a Cauchy sequence, and thus converges to some
limit α.
Now, suppose that α = p/q. Because we have

kan ≤ akn < akn + 1 ≤ k(an + 1),

we have that if n divides n′, then

an
n
≤ an′

n′
<
an′ + 1
n′

≤ an + 1
n

.

In particular, this gives that the sequence{
a2nq

2nq

}
is increasing, and {

a2nq + 1
2nq

}
is decreasing. Thus, we obtain

aq
q
≤ a2nq

2nq
<
a2nq + 1

2nq
≤ aq + 1

q
.

But this sequence must converge to p/q, which is only possible if aq = p and
a2nq = 2np for all n, or aq + 1 = p and a2nq + 1 = 2np for all n.
First, we show it is impossible to have a2nq = 2naq for all n. Because the
sequence is not periodic, at least one word U of length q in the language of u is
such that |U |1 = aq + 1. We see this by starting at the beginning, and noting
that the first n letters completely determine our sequence if there is no word of
length n with |U |1 = aq + 1. Because u is recurrent, this word occurs an infinite
number of times, so that it must occur in two positions congruent modq by the
infinite pigeon hole principle. Thus, we can find a word of length 2nq which can
be split into words of length q, which contains at least two occurrences of U .
The number of 1 in this word is at least 2naq + 2, so that a2nq > 2naq, which
contradicts the first case.
To show that a2nq + 1 cannot equal 2n(aq + 1) for all n, we do essentially the
same thing. We can find some word W with |W |1 = aq, else aq would not be
the true minimum. Again, because u is recurrent, we can find two occurrences
of W in positions congruent modq, call this word V . Thus, we have

|V |1 ≤ 2n(aq + 1)− 2,

because W occurs twice in this word. Because V is a word of length 2nq, we
have

a2nq + 1 ≤ 2n(aq + 1)− 2,

and a2nq + 1 6= 2n(aq + 1).
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Now we define a property of balancedness for sets of finite words. These
results will be used more later, but for now allow us to conclude that Sturmian
sequences are minimal.

Definition 3.2. We say that a set E of finite words is balanced if for any pair
of words U, V in E, and for any words U ′, V ′ of the same length that occur in
U, V , we have that ∣∣|U ′|1 − |V ′|1∣∣ ≤ 1.

Proposition 3.3. A balanced set of words of length n contains at most n + 1
distinct words.

Proof. We proceed by induction. The base case is obvious, for if n = 1, the
only possible words are 0 and 1. Assume the result is true for n. Assume for
contradiction that there are at least n + 3 distinct words of length n + 1 in
a balanced set of words E. Each of these words contains a prefix of length n.
There are at most n+1 distinct prefixes by the inductive hypothesis. Enumerate
these are u1, . . . , un+1. Then, from an easy counting argument we see that there
must be at least two of these prefixes of length n, say u1 and u2, such that
u10, u11, u20, u21 all occur in our set of distinct words. Call such words – words
which are followed by both a 0 and a 1 – special words. Because our sequence
is Sturmian, we see that for words of length k < n− 1, there is only one special
word. In particular, there is only one special word of length n − 1. Now, note
we can write

u1 = au′1, u2 = bu′2,

where a, b ∈ A. Then u′1 and u′2 are special words of length n − 1. As there is
only one such word, we have that u′1 = u′2 = U . Thus, in order for all of our
words to be distinct, we have a 6= b. Then, we have

0U0, 1U1

both in our sequence, which is impossible.
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Proposition 3.4. If u and v are Sturmian sequences with the same frequency,
then they have the same language.

Proof. Left as an exercise to the reader.

Proposition 3.5. The frequency of 1 in a Sturmian sequence depends only on
the language, not on the sequence itself. From this, we can see that Sturmian
sequences are minimal.

Proof. Consider a sequence u with language L(u). Take any word of length n
from the language. Because the language is balanced, the frequency of 1 for
this word is an or an + 1, where an is as before. Thus, the limit of an/n is the
same for this word as any other word of length n in the language.
Let u be a Sturmian sequence. Suppose there is some factor W of u such that
W does not appear with bounded gaps. Let {nk} be the sequence of positions
of the end of the word, which goes to infinity. Then we create a sequence by
{Snku}, where we shift u by nk at each step. Because our space of sequences
is compact, this subsequence converges to a limit v whose language L(v) by
definition does not contain u. But because v is in the orbit closure of u, they
have the same language, a contradiction.
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3.2 AZ: Basic Properties of Sturmian Sequences

Lecture date: 2014-05-05.
We begin by recalling a few preliminary facts about sequences from Chapter

1. Let u be a sequence with values in a finite alphabet A.
The language of u is the set L(u) of finite words that occur in u, and we

denote by Ln(u) the set of words of length n that occur in u.
Recall from Definition 1.6 that the complexity function of u is the function

pu which associates the number Card Ln(u) of distinct words of length n that
occur in u to each integer n. pu is an increasing function, and if u is eventually
periodic (also called ultimately periodic; see Definition 1.4), pu is bounded. If
there is an n such that pu(n+ 1) = pu(n), then u is eventually periodic.

We can see that if u is not eventually periodic, we must have pu(n) ≥ n+ 1
because pu has strictly increasing integral values and pu(1) ≥ 2.

Definition 3.6. A sequence u is called Sturmian if it has complexity pu(n) =
n+ 1. We will denote by Σ′ the set of Sturmian sequences.

Because pu(1) = 2, Sturmian sequences contain only two letters, so we may
fix the alphabet A = {0, 1}.

Proposition 3.7. A Sturmian sequence is recurrent.

Recall from Definition 1.2 that a sequence is recurrent if each word in L(u)
occurs an unbounded number of times.

Proof. Suppose that a word U , of length n, occurs in a Sturmian sequence u a
finite number of times, and does not occur after rank N . Let v be the sequence
defined by vk = uk+N . It is clear that the language of v is contained in that of
u, and does not contain U . Hence we must have pv(n) ≤ n. This implies that
v is eventually periodic, and hence so is u, a contradiction.

Lemma 3.8. If u is Sturmian, then exactly one of the words 00, 11 does not
occur in u.

Proof. We have pu(2) = 3, so there are exactly three words of length 2 occurring
in u. By the previous proposition, 0 and 1 each occur an infinite number of
times in u, which implies that 01 and 10 both occur in u. But 00 and 11 are
the two other words of length 2, and exactly one of them must occur.

Definition 3.9. If U is a finite word over the alphabet A, we denote by |U |
the length of U , and |U |a the number of occurrences of the letter a in U .

Definition 3.10. A sequence u over the alphabet {0, 1} is balanced if, for any
pair of words U , V of the same length occurring in u, we have ||U |1−|V |1| ≤ 1.

Remark 3.11. For any word in Ln(u), the number of occurrences of 1 can have
one of two consecutive integral values - this is the smallest possible number of
values for non-periodic sequences. We will show that this property is equivalent
to being Sturmian.
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Lemma 3.12. If the sequence u is not balanced, there is a (possibly empty)
word W such that 0W0 and 1W1 occur in u.

Proof. If u is not balanced, we can find two words A and B of length n such
that |A|1− |B|1 > 1. First, we prove that we can suppose that |A|1− |B|1 = 2.

Let Ak (respectively Bk) denote the suffix of length k of A (respectively B),
and put dk = |Ak|1−|Bk|1. We have dn > 1 and d0 = 0, and |dk+1−dk| = 0 or
1. We can see from an intermediate value argument in integer-valued functions
that there is k such that dk = 2.

Suppose now that A and B are words of minimal length with dn = 2. We
then write A = a0a1...an−1 and B = b0b1...bn−1. We must have a0 = an−1 = 1
and b0 = bn−1 = 0; otherwise, we could find a shorter pair by removing some
prefix. We then have ak = bk for all remaining letters (just repeatedly remove
the last letter of both words and note that dn at each step is equal to 1).

Theorem 3.13. A sequence u is Sturmian if and only if it is a non-eventually
periodic balanced sequence over two letters.

Proof. We begin by proving the “if” direction by proving its contrapositive. We
show that, if u is not Sturmian, then u is not balanced. Let n0 be the smallest
integer such that pu(n0 + 1) ≥ n0 + 3. We have n0 ≥ 1 because pu(1) = 2.

Because pu(n0) = n0 + 1, there are at least two words U and V of length
n0 that can be extended on the right in two ways. Because n0 is the smallest
integer with this property, U and V differ only in the first letter. Without loss
of generality, there is a word W such that U = 0W and V = 1W , so both 0W0
and 1W1 occur in u, so u is not balanced.

We now prove the converse - if u belongs to Σ′, it is a non-eventually periodic
balanced sequence over two letters. We again use proof by contradiction - we
suppose that u is not balanced. By Lemma 3.12, there is a word W such that
1W1 and 0W0 occur in u. Consider the minimal such word with length n+ 1,
and write W = w0w1...wn.

Note that, due to our choice of W and n, if we have a pair of words U , V of
the same length such that ||U |1 − |V |1| ≥ 2, then their length is at least n+ 3.
This is true because we apply the same argument as in the proof of Lemma 3.12
to see that (without loss of generality) there is a word W ′ such that U = 0W ′0
and V = 1W ′1. This means that 0W0 and 1W1 are a pair of non-balanced
words of minimal length.

W cannot be empty by Lemma 3.8. Additionally, we have w0 = wn because
the words 0W0 and 1W1 would contain both 00 and 11, which contradicts the
statement of Lemma 3.8 because u is Sturmian. Furthermore, we must have
wk = wn−k for all k. If not, take the smallest k such that wk 6= wn−k and
suppose without loss of generality that wk = 0 and wn−k = 1. We then see
that 0w0...wk−10 and 1wn−k+1...wn1 is a non-balanced pair of smaller length,
which contradicts our choice of W . Note that both of these words are indeed in
Lu because 0W0 and 1W1 are in Lu. Thus W is a palindrome.

Because u is Sturmian, we know that there are n+ 2 words of length n+ 1.
W is the only word of this length that can be extended on the right in two ways
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and on the left in two ways. Once against using the fact that u is Sturmian,
exactly one of 0W and 1W can be extended in two ways on the right. Suppose
it is 0W . Then 0W0, 0W1, and 1W1 all occur in u, but 1W0 does not. Let i
be the rank of an occurrence of 1W1. We now prove a lemma.

Lemma 3.14. The word 0W cannot occur in uiui+1...ui+2n+3.

The length of uiui+1...ui+2n+3 is 2n + 4, and the length of 1W1 is n + 3,
and the length of 0W is n + 2. Thus, the statement of this lemma is that the
first letter of an occurrence of 0W cannot occur in an occurrence of 1W1 in u.

Proof. Suppose that the beginning of 0W overlaps with 1W1. Let wk be the
letter on which 0W begins, as 0W cannot begin on the first or last letter of
1W1. We then have 0w0...wn−k = wkwk+1...wn1. But this implies that wk = 0
and wn−k = 1, which is a contradiction because W is a palindrome.

Continuation of the proof of Theorem 3.13: We see that there are n+3 words
of length n+2 occurring in uiui+1...ui+2n+3. But there are n+3 words of length
n+ 2 in u and 0W does not occur due to the above lemma. Thus, at least one
word occurs twice. But all of these worsd can be extended to the right in only
one way, as 0W is the only word of length n + 2 that can be extended to the
right in two ways. Thus u is eventually periodic, which is a contradiction.
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