MMP Learning Seminar.

Week 44:

Contents:

• Birational automorphisms.
• DCC of volumes.
• Birationally boundedness.
Birational automorphisms of varieties of general type:

Theorem 1.1: If \(n \) is a positive integer, then there exists a constant \(c(n) \) such that the birational automorphism group of a general type variety \(X \) of dimension \(n \) has at most \(c(n) \cdot \text{vol}(X, K_X) \) elements.

Hurwitz: \(|G| \leq 84 (g-1) \).

Xiao: \(S \) smooth proj of gen type. \(|G| \leq 42^2 \cdot \text{vol}(K_S) \).

Theorem 1.4. (DCC of volumes): Fix \(n \in \mathbb{Z}_{>0} \).

\(D \) the set of global quotient \((X, \Delta) \) where \(X \) is a proj variety of dimension \(n \).

1. The set \(\{ \text{vol}(X, K_X + \Delta) \mid (X, \Delta) \in D \} \) satisfies the DCC.

Further, there are constants, \(S > 0 \) and \(M \), s.t. if \((X, \Delta) \in D \) and \(K_X + \Delta \) is big. Then:

2. \(\text{vol}(X, K_X + \Delta) > S \) and

3. \(N(K_X + \Delta) \) birational.
Log Birationally Bounded Varieties:

A set of pairs \(D \) is said to be \textit{log birationally bounded} if there exists \((\mathcal{Z}, B)\) a pair with \(B \) reduced, and a projective morphism \(\mathcal{Z} \rightarrow T \) where \(T \) is of finite type, such that for every \((X, \Delta) \in D\), there exists a closed point \(t \in T \) and a birational map \(f: \mathcal{Z}_t \rightarrow X \) such that \(\text{supp } B_t \) contains the support of \(E_x(f) + f^*\Delta \).

Lemma 2.3.2: \(\phi_D: X \rightarrow \mathbb{P}^N \) defined by \(|D| \), and assume it is birational onto its image \(\mathcal{Z} \). Then \(\text{Vol}(\mathcal{D}) \geq \deg \mathcal{Z} \). In particular, \(\text{Vol}(\mathcal{D}) > 1 \).

Proof: Assume \(\phi_D \) is a morphism, \(\mathcal{Z} \) is non-degenerate of degree \(> 1 \). From the inclusion \(\phi^* (O_{\mathbb{P}^N}(1)|_\mathcal{Z} \rightarrow O_X(\mathcal{D}) \), we conclude \(\text{Vol}(\mathcal{D}) = \text{Vol}(O_{\mathbb{P}^N}(1)|_\mathcal{Z}) = \deg \mathcal{Z} > 1 \). \(\square \).
Example (small volume): Define $r_0 = 1$ and $r_{n+1} = r_n (r_{n+1})$. Let

$$(X, \Delta) = (\mathbb{P}^n, \frac{1}{2} H_0 + \frac{2}{3} H_1 + \frac{6}{7} H_2 + \cdots + \frac{r_{n+1}}{r_{n+1} + 1} H_{n+1})$$

H_0, \ldots, H_{n+1} are general hyperplanes.

We have that $(X, \Delta) \in \mathcal{D}$, $\text{Vol} (X, K_X + \Delta) = \frac{1}{r_{n+2}}$.

Theorem 1.8 (Deformation invariance of plurigenera):

$\pi : X \to T$ projective morphism of smooth varieties.

(X, Δ) log canonical and one over T.

1. Assume (X, Δ) klt and either $K_X + \Delta$ or Δ is big.

 $m \Delta$ is integral, then $h^0 (X_t, \mathcal{O}_{X_t} (m (K_{X_t} + \Delta_t)))$ is independent of $t \in T$.

2. $K_X (X_t, K_{X_t} + \Delta_t)$ is independent of $t \in T$.

3. $\text{Vol} (X_t, K_{X_t} + \Delta_t)$ is independent of $t \in T$.

Theorem 1.9 (DCC of volumes on bir bounded):

Fix a set $I \subseteq [0,1]$ which satisfies the DCC.

Let \mathfrak{D} be a set of snc pairs which is birationally bounded, so that for every $(X, \Delta) \in \mathfrak{D}$, $\text{coeff}(\Delta) \leq I$.

Then the set of volumes $\{\text{vol}(X, K_X + \Delta) \mid (X, \Delta) \in \mathfrak{D}\}$ satisfies the DCC.
Ideas of the proof (14).

Tackle Thm (14) using similar ideas to AS.

We will try to find a birational family which the same volumes that appear on (14).

\[(X, \Delta) \in \mathcal{D} \quad (X', \Delta') \text{ which is birationally bounded.}\]

\[\begin{array}{c}
\chi \quad \text{bounded family.} \\
\downarrow \\
T \quad (\text{L9) invariance of plurigenera})
\end{array}\]

\[(X', \Delta') \text{ are birational to a single variety } (Z, B).\]

\[(X_i, \Delta_i), \ldots \quad f_i : X_i \rightarrow Z.\]

\[K_{X_i} + \Delta_i = f_i^* (K_Z + \Phi_i) + E_i, \quad \Phi_i = f_\circ \Delta \leq B\]

\[E_i = E_i^+ - E_i^-.\]

Use theory of b-divisors + toroidal blow-ups to prove that all these volumes computation can be performed in a single \(Z' \rightarrow Z\).
From (1.4) to (1.1), \(Y \) has dimension \(n \).

\[
G = \text{Bir}(Y), \quad Y \longrightarrow Y', \quad G = \text{Aut}(Y').
\]

Replace \(Y \) with a \(G \)-equivariant resolution \(Y' \).

Now, we assume \(G = \text{Aut}(Y) \) and \(Y \) is smooth.

\[
Y \longrightarrow X = Y/G, \quad K_X + \Delta \text{ is big.}
\]

\[
\text{Vol}(Y, K_Y) = |G| \text{ Vol}(X, K_X + \Delta) \geq |G| S_1
\]

\[
|G| \leq \frac{1}{S_1} \text{ Vol}(Y, K_Y).
\]
Potentially Birational:

X normal projective, D big by Q-Cartier, $x, y \in X$ very general assume we can find $0 \leq \Delta \leq (1-\epsilon)D$ for some $0 < \epsilon < 1$, where (X, Δ) is not klt at y & (X, Δ) is lc at x and $\{x\}$ is a log canonical center. Then, we say that D is potentially birational.

Lemma 2.3.4: X normal g.p variety of dim n. D big on X

1. D is potentially birational $\implies \mathcal{O}_{K_x + (n+1)D}$ is birational.
2. \mathcal{O}_D is birational $\implies (2n+1) \mathcal{L}D$ is potentially bir.
3. \mathcal{O}_D is birational $\implies \mathcal{O}_{K_x + (2n+1)D}$ is bir.

In particular, $K_x + (2n+1)D$ is by.

Theorem 3.2.5: (X, Δ) klt, $(X, \Delta + \Delta_0)$ lc around x & non-klt at y, V non-klt center which contains x, H ample with $\text{vol}(V, H^1V) > 2K^k$, where $k = \dim V$.

There exists, $H \cdot a_0\Delta > 0$, $0 < a_1 < 1$, so that

$(X, \Delta + a_0\Delta_0 + a_1\Delta_1)$ is around x and non-klt at y and a non-klt center that contains x has $\dim < k$.
Theorem 2.3.6: \((X, \Delta)\) klt pair, where \(X\) has dim \(n\).

Example, \(\gamma_0 > 1\) such that \(\text{Vol}(X, \gamma_0 H) > n^n\).

\(\exists \omega\) with the following property:

\[
\begin{cases}
 x \in X \text{ very general, for every } 0 < \Delta_0 \sim \omega \lambda H \ s.t. (X, \Delta + \Delta_0) \\
 \text{is lc at } x \text{ and } V \text{ is a minimal lc center containing } x. \text{ Then }
 \text{Vol}(V, \lambda H | V) > \varepsilon^k \text{ where } k \text{ is the dimension of } V \text{ and } \lambda > 1.
\end{cases}
\]

Then \(mH\) is potentially birational, where \(m = 2\gamma_0 (1+\gamma)^{n-1}\)

\[
\gamma = 2n / \varepsilon.
\]

Idea: Descending induction on \(k\).

Claim: There exists \(\Delta_0 \sim \omega \lambda H\) with \(1 < \lambda < 2\gamma_0 (1+\gamma)^{n-1-k}\)

with \((X, \Delta + \Delta_0)\) lc at \(x\) non-klt at \(y\) and

a non-klt center \(V\) of dim \(< k\) contains \(x\).
Properties of birationally bounded families:

Lemma 2.4.2: \mathcal{X}, \mathcal{Y} are classes of varieties (or pairs) of dimension n.

1. \mathcal{X} birationally bounded, $\forall X \in \mathcal{Y}$, Y is birational to $X \in \mathcal{X}$. Then \mathcal{Y} is birationally bounded.

2. $\forall X \in \mathcal{X}$, there exists a Weil D with ϕ_D birational and $\text{Vol}(D) \leq V$, then \mathcal{X} is birationally bounded.

3. \mathcal{X} is log birationally bounded, $\forall (Y, \Delta_Y) \in \mathcal{Y}$, there exists $(X, \Delta) \in \mathcal{X}$ with $f: X \rightarrow Y$ birational map s.t. Δ contains $f^{-1}\Delta_Y$ and $\text{Exc}(f)$. Then \mathcal{Y} is log birationally bounded.

4. \mathcal{X} is log birationally bounded, $\{X \mid (X, \Delta) \in \mathcal{X}\}$ is birationally bounded.

5. $(X, \Delta) \in \mathcal{X}$, there exists a Weil D, with $\phi_D: X \rightarrow \mathbb{P}^n$, birational onto its image s.t. $K_X + m(K_X + \Delta)$.

$$\text{Vol}(D) \leq V_1$$ if $G = E(x \circ \delta) \text{ red } + \phi_D \Delta \text{ red }$.

Then $G \cdot H^{n-1} \leq V_2$, where H is the ample defined by D. Then \mathcal{X} is birationally log bounded.
Birationally bounded pairs:

Theorem 3.1: Fix $n, A, s > 0$. The set of log pair (X, Δ) satisfying the following conditions:

1. X is projective of dim n,
2. (X, Δ) is lc,
3. $\text{coeff} \Delta > s$,
4. there exists $m \in \mathbb{Z}_{>0}$ with $\text{vol}(X, m(K_X + \Delta)) \leq A$ and
5. $\phi_{K_X + m(K_X + \Delta)}$ is birational.

Is log birationally bounded.
Lemma 3.2: X normal proj of dim n

M bpf Cartier and \mathcal{Y}_M is birational. Set $H = 2(n+1)M$

If D is a sum of distinct prime divisors, then

$$D \cdot H^{n-1} \leq 2^n \text{vol}(X, k_X + D + H).$$

Proof: (X, D) log smooth, comp of D disjoint

No component of D is contained in the exceptional of \mathcal{Y}_M

$M \sim A + B$, \hspace{1em} $k_X + D + SB$ is dlt for $S \ll 1$

$$H^i(k_X + E + pM) = 0, \hspace{1em} p \geq 0, \quad 0 \leq E \leq D.$$

(c) of (2.3.4). imply that $k_X + D + H =: A_1$ is big, so it has an ample model

$$Q(m) = h^0(X, O_X(2mA_1)).$$

Set $A_m = k_X + D + mH$, so $H^i(D, O_D(A_m)) = 0$

$$P(m) = h^0(D, O_D(A_m))$$ is a polynomial on m.

Leading terms:

$$Q \sim \frac{2^n \text{vol}(k_X + D + H)}{n!} \quad \text{and} \quad P \sim \frac{D \cdot H^{n-1}}{(n-1)!}.$$
$\text{H}^0 (2mA_i - A_m)$ does not vanish on components of D.

We have a commutative diagram:

\[
\begin{array}{c}
\text{H}^0 (\longrightarrow) \longrightarrow \text{H}^0 (\longrightarrow) \\
0 \longrightarrow \mathcal{O}_x (CA_m - D) \longrightarrow \mathcal{O}_x (CA_m) \longrightarrow \mathcal{O}_D (CA_m) \longrightarrow 0 \\
\downarrow \quad \downarrow \quad \downarrow \\
0 \longrightarrow \mathcal{O}_x (2mA_i - D) \longrightarrow \mathcal{O}_x (2mA_i) \longrightarrow \mathcal{O}_D (2mA_i) \longrightarrow 0 \\
\end{array}
\]

The lift is in the image of the vertical map.

where

\[
P(m) \leq \mu^o (X, \mathcal{O}_x (2mA_i)) - \mu^o (X, \mathcal{O}_x (2mA_i - D)).
\]

\[
P(m) \leq \Theta (m - 1) - \Theta (m - 1)
\]

$\Theta (m)$. \hfill \square
Theorem 3.1: Fix $n, A, S > 0$. The set of log pair (X, Δ) satisfying the following conditions:

1. X is projective of dim n,
2. (X, Δ) is lc,
3. Coeff $\Delta > S$,
4. there exists $m \in \mathbb{Z}_{>0}$ with $\text{vol}(X, m(K_X + \Delta)) \leq A$ and
5. $\phi_{K_X + m(K_X + \Delta)}$ is birational.

Is log birationally bounded.

Proof: $\phi = \phi_{K_X + m(K_X + \Delta)}$ is a morphism $X \xrightarrow{\phi} \mathbb{Z}$.

$|K_X + m(K_X + \Delta)| = |M| + E$,

$M = \rho^*H$.

$\text{Vol}(K_X + m(K_X + \Delta)) \leq \text{vol}(m(K_X + \Delta)) \leq 2^n A$.

$G = \phi \Delta \text{reduced}$,

$B \subseteq |LK_X + m(K_X + \Delta)|$.

$\alpha = m_2 \times \left(\frac{1}{S}, 2(2n + 1)\right)$.

$D_0 = \text{sum of comp of } \Delta \text{ and } B \text{ which are not contracted by } \phi$.

$D_0 \leq \alpha(B + \Delta)$

$\alpha(m + 1)(K_X + \Delta) - \alpha(B + \Delta) \sim_\alpha C > 0$.

$\text{Compute } H^{n-1}G$.

Compute $H^{n-1}G$.

$H^{n-1}G$.
\[G \cdot H^{n-1} \leq D_0 \cdot (2(2n+1)M)^{n-1} \]

\[\leq 2^n \text{vol} \left(X, K_x + D_0 + 2(2n+1)M \right) \]

\[\leq 2^n \text{vol} \left(X, (1+2\alpha(m+1))(K_x+\Delta) \right) \]

\[\leq 2^n (1+2\alpha(m+1))^n \text{vol} \left(K_x+\Delta \right) \]

\[\leq 2^{3n} \alpha^n \text{vol} \left((m+1)(K_x+\Delta) \right) \]

\[\leq 2^{4n} \alpha^n A. \]

\[\text{only depends on } A, \alpha \text{ and } n. \]

\[\square \]