Varieties of general type with small volume

Chengxi Wang
UCLA

August 27, 2021
(Hacon-McKernan, Takayama, and Tsuji) For each integer \(n > 0 \), \(\exists \) a constant \(r_n \) s.t. for any smooth complex projective variety \(X \) of general type with dimension \(n \), the map \(\varphi_{|mK_X|} : X \rightarrow \mathbb{P}^{h^0(mK_X)-1} \) is a birational embedding for \(m \geq r_n \).

Volume of \(X \): \(\text{vol}(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!) \). \(\text{vol}(X) = K^n_X \) if \(K_X \) is ample. (Also when \(X \) is a normal projective variety with at worst canonical singularities and with nef \(K_X \)).

For all smooth \(n \)-folds of general type, \(\text{vol}(X) \) has a positive lower bound \(a_n = 1/(r_n)^n \).
Volume

(Hacon-McKernan, Takayama, and Tsuji) For each integer $n > 0$, there exists a constant r_n such that for any smooth complex projective variety X of general type with dimension n, the map $\varphi_{|mK_X|}: X \to \mathbb{P}^{h^0(mK_X)-1}$ is a birational embedding for $m \geq r_n$.

Volume of X: $\text{vol}(X) = \limsup_{m \to \infty} \frac{h^0(X, mK_X)}{(m^n/n!)}. \quad \text{vol}(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X.)

For all smooth n-folds of general type, $\text{vol}(X)$ has a positive lower bound $a_n = 1/(r_n)^n$.
(Hacon-McKernan, Takayama, and Tsuji) For each integer \(n > 0 \), \(\exists \) a constant \(r_n \) s.t. for any smooth complex projective variety \(X \) of general type with dimension \(n \), the map \(\varphi|_{mK_X} : X \to \mathbb{P}^{h^0(mK_X)-1} \) is a birational embedding for \(m \geq r_n \).

Volume of \(X \): \(\text{vol}(X) = \limsup_{m \to \infty} \frac{h^0(X, mK_X)}{(m^n/n!)}\). \(\text{vol}(X) = K_X^n \) if \(K_X \) is ample. (Also when \(X \) is a normal projective variety with at worst canonical singularities and with nef \(K_X \).)

For all smooth \(n \)-folds of general type, \(\text{vol}(X) \) has a positive lower bound \(a_n = 1/(r_n)^n \).
Volume

(Hacon-McKernan, Takayama, and Tsuji) For each integer $n > 0$, there exists a constant r_n such that for any smooth complex projective variety X of general type with dimension n, the map $\varphi|_{mK_X} : X \rightarrow P^{h^0(mK_X)-1}$ is a birational embedding for $m \geq r_n$.

Volume of X: $\text{vol}(X) = \limsup_{m \to \infty} h^0(X, mK_X)/(m^n/n!)$. $\text{vol}(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X.)

For all smooth n-folds of general type, $\text{vol}(X)$ has a positive lower bound $a_n = 1/(r_n)^n$.
Volume

(Hacon-McKernan, Takayama, and Tsuji) For each integer \(n > 0 \), \(\exists \) a constant \(r_n \) s.t. for any smooth complex projective variety \(X \) of general type with dimension \(n \), the map \(\varphi|_{mK_X} : X \dashrightarrow \mathbb{P}^{h^0(\mathcal{O}_X) - 1} \) is a birational embedding for \(m \geq r_n \).

Volume of \(X \): \(\text{vol}(X) = \lim \sup_{m \to \infty} \frac{h^0(X, mK_X)}{(m^n/n!)}. \)

\(\text{vol}(X) = K^n_X \) if \(K_X \) is ample. (Also when \(X \) is a normal projective variety with at worst canonical singularities and with nef \(K_X \).)

For all smooth \(n \)-folds of general type, \(\text{vol}(X) \) has a positive lower bound \(a_n = 1/(r_n)^n \).
Varieties of general type

Volume

(Hacon-McKernan, Takayama, and Tsuji) For each integer $n > 0$, there exists a constant r_n such that for any smooth complex projective variety X of general type with dimension n, the map $\varphi|_{mK_X}: X \dashrightarrow \mathbb{P}^{h^0(mK_X)-1}$ is a birational embedding for $m \geq r_n$.

Volume of X: $\text{vol}(X) = \limsup_{m \to \infty} \frac{h^0(X, mK_X)}{(m^n/n!)}. \quad \text{vol}(X) = K_X^n$ if K_X is ample. (Also when X is a normal projective variety with at worst canonical singularities and with nef K_X.)

For all smooth n-folds of general type, $\text{vol}(X)$ has a positive lower bound $a_n = 1/(r_n)^n$.
Volume

(Hacon-McKernan, Takayama, and Tsuji) For each integer \(n > 0 \), \(\exists \) a constant \(r_n \) s.t. for any smooth complex projective variety \(X \) of general type with dimension \(n \), the map \(\varphi|_{mK_X} : X \dashrightarrow P^{h^0(mK_X)-1} \) is a birational embedding for \(m \geq r_n \).

Volume of \(X \): \(\text{vol}(X) = \limsup_{m \to \infty} \frac{h^0(X, mK_X)}{(m^n/n!)}. \) \(\text{vol}(X) = K^n_X \) if \(K_X \) is ample. (Also when \(X \) is a normal projective variety with at worst canonical singularities and with nef \(K_X \).)

For all smooth \(n \)-folds of general type, \(\text{vol}(X) \) has a positive lower bound \(a_n = 1/(r_n)^n \).
Smooth varieties of general type in low dimensions

- \(\text{dim} = 1, r_1 = 3, a_1 = 2. \)
- \(\text{dim} = 2, r_2 = 5 \) (by Bombieri), \(a_2 = 1. \) The extreme case: a general hypersurface \(X_{10} \subset P(1, 1, 2, 5). \)
- \(\text{dim} = 3, r_3 \leq 57, a_3 \geq 1/1680 \) (by J. Chen and M. Chen). The smallest known volume is \(1/420 \) (Iano-Fletcher): a resolution of the weighted projective hypersurface \(X_{46} \subset P(4, 5, 6, 7, 23). \) \(|mK_X| \) is birational \(\Leftrightarrow m = 23 \) or \(m \geq 27. \)
- \(\text{dim} = 4, \) the smallest known volume is a resolution of \(X_{165} \subset P(10, 12, 17, 33, 37, 55), \) with volume \(1/830280 \) (by Brown and Kasprzyk).
Smooth varieties of general type in low dimensions

- $\dim = 1$, $r_1 = 3$, $a_1 = 2$.
- $\dim = 2$, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $\dim = 3$, $r_3 \leq 57$, $a_3 \geq 1/1680$ (by J. Chen and M. Chen). The smallest known volume is $1/420$ (Iano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\iff m = 23$ or $m \geq 27$.
- $\dim = 4$, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume $1/830280$ (by Brown and Kasprzyk).
Smooth varieties of general type in low dimensions

- $\dim = 1$, $r_1 = 3$, $a_1 = 2$.
- $\dim = 2$, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $\dim = 3$, $r_3 \leq 57$, $a_3 \geq 1/1680$ (by J. Chen and M. Chen). The smallest known volume is $1/420$ (Iano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\iff m = 23$ or $m \geq 27$.
- $\dim = 4$, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume $1/830280$ (by Brown and Kasprzyk).
Smooth varieties of general type in low dimensions

- $\text{dim} = 1$, $r_1 = 3$, $a_1 = 2$.
- $\text{dim} = 2$, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $\text{dim} = 3$, $r_3 \leq 57$, $a_3 \geq 1/1680$ (by J. Chen and M. Chen). The smallest known volume is $1/420$ (Iano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\iff m = 23$ or $m \geq 27$.
- $\text{dim} = 4$, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume $1/830280$ (by Brown and Kasprzyk).
Smooth varieties of general type in low dimensions

- $\dim = 1$, $r_1 = 3$, $a_1 = 2$.
- $\dim = 2$, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $\dim = 3$, $r_3 \leq 57$, $a_3 \geq 1/1680$ (by J. Chen and M. Chen). The smallest known volume is $1/420$ (Iano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\iff m = 23$ or $m \geq 27$.
- $\dim = 4$, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume $1/830280$ (by Brown and Kasprzyk).
smooth varieties of general type in low dimensions

- $\dim = 1$, $r_1 = 3$, $a_1 = 2$.
- $\dim = 2$, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $\dim = 3$, $r_3 \leq 57$, $a_3 \geq 1/1680$ (by J. Chen and M. Chen). The smallest known volume is $1/420$ (Iano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\iff m = 23$ or $m \geq 27$.
- $\dim = 4$, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume $1/830280$ (by Brown and Kasprzyk).
Smooth varieties of general type in low dimensions

- $\text{dim} = 1$, $r_1 = 3$, $a_1 = 2$.
- $\text{dim} = 2$, $r_2 = 5$ (by Bombieri), $a_2 = 1$. The extreme case: a general hypersurface $X_{10} \subset P(1, 1, 2, 5)$.
- $\text{dim} = 3$, $r_3 \leq 57$, $a_3 \geq 1/1680$ (by J. Chen and M. Chen). The smallest known volume is $1/420$ (Iano-Fletcher): a resolution of the weighted projective hypersurface $X_{46} \subset P(4, 5, 6, 7, 23)$. $|mK_X|$ is birational $\iff m = 23$ or $m \geq 27$.
- $\text{dim} = 4$, the smallest known volume is a resolution of $X_{165} \subset P(10, 12, 17, 33, 37, 55)$, with volume $1/830280$ (by Brown and Kasprzyk).
Smooth varieties of general type in low dimensions

- \(\text{dim} = 1, \ r_1 = 3, \ a_1 = 2. \)
- \(\text{dim} = 2, \ r_2 = 5 \) (by Bombieri), \(a_2 = 1. \) The extreme case: a general hypersurface \(X_{10} \subset P(1, 1, 2, 5). \)
- \(\text{dim} = 3, \ r_3 \leq 57, \ a_3 \geq 1/1680 \) (by J. Chen and M. Chen). The smallest known volume is 1/420 (Iano-Fletcher): a resolution of the weighted projective hypersurface \(X_{46} \subset P(4, 5, 6, 7, 23). \) \(|mK_X| \) is birational \(\Leftrightarrow m = 23 \) or \(m \geq 27. \)
- \(\text{dim} = 4, \) the smallest known volume is a resolution of \(X_{165} \subset P(10, 12, 17, 33, 37, 55), \) with volume 1/830280 (by Brown and Kasprzyk).
Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

1. ∃ a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.

2. ∃ a smooth complex projective n-fold X of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \leq n^{(\log n)/3}$.

Ballico, Pignatelli, and Tasin found smooth n-folds of general type with volume about $1/n^n$, and s.t. $|mK_X|$ does not give a birational embedding for m at most a constant times n^2.

In high dimensions
In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer \(n \),

1. ∃ a smooth complex projective \(n \)-fold of general type with volume less than \(1/n^{(n \log n)/3} \).
2. ∃ a smooth complex projective \(n \)-fold \(X \) of general type s.t. the linear system \(|mK_X| \) does not give a birational embedding for any \(m \leq n^{(\log n)/3} \).

Ballico, Pignatelli, and Tasin found smooth \(n \)-folds of general type with volume about \(1/n^n \), and s.t. \(|mK_X| \) does not give a birational embedding for \(m \) at most a constant times \(n^2 \).
In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

1. \exists a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.

2. \exists a smooth complex projective n-fold X of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \leq n^{(\log n)/3}$.

Ballico, Pignatelli, and Tasin found smooth n-folds of general type with volume about $1/n^n$, and s.t. $|mK_X|$ does not give a birational embedding for m at most a constant times n^2.
In high dimensions

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

1. ∃ a smooth complex projective n-fold of general type with volume less than $1/n^{(n \log n)/3}$.

2. ∃ a smooth complex projective n-fold X of general type s.t. the linear system $|mK_X|$ does not give a birational embedding for any $m \leq n^{(\log n)/3}$.

Ballico, Pignatelli, and Tasin found smooth n-folds of general type with volume about $1/n^n$, and s.t. $|mK_X|$ does not give a birational embedding for m at most a constant times n^2.
Noether-type inequality

- Surfaces of general type: $\text{vol}(X) \geq 2p_g - 4$, where the geometric genus $p_g = h^0(X, K_X)$.

- (M. Chen and Z. Jiang) For every positive integer n, $\exists a_n > 0, b_n > 0$ s.t. $\text{vol}(X) \geq a_n p_g(X) - b_n$ for every smooth projective n-fold X of general type.

- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $\text{vol}(X) \geq (4/3)p_g(X) - 10/3$ if $p_g(X) \geq 11$. (optimal constants)

- In high dimensions, our examples show that $a_n < 1/n^{(n \log n)/3}$ for all sufficiently large n.

A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai.
Noether-type inequality

- Surfaces of general type: $\text{vol}(X) \geq 2p_g - 4$, where the geometric genus $p_g = h^0(X, K_X)$.

- (M. Chen and Z. Jiang) For every positive integer n, there exist $a_n > 0$, $b_n > 0$ such that $\text{vol}(X) \geq a_n p_g(X) - b_n$ for every smooth projective n-fold X of general type.

- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $\text{vol}(X) \geq (4/3)p_g(X) - 10/3$ if $p_g(X) \geq 11$.(optimal constants)

- In high dimensions, our examples show that $a_n < 1/n^{(n \log n)/3}$ for all sufficiently large n.

A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai.
Noether-type inequality

- Surfaces of general type: $\text{vol}(X) \geq 2p_g - 4$, where the geometric genus $p_g = h^0(X, K_X)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists \ a_n > 0, \ b_n > 0$ s.t. $\text{vol}(X) \geq a_n p_g(X) - b_n$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $\text{vol}(X) \geq (4/3)p_g(X) - 10/3$ if $p_g(X) \geq 11$. (optimal constants)
- In high dimensions, our examples show that $a_n < 1/n^{(n \log n)/3}$ for all sufficiently large n.
 A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai
Noether-type inequality

- Surfaces of general type: \(\text{vol}(X) \geq 2p_g - 4 \), where the geometric genus \(p_g = h^0(X, K_X) \).

- (M. Chen and Z. Jiang) For every positive integer \(n \), \(\exists \ a_n > 0, b_n > 0 \) s.t. \(\text{vol}(X) \geq a_n p_g(X) - b_n \) for every smooth projective \(n \)-fold \(X \) of general type.

- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: \(\text{vol}(X) \geq (4/3)p_g(X) - 10/3 \) if \(p_g(X) \geq 11 \). (optimal constants)

- In high dimensions, our examples show that \(a_n < 1/n^{(n\log n)/3} \) for all sufficiently large \(n \). A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai.
Noether-type inequality

- Surfaces of general type: $\text{vol}(X) \geq 2p_g - 4$, where the geometric genus $p_g = h^0(X, K_X)$.

- (M. Chen and Z. Jiang) For every positive integer n, $\exists \ a_n > 0, b_n > 0$ s.t. $\text{vol}(X) \geq a_n p_g(X) - b_n$ for every smooth projective n-fold X of general type.

- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $\text{vol}(X) \geq (4/3)p_g(X) - 10/3$ if $p_g(X) \geq 11$. (optimal constants)

- In high dimensions, our examples show that $a_n < 1/n^{(n \log n)/3}$ for all sufficiently large n.

A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai.
Noether-type inequality

- Surfaces of general type: $\text{vol}(X) \geq 2p_g - 4$, where the geometric genus $p_g = h^0(X, K_X)$.
- (M. Chen and Z. Jiang) For every positive integer n, $\exists \ a_n > 0, \ b_n > 0$ s.t. $\text{vol}(X) \geq a_n p_g(X) - b_n$ for every smooth projective n-fold X of general type.
- (J. Chen, M. Chen, and C. Jiang) 3-folds of general type: $\text{vol}(X) \geq \left(\frac{4}{3}\right)p_g(X) - \frac{10}{3}$ if $p_g(X) \geq 11$.(optimal constants)
- In high dimensions, our examples show that $a_n < \frac{1}{n^{(n \log n)/3}}$ for all sufficiently large n.

A simple approach to this implication is to take the product of a given variety with curves of high genus, as suggested by J. Chen and C.-J. Lai.
well-formed

The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $\gcd(a_0, \ldots, \hat{a}_j, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(A^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0} x_0, \ldots, t^{a_n} x_n)$, has trivial stabilizer group in codimension 1.)

A general hypersurfaces of degree d is well-formed \iff $\gcd(a_0, \ldots, \hat{a}_i, \ldots, \hat{a}_j, \ldots, a_n) | d$ for all $i < j$, and $\gcd(a_0, \ldots, \hat{a}_i, \ldots, a_n) = 1$ for each i.

Reflexive sheaf $O(m)$ is a line bundle \iff m is a multiple of every weight a_i.

The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.
well-formed

- The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $\gcd(a_0, \ldots, \hat{a}_j, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(\mathbb{A}^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)

- A general hypersurface of degree d is well-formed \iff $\gcd(a_0, \ldots, \hat{a}_i, \ldots, \hat{a}_j, \ldots, a_n) \mid d$ for all $i < j$, and $\gcd(a_0, \ldots, \hat{a}_i, \ldots, a_n) = 1$ for each i.

- Reflexive sheaf $O(m)$ is a line bundle \iff m is a multiple of every weight a_i.

- The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.
The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be well-formed if $\gcd(a_0, \ldots, \widehat{a}_j, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(A^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)

A general hypersurface of degree d is well-formed \iff $\gcd(a_0, \ldots, \widehat{a}_i, \ldots, a_n)|d$ for all $i < j$, and $\gcd(a_0, \ldots, \widehat{a}_i, \ldots, a_n) = 1$ for each i.

Reflexive sheaf $O(m)$ is a line bundle \iff m is a multiple of every weight a_i.

The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.
The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $\gcd(a_0, \ldots, \hat{a}_j, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[\mathbb{A}^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)

A general hypersurface of degree d is well-formed \iff $\gcd(a_0, \ldots, \hat{a}_i, \ldots, \hat{a}_j, \ldots, a_n)|d$ for all $i < j$, and $\gcd(a_0, \ldots, \hat{a}_i, \ldots, a_n) = 1$ for each i.

Reflexive sheaf $O(m)$ is a line bundle $\iff m$ is a multiple of every weight a_i.

The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.
The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be well-formed if $\gcd(a_0, \ldots, \hat{a}_j, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(\mathbb{A}^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)

A general hypersurface of degree d is well-formed \iff $\gcd(a_0, \ldots, \hat{a}_i, \ldots, \hat{a}_j, \ldots, a_n)|d$ for all $i < j$, and $\gcd(a_0, \ldots, \hat{a}_i, \ldots, a_n) = 1$ for each i.

Reflexive sheaf $O(m)$ is a line bundle $\iff m$ is a multiple of every weight a_i.

The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.

A reflexive sheaf \mathcal{F} on X is a line bundle on X if and only if $\text{Supp}(\mathcal{F})$ is a subvariety of codimension 1. (The analogous statement holds for reflexive sheaves on X with $\text{Supp}(\mathcal{F})$ a subvariety of codimension 1.)
well-formed

The weighted projective space $Y = P(a_0, \ldots, a_n)$ is said to be *well-formed* if $\gcd(a_0, \ldots, \hat{a}_j, \ldots, a_n) = 1$ for each j. (In other words, the analogous quotient stack $[(A^{n+1} - 0)/G_m]$, where the multiplicative group G_m acts by $t(x_0, \ldots, x_n) = (t^{a_0}x_0, \ldots, t^{a_n}x_n)$, has trivial stabilizer group in codimension 1.)

A general hypersurface of degree d is well-formed \iff $\gcd(a_0, \ldots, \hat{a}_i, \ldots, \hat{a}_j, \ldots, a_n) \mid d$ for all $i < j$, and $\gcd(a_0, \ldots, \hat{a}_i, \ldots, a_n) = 1$ for each i.

Reflexive sheaf $O(m)$ is a line bundle $\iff m$ is a multiple of every weight a_i.

The intersection number $\int_Y c_1(O(1))^n = 1/a_0 \cdots a_n$.
Reid-Tai criterion for quotient singularities

For a positive integer r, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1, \ldots, a_n)$ over a field, meaning that the group μ_r of rth roots of unity acts by

$$\zeta(x_1, \ldots, x_n) = (\zeta^{a_1} x_1, \ldots, \zeta^{a_n} x_n).$$

Assume that this description is well-formed in the sense that $\gcd(r, a_1, \ldots, \hat{a_j}, \ldots, a_n) = 1$ for $j = 1, \ldots, n$. Then A^n/μ_r is canonical (resp. terminal) \iff

$$\sum_{j=1}^{n} (ia_j \mod r) \geq r$$

(resp. $> r$) for $i = 1, \ldots, r - 1$.
Reid-Tai criterion for quotient singularities

For a positive integer r, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1, \ldots, a_n)$ over a field, meaning that the group μ_r of rth roots of unity acts by
$$\zeta(x_1, \ldots, x_n) = (\zeta^{a_1}x_1, \ldots, \zeta^{a_n}x_n).$$

Assume that this description is well-formed in the sense that $\gcd(r, a_1, \ldots, \hat{a}_j, \ldots, a_n) = 1$ for $j = 1, \ldots, n$. Then A^n/μ_r is canonical (resp. terminal) \iff

$$\sum_{j=1}^{n} (ia_j \mod r) \geq r$$

(resp. $> r$) for $i = 1, \ldots, r - 1$.
Reid-Tai criterion for quotient singularities

For a positive integer r, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1, \ldots, a_n)$ over a field, meaning that the group μ_r of rth roots of unity acts by

$$\zeta(x_1, \ldots, x_n) = (\zeta^{a_1}x_1, \ldots, \zeta^{a_n}x_n).$$

Assume that this description is well-formed in the sense that $\gcd(r, a_1, \ldots, \hat{a}_j, \ldots, a_n) = 1$ for $j = 1, \ldots, n$. Then A^n/μ_r is canonical (resp. terminal) \iff

$$\sum_{j=1}^{n}(ia_j \mod r) \geq r$$

(resp. $> r$) for $i = 1, \ldots, r - 1$.
Reid-Tai criterion for quotient singularities

For a positive integer r, let A^n/μ_r be the cyclic quotient singularity of type $\frac{1}{r}(a_1, \ldots, a_n)$ over a field, meaning that the group μ_r of rth roots of unity acts by

$$\zeta(x_1, \ldots, x_n) = (\zeta^{a_1}x_1, \ldots, \zeta^{a_n}x_n).$$

Assume that this description is well-formed in the sense that $\gcd(r, a_1, \ldots, \hat{a}_j, \ldots, a_n) = 1$ for $j = 1, \ldots, n$. Then A^n/μ_r is canonical (resp. terminal) if

$$\sum_{j=1}^{n}(ia_j \mod r) \geq r$$

(resp. $> r$) for $i = 1, \ldots, r - 1$.
It suffices for Y to be canonical or terminal at each coordinate point, $[0, \ldots, 0, 1, 0, \ldots, 0]$.

Lemma (Ballico, Pignatelli, and Tasin)

A well-formed weighted projective space $Y = P(a_0, \ldots, a_n)$ is canonical (resp. terminal) \iff for each $0 \leq m \leq n$,

$$
\sum_{j=0}^{n} (ia_j \mod a_m) \geq a_m
$$

(resp. $> a_m$) for $i = 1, \ldots, a_m - 1$.

Varieties of general type Construction klt varieties Construction

criterion for singularities of weighted projective spaces
It suffices for Y to be canonical or terminal at each coordinate point, $[0, \ldots, 0, 1, 0, \ldots, 0]$.

Lemma (Ballico, Pignatelli, and Tasin)

A well-formed weighted projective space $Y = P(a_0, \ldots, a_n)$ is canonical (resp. terminal) \iff for each $0 \leq m \leq n$,

$$\sum_{j=0}^{n} (ia_j \mod a_m) \geq a_m$$

(resp. $> a_m$) for $i = 1, \ldots, a_m - 1$.

Let $k \geq 2$ and $l \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d = (l + 3)k(k + 1)$ in weighted projective space $Y = P(k^{k+2}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)})$.

- Y is well-formed since $k \geq 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:
Let $k \geq 2$ and $l \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d = (l + 3)k(k + 1)$ in weighted projective space $Y = \mathbb{P}(k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)})$.

- Y is well-formed since $k \geq 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:
Let $k \geq 2$ and $l \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d = (l + 3)k(k + 1)$ in weighted projective space $Y = P(k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)})$.

- Y is well-formed since $k \geq 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:
Let $k \geq 2$ and $l \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d = (l + 3)k(k + 1)$ in weighted projective space $Y = P(k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)})$.

- Y is well-formed since $k \geq 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:
Let $k \geq 2$ and $l \geq 0$ be integers. Ballico, Pignatelli, and Tasin consider hypersurface X of degree $d = (l + 3)k(k + 1)$ in weighted projective space $Y = \mathbb{P}(k^{k+2}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}).$

- Y is well-formed since $k \geq 2$.
- X is well-formed since d is a multiple of all weights.
- Y is canonical by Lemma. Check singularities of three types:
Varieties of general type

Construction

klt varieties

Construction

\[\frac{1}{k} (k^{(k+1)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}), \]
Check \((2k - 1)(i(k + 1) \mod k) \geq k\) for \(i = 1, \ldots, k - 1\).
It’s true since \(i(k + 1) = i \geq 1 \mod k\).

\[\frac{1}{k+1} (k^{(k+2)}, (k + 1)^{(2k-2)}, (k(k + 1))^{(l)}), \]
Check \((k + 2)(ik \mod (k + 1)) \geq k + 1\) for \(i = 1, \ldots, k\).
It’s true since \(ik \geq 1 \mod (k + 1)\).

\[\frac{1}{k(k+1)} (k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l-1)}), \]
Check \((k + 2)(ik \mod k(k + 1)) + (2k - 1)(i(k + 1) \mod k(k + 1)) \geq k(k + 1)\) for \(i = 1, \ldots, k(k + 1) - 1\).
It’s true since \(k \nmid i\) or \((k + 1) \nmid i\) for \(i = 1, \ldots, k(k + 1) - 1\), and \(i(k + 1) \geq k + 1 \mod k(k + 1)\) if \(k \nmid i\), \(ik \geq k \mod k(k + 1)\) if \((k + 1) \nmid i\).

\[X \text{ is canonical} \iff \begin{cases} \text{(a) } Y \text{ is canonical.} \\ \text{(b) } O(d) \text{ is basepoint-free line bundle since } d > 0 \text{ is a multiple of all the weights.} \end{cases} \]

by Kollár’s Bertini theorem.
\[\frac{1}{k} (k^{k+1}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}), \]

Check \((2k - 1)(i(k + 1) \mod k) \geq k\) for \(i = 1, \ldots, k - 1\).

It's true since \(i(k + 1) = i \geq 1 \mod k\).

\[\frac{1}{k+1} (k^{k+2}, (k + 1)^{(2k-2)}, (k(k + 1))^{(l)}), \]

Check \((k + 2)(ik \mod (k + 1)) \geq k + 1\) for \(i = 1, \ldots, k\).

It's true since \(ik \geq 1 \mod (k + 1)\).

\[\frac{1}{k(k+1)} (k^{k+2}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l-1)}), \]

Check \((k + 2)(ik \mod k(k + 1)) + (2k - 1)(i(k + 1) \mod k(k + 1)) \geq k(k + 1)\) for \(i = 1, \ldots, k(k + 1) - 1\).

It's true since \(k \nmid i\) or \((k + 1) \nmid i\) for \(i = 1, \ldots, k(k + 1) - 1\), and \(i(k + 1) \geq k + 1 \mod k(k + 1)\) if \(k \nmid i\), \(ik \geq k \mod k(k + 1)\) if \((k + 1) \nmid i\).

X is canonical \(\iff\) \(\begin{cases}
(a) \ Y \text{ is canonical.} \\
(b) \ O(d) \text{ is basepoint-free line bundle since } d > 0 \text{ is a multiple of all the weights.}
\end{cases}\)

by Kollár's Bertini theorem.
1. $\frac{1}{k}(k^{(k+1)}, (k + 1)(2^{k-1}), (k(k + 1))^{(l)})$

 Check $(2k - 1)(i(k + 1) \mod k) \geq k$ for $i = 1, \ldots, k - 1$.

 It's true since $i(k + 1) = i \geq 1 \mod k$.

2. $\frac{1}{k+1}(k^{(k+2)}, (k + 1)(2^{k-2}), (k(k + 1))^{(l)})$

 Check $(k + 2)(ik \mod (k + 1)) \geq k + 1$ for $i = 1, \ldots, k$.

 It's true since $ik \geq 1 \mod (k + 1)$.

3. $\frac{1}{k(k+1)}(k^{(k+2)}, (k + 1)(2^{k-1}), (k(k + 1))^{(l-1)})$

 Check $(k + 2)(ik \mod k(k + 1)) + (2k - 1)(i(k + 1) \mod k(k + 1)) \geq k(k + 1)$ for $i = 1, \ldots, k(k + 1) - 1$.

 It's true since $k \nmid i$ or $(k + 1) \nmid i$ for $i = 1, \ldots, k(k + 1) - 1$,

 and $i(k + 1) \geq k + 1 \mod k(k + 1)$ if $k \nmid i$,

 $ik \geq k \mod k(k + 1)$ if $(k + 1) \nmid i$.

X is canonical \iff

\[\begin{align*}
 (a) & \text{ Y is canonical.} \\
 (b) & \text{ O(d) is basepoint-free line bundle since} \\
 & d>0 \text{ is a multiple of all the weights.}
\end{align*}\]

by Kollár’s Bertini theorem.
1. \(\frac{1}{k} (k^{(k+1)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}) \),
 Check \((2k - 1)(i(k + 1) \mod k) \geq k\) for \(i = 1, \ldots, k - 1\).
 It's true since \(i(k + 1) = i \geq 1 \mod k\).

2. \(\frac{1}{k+1} (k^{(k+2)}, (k + 1)^{(2k-2)}, (k(k + 1))^{(l)}) \),
 Check \((k + 2)(ik \mod (k + 1)) \geq k + 1 \) for \(i = 1, \ldots, k\).
 It's true since \(ik \geq 1 \mod (k + 1)\).

3. \(\frac{1}{k(k+1)} (k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l-1)}) \),
 Check \((k + 2)(ik \mod k(k + 1)) + (2k - 1)(i(k + 1) \mod k(k + 1)) \geq k(k + 1) \) for \(i = 1, \ldots, k(k + 1) - 1\).
 It's true since \(k \nmid i\) or \((k + 1) \nmid i\) for \(i = 1, \ldots, k(k + 1) - 1\),
 and \(i(k + 1) \geq k + 1 \mod k(k + 1)\) if \(k \nmid i\),
 \(ik \geq k \mod k(k + 1)\) if \((k + 1) \nmid i\).

\(X\) is canonical \(\Leftrightarrow\) \(\begin{cases}
(a) \ Y \text{ is canonical.} \\
(b) \ O(d) \text{ is basepoint-free line bundle since } d > 0 \text{ is a multiple of all the weights.}
\end{cases}\)

by Kollár's Bertini theorem.
1. \(\frac{1}{k}(k^{k+1}, (k + 1)(2k-1), (k(k + 1))^{(l)}) \),
 Check \((2k-1)(i(k + 1) \mod k) \geq k\) for \(i = 1, \ldots, k-1\).
 It’s true since \(i(k + 1) = i \geq 1 \mod k\).

2. \(\frac{1}{k+1}(k^{k+2}, (k + 1)(2k-2), (k(k + 1))^{(l)}) \),
 Check \((k + 2)(ik \mod (k + 1)) \geq k + 1\) for \(i = 1, \ldots, k\).
 It’s true since \(ik \geq 1 \mod (k + 1)\).

3. \(\frac{1}{k(k+1)}(k^{k+2}, (k + 1)(2k-1), (k(k + 1))^{(l-1)}) \),
 Check \((k + 2)(ik \mod k(k + 1)) + (2k-1)(i(k + 1) \mod k(k + 1)) \geq k(k + 1)\) for \(i = 1, \ldots, k(k + 1) - 1\).
 It’s true since \(k \nmid i\) or \((k + 1) \nmid i\) for \(i = 1, \ldots, k(k + 1) - 1\),
 and \(i(k + 1) \geq k + 1 \mod k(k + 1)\) if \(k \nmid i\),
 \(ik \geq k \mod k(k + 1)\) if \((k + 1) \nmid i\).

\[X \text{ is canonical} \iff \begin{cases} (a) \ Y \text{ is canonical}. \\ (b) \ O(d) \text{ is basepoint-free line bundle since} \\ \ d > 0 \text{ is a multiple of all the weights.} \end{cases}\]

by Kollár’s Bertini theorem.
1. \(\frac{1}{k} (k^{(k+1)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}) \),
Check \((2k - 1)(i(k + 1) \mod k) \geq k\) for \(i = 1, \ldots, k - 1\).
 It's true since \(i(k + 1) = i \geq 1 \mod k\).

2. \(\frac{1}{k+1} (k^{(k+2)}, (k + 1)^{(2k-2)}, (k(k + 1))^{(l)}) \),
Check \((k + 2)(ik \mod (k + 1)) \geq k + 1\) for \(i = 1, \ldots, k\).
 It's true since \(ik \geq 1 \mod (k + 1)\).

3. \(\frac{1}{k(k+1)} (k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l-1)}) \),
Check \((k + 2)(ik \mod k(k + 1)) + (2k - 1)(i(k + 1) \mod k(k + 1)) \geq k(k + 1)\) for \(i = 1, \ldots, k(k + 1) - 1\).
 It's true since \(k \nmid i\) or \((k + 1) \nmid i\) for \(i = 1, \ldots, k(k + 1) - 1\),
 and \(i(k + 1) \geq k + 1 \mod k(k + 1)\) if \(k \nmid i\),
 \(ik \geq k \mod k(k + 1)\) if \((k + 1) \nmid i\).

\(X\) is canonical \(\iff\) \(\begin{cases}
(a) & Y \text{ is canonical.} \\
(b) & \text{O(d) is basepoint-free line bundle since} \\
& d > 0 \text{ is a multiple of all the weights.}
\end{cases}\)

by Kollár’s Bertini theorem.
1. \(\frac{1}{k} (k^{(k+1)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}) \),

Check \((2k - 1)(i(k + 1) mod k) \geq k \) for \(i = 1, \ldots, k - 1 \).

It’s true since \(i(k + 1) = i \geq 1 \ mod \ k \).

2. \(\frac{1}{k+1} (k^{(k+2)}, (k + 1)^{(2k-2)}, (k(k + 1))^{(l)}) \),

Check \((k + 2)(ik \ mod \ (k + 1)) \geq k + 1 \) for \(i = 1, \ldots, k \).

It’s true since \(ik \geq 1 \ mod \ (k + 1) \).

3. \(\frac{1}{k(k+1)} (k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l-1)}) \),

Check \((k + 2)(ik \ mod \ k(k + 1)) + (2k - 1)(i(k + 1) mod k(k + 1)) \geq k(k + 1) \) for \(i = 1, \ldots, k(k + 1) - 1 \).

It’s true since \(k \nmid i \) or \((k + 1) \nmid i \) for \(i = 1, \ldots, k(k + 1) - 1 \),
and \(i(k + 1) \geq k + 1 \ mod \ k(k + 1) \) if \(k \nmid i \),

\(ik \geq k \ mod \ k(k + 1) \) if \((k + 1) \nmid i \).

\[(a) \ Y \text{ is canonical.} \]

\[(b) \ O(d) \text{ is basepoint-free line bundle since } d > 0 \text{ is a multiple of all the weights.} \]

by Kollár’s Bertini theorem.
1. \(\frac{1}{k} (k^{(k+1)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}) \),
Check \((2k - 1)(i(k + 1) \mod k) \geq k\) for \(i = 1, \ldots, k - 1 \).
It’s true since \(i(k + 1) = i \geq 1 \mod k \).

2. \(\frac{1}{k+1} (k^{(k+2)}, (k + 1)^{(2k-2)}, (k(k + 1))^{(l)}) \),
Check \((k + 2)(ik \mod (k + 1)) \geq k + 1\) for \(i = 1, \ldots, k \).
It’s true since \(ik \geq 1 \mod (k + 1) \).

3. \(\frac{1}{k(k+1)} (k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l-1)}) \),
Check \((k + 2)(ik \mod k(k + 1)) + (2k - 1)(i(k + 1) \mod k(k + 1)) \geq k(k + 1)\) for \(i = 1, \ldots, k(k + 1) - 1 \).
It’s true since \(k \nmid i \) or \((k + 1) \nmid i \) for \(i = 1, \ldots, k(k + 1) - 1 \),
and \(i(k + 1) \geq k + 1 \mod k(k + 1) \) if \(k \nmid i \),
\(ik \geq k \mod k(k + 1) \) if \((k + 1) \nmid i \).

\[X \text{ is canonical} \iff \begin{cases}
(a) \ Y \text{ is canonical.} \\
(b) \ O(d) \text{ is basepoint-free line bundle since } d > 0 \text{ is a multiple of all the weights.}
\end{cases} \]

by Kollár’s Bertini theorem.
Varieties of general type

Construction klt varieties Construction

1 \[\frac{1}{k}(k^{(k+1)}, (k+1)^{(2k-1)}, (k(k+1))^{(l)}), \]

Check \((2k-1)(i(k+1) \mod k) \geq k\) for \(i = 1, \ldots, k - 1\).
It’s true since \(i(k+1) = i \geq 1 \mod k\).

2 \[\frac{1}{k+1}(k^{(k+2)}, (k+1)^{(2k-2)}, (k(k+1))^{(l)}), \]

Check \((k + 2)(ik \mod (k+1)) \geq k + 1\) for \(i = 1, \ldots, k\).
It’s true since \(ik \geq 1 \mod (k+1)\).

3 \[\frac{1}{k(k+1)}(k^{(k+2)}, (k+1)^{(2k-1)}, (k(k+1))^{(l-1)}), \]

Check \((k + 2)(ik \mod k(k+1)) + (2k-1)(i(k+1) \mod k(k+1)) \geq k(k+1)\) for \(i = 1, \ldots, k(k+1) - 1\).
It’s true since \(k \nmid i\) or \((k + 1) \nmid i\) for \(i = 1, \ldots, k(k+1) - 1\),
and \(i(k+1) \geq k + 1 \mod k(k+1)\) if \(k \nmid i,\)
\(ik \geq k \mod k(k+1)\) if \((k + 1) \nmid i\).

\(X\) is canonical \(\iff\) \(\begin{cases} \text{(a) } Y \text{ is canonical.} \\ \text{(b) } O(d) \text{ is basepoint-free line bundle since} \\ d > 0 \text{ is a multiple of all the weights.} \end{cases}\)

by Kollár’s Bertini theorem.
1. \(\frac{1}{k} (k^{(k+1)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}) \),
Check \((2k - 1)(i(k + 1) \ mod \ k) \geq k \) for \(i = 1, \ldots, k - 1 \).
It’s true since \(i(k + 1) = i \geq 1 \ mod \ k \).

2. \(\frac{1}{k+1} (k^{(k+2)}, (k + 1)^{(2k-2)}, (k(k + 1))^{(l)}) \),
Check \((k + 2)(ik \ mod (k + 1)) \geq k + 1 \) for \(i = 1, \ldots, k \).
It’s true since \(ik \geq 1 \ mod (k + 1) \).

3. \(\frac{1}{k(k+1)} (k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l-1)}) \),
Check \((k + 2)(ik \ mod k(k + 1)) + (2k - 1)(i(k + 1) \ mod k(k + 1)) \geq k(k + 1) \) for \(i = 1, \ldots, k(k + 1) - 1 \).
It’s true since \(k \nmid i \) or \((k + 1) \nmid i \) for \(i = 1, \ldots, k(k + 1) - 1 \),
and \(i(k + 1) \geq k + 1 \ mod k(k + 1) \) if \(k \nmid i \).
\(ik \geq k \ mod k(k + 1) \) if \((k + 1) \nmid i \).

\[X \ is \ canonical \iff \begin{cases} \ a \ Y \ is \ canonical. \\ b \ O(d) \ is \ basepoint-free \ line \ bundle \ since \\ \ d > 0 \ is \ a \ multiple \ of \ all \ the \ weights. \end{cases} \]
by Kollár’s Bertini theorem.
1. \(\frac{1}{k}(k^{(k+1)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}) \),
Check \((2k - 1)(i(k + 1) \mod k) \geq k \) for \(i = 1, \ldots, k - 1 \).
It’s true since \(i(k + 1) = i \geq 1 \mod k \).

2. \(\frac{1}{k+1}(k^{(k+2)}, (k + 1)^{(2k-2)}, (k(k + 1))^{(l)}) \),
Check \((k + 2)(ik \mod (k + 1)) \geq k + 1 \) for \(i = 1, \ldots, k \).
It’s true since \(ik \geq 1 \mod (k + 1) \).

3. \(\frac{1}{k(k+1)}(k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l-1)}) \),
Check \((k + 2)(ik \mod k(k + 1)) + (2k - 1)(i(k + 1) \mod k(k + 1)) \geq k(k + 1) \) for \(i = 1, \ldots, k(k + 1) - 1 \).
It’s true since \(k \nmid i \) or \((k + 1) \nmid i \) for \(i = 1, \ldots, k(k + 1) - 1 \), and \(i(k + 1) \geq k + 1 \mod k(k + 1) \) if \(k \nmid i \),
\(ik \geq k \mod k(k + 1) \) if \((k + 1) \nmid i \).

\(X \) is canonical \(\iff \begin{cases} (a) & Y \text{ is canonical.} \\ (b) & O(d) \text{ is basepoint-free line bundle since } d>0 \text{ is a multiple of all the weights.} \end{cases} \) by Kollár’s Bertini theorem.
Varieties of general type

Construction

klt varieties

Construction

1. \(\frac{1}{k}(k^{(k+1)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)}) \),
Check \((2k - 1)(i(k + 1) \mod k) \geq k\) for \(i = 1, \ldots, k - 1\).
It's true since \(i(k + 1) = i \geq 1 \mod k\).

2. \(\frac{1}{k+1}(k^{(k+2)}, (k + 1)^{(2k-2)}, (k(k + 1))^{(l)}) \),
Check \((k + 2)(ik \mod (k + 1)) \geq k + 1\) for \(i = 1, \ldots, k\).
It's true since \(ik \geq 1 \mod (k + 1)\).

3. \(\frac{1}{k(k+1)}(k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l-1)}) \),
Check \((k + 2)(ik \mod k(k + 1)) + (2k - 1)(i(k + 1) \mod k(k + 1)) \geq k(k + 1)\) for \(i = 1, \ldots, k(k + 1) - 1\).
It's true since \(k \nmid i\) or \((k + 1) \nmid i\) for \(i = 1, \ldots, k(k + 1) - 1\),
and \(i(k + 1) \geq k + 1 \mod k(k + 1)\) if \(k \nmid i\),
\(ik \geq k \mod k(k + 1)\) if \((k + 1) \nmid i\).

\(X\) is canonical \(\iff\) \[
\begin{cases}
(a) & Y \text{ is canonical.} \\
(b) & O(d) \text{ is basepoint-free line bundle since } d > 0 \text{ is a multiple of all the weights.}
\end{cases}
\]

by Kollár’s Bertini theorem.
A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (Iano-Fletcher)

A general hypersurface of degree d in $P(a_0, \ldots, a_n)$ is quasi-smooth \iff

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d is an N-linear combination of the numbers a_i with $i \in I$, or (b) there are at least $|I|$ numbers $j \not\in I$ such that $d - a_j$ is an N-linear combination of the numbers a_i with $i \in I$.
A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called quasi-smooth if its affine cone in \mathbb{A}^{n+1} is smooth outside the origin.

Lemma (Iano-Fletcher)

A general hypersurface of degree d in $P(a_0, \ldots, a_n)$ is quasi-smooth \iff

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d is an \mathbb{N}-linear combination of the numbers a_i with $i \in I$, or (b) there are at least $|I|$ numbers $j \notin I$ such that $d - a_j$ is an \mathbb{N}-linear combination of the numbers a_i with $i \in I$.
A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (Iano-Fletcher)

A general hypersurface of degree d in $P(a_0, \ldots, a_n)$ is quasi-smooth \iff

- either (1) $a_i = d$ for some i,

- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d is an N-linear combination of the numbers a_i with $i \in I$, or (b) there are at least $|I|$ numbers $j \notin I$ such that $d - a_j$ is an N-linear combination of the numbers a_i with $i \in I$.
quasi-smooth

A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (Iano-Fletcher)

A general hypersurface of degree d in $P(a_0, \ldots, a_n)$ is quasi-smooth \iff

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d is an N-linear combination of the numbers a_i with $i \in I$, or (b) there are at least $|I|$ numbers $j \not\in I$ such that $d - a_j$ is an N-linear combination of the numbers a_i with $i \in I$.
quasi-smooth

A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called \textit{quasi-smooth} if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (Iano-Fletcher)

A general hypersurface of degree d in $P(a_0, \ldots, a_n)$ is quasi-smooth \iff

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d is an N-linear combination of the numbers a_i with $i \in I$, or (b) there are at least $|I|$ numbers $j \not\in I$ such that $d - a_j$ is an N-linear combination of the numbers a_i with $i \in I$.
quasi-smooth

A closed subvariety X of a weighted projective space $P(a_0, \ldots, a_n)$ is called quasi-smooth if its affine cone in A^{n+1} is smooth outside the origin.

Lemma (Iano-Fletcher)

A general hypersurface of degree d in $P(a_0, \ldots, a_n)$ is quasi-smooth \iff

- either (1) $a_i = d$ for some i,
- or (2) for every nonempty subset I of $\{0, \ldots, n\}$, either (a) d is an N-linear combination of the numbers a_i with $i \in I$, or (b) there are at least $|I|$ numbers $j \notin I$ such that $d - a_j$ is an N-linear combination of the numbers a_i with $i \in I$.
A general hypersurface X of degree $d = (l + 3)k(k + 1)$ in $Y = P(k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^l)$.

- Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \iff \begin{cases}
(a) \ X \text{ is well-formed.} \\
(b) \ X \text{ is quasi-smooth since} \\
d \text{ is a multiple of all the weights.}
\end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K^n_X$, which is d divided by the product of all weights of Y.

$$vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}.$$

- Let W be a resolution of singularities of X. W is a smooth complex projective n-fold of general type with $vol(W) = vol(X)$.

compute the volume
compute the volume

A general hypersurface X of degree $d = (l + 3)k(k + 1)$ in $Y = P(k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)})$.

- Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \iff \begin{cases}
(a) & X \text{ is well-formed.} \\
(b) & X \text{ is quasi-smooth since } d \text{ is a multiple of all the weights}.
\end{cases}$$

Thus $K_X = O_X(1)$ ample. So $\text{vol}(X) = K_X^n$, which is d divided by the product of all weights of Y.

$$\text{vol}(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}.$$

- Let W be a resolution of singularities of X. W is a smooth complex projective n-fold of general type with $\text{vol}(W) = \text{vol}(X)$.
compute the volume

A general hypersurface X of degree $d = (l + 3)k(k + 1)$ in $Y = P(k^{k+2}, (k + 1)^{2k-1}, (k(k + 1))^l)$.

- Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \iff \begin{cases} (a) & X \text{ is well-formed.} \\ (b) & X \text{ is quasi-smooth since } d \text{ is a multiple of all the weights.} \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $\text{vol}(X) = K^n_X$, which is d divided by the product of all weights of Y.

$$\text{vol}(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}.$$

- Let W be a resolution of singularities of X. W is a smooth complex projective n-fold of general type with $\text{vol}(W) = \text{vol}(X)$.
compute the volume

A general hypersurface X of degree $d = (l + 3)k(k + 1)$ in $Y = P(k^{k+2}, (k + 1)^{2k-1}, (k(k + 1))^{l})$.

- Adjunction formula holds:

 $$K_X = O_X(d - \sum a_i) \iff \begin{cases}
(a) & X \text{ is well-formed.} \\
(b) & X \text{ is quasi-smooth since } d \text{ is a multiple of all the weights.}
\end{cases}$$

Thus $K_X = O_X(1)$ ample. So $\text{vol}(X) = K_X^n$, which is d divided by the product of all weights of Y.

$$\text{vol}(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}.$$

- Let W be a resolution of singularities of X. W is a smooth complex projective n-fold of general type with $\text{vol}(W) = \text{vol}(X)$.

compute the volume

A general hypersurface X of degree $d = (l + 3)k(k + 1)$ in $Y = P(k^{(k+2)}, (k + 1)^{(2k-1)}, (k(k + 1))^{(l)})$.

- Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \iff \begin{cases} (a) \ X \text{ is well-formed.} \\ (b) \ X \text{ is quasi-smooth since } d \text{ is a multiple of all the weights.} \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $vol(X) = K_X^n$, which is d divided by the product of all weights of Y.

$$vol(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}.$$

- Let W be a resolution of singularities of X. W is a smooth complex projective n-fold of general type with $vol(W) = vol(X)$.
compute the volume

A general hypersurface X of degree $d = (l + 3)k(k + 1)$ in $Y = P(k^{k+2}, (k + 1)^{(2k-1)}(k(k + 1))^{(l)})$.

- Adjunction formula holds:

$$K_X = O_X(d - \sum a_i) \iff \begin{cases} (a) & X \text{ is well-formed.} \\ (b) & X \text{ is quasi-smooth since } d \text{ is a multiple of all the weights.} \end{cases}$$

Thus $K_X = O_X(1)$ ample. So $\text{vol}(X) = K_X^n$, which is d divided by the product of all weights of Y.

$$\text{vol}(X) = \frac{(l+3)k(k+1)}{k^{k+2}(k+1)^{2k-1}(k(k+1))^l} = \frac{(l+3)}{k^{k+1+l}(k+1)^{2k-2+l}}.$$

- Let W be a resolution of singularities of X. W is a smooth complex projective n-fold of general type with $\text{vol}(W) = \text{vol}(X)$.
Generalization

Consider hypersurface X of degree $d = (6 + l)k(k + 1)(k + 2)$ in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k + 1)^{(2k+1)}, (k + 2)^{(2k+2)}, (k(k + 1))^{(2k+2)}, (k(k + 2))^{(2k)}, ((k + 1)(k + 2))^{(2k−2)}, (k(k + 1)(k + 2))^l)$, where $l \geq 0, k \geq 4$.

- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d - \sum a_i) = O_X(1)$.
- $\text{vol}(X) = \frac{(6 + l)}{k^{6k+4+l−1}(k+1)^{6k+l}(k+2)^{6k+l−1}}$. This improves BPT's example.
Generalization

- Consider hypersurface X of degree $d = (6 + l)k(k + 1)(k + 2)$ in $Y = P(1^{3k+2}, k^{2k+2}, (k + 1)^{2k+1}, (k + 2)^{2k+2}, (k(k + 1))^{2k+2}, (k(k + 2))^{2k}, ((k + 1)(k + 2))^{2k-2}, (k(k + 1)(k + 2))^l)$, where $l \geq 0$, $k \geq 4$.
- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d - \sum a_i) = O_X(1)$.
- $vol(X) = \frac{(6+l)}{k^{6k+4+l+1}(k+1)^{6k+1}(k+2)^{6k+l+1}}$. This improves BPT’s example.
Consider hypersurface X of degree $d = (6 + l)k(k + 1)(k + 2)$ in
$Y = P(1^{3k+2}, k^{2k+2}, (k + 1)^{2k+1}, (k + 2)^{2k+2},
(k(k + 1))^{2k+2}, (k(k + 2))^{2k}, ((k + 1)(k + 2))^{2k-2},
(k(k + 1)(k + 2))^l)$, where $l \geq 0, k \geq 4$.

- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d - \sum a_i) = O_X(1)$.
- $\text{vol}(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT's example.
Generalization

- Consider hypersurface X of degree $d = (6 + l)k(k + 1)(k + 2)$ in $Y = P(1^{(3k+2)}, k^{(2k+2)}, (k + 1)^{(2k+1)}, (k + 2)^{(2k+2)}, (k(k + 1))^{(2k+2)}, (k(k + 2))^{(2k)}, ((k + 1)(k + 2))^{(2k-2)}, (k(k + 1)(k + 2))^l)$, where $l \geq 0, k \geq 4$.
- Y is well-formed since 1 occurs more than once.
- X is well-formed and quasi-smooth since d is a multiple of all the weights.
- X is also canonical and $K_X = O_X(d - \sum a_i) = O_X(1)$.
- $\text{vol}(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT’s example.
Consider hypersurface X of degree
\[d = (6 + l)k(k + 1)(k + 2) \] in
\[Y = P(1^{(3k+2)}, k^{(2k+2)}, (k + 1)^{(2k+1)}, (k + 2)^{(2k+2)},
(k(k + 1))^{(2k+2)}, (k(k + 2))^{(2k)}, ((k + 1)(k + 2))^{(2k-2)},
(k(k + 1)(k + 2))^l), \text{ where } l \geq 0, k \geq 4. \]

Y is well-formed since 1 occurs more than once.

X is well-formed and quasi-smooth since d is a multiple of all the weights.

X is also canonical and $K_X = O_X(d - \sum a_i) = O_X(1)$.

$vol(X) = \frac{(6+l)}{k^{6k+4+l-1}(k+1)^{6k+l}(k+2)^{6k+l-1}}$. This improves BPT’s example.
Let b, l, k be integers with $b \geq 2$, $l \geq 0$, and $k \geq 2b - 2$. For each subset I of $\{0, \ldots, b - 1\}$, define (with j running through $0, 1, \ldots, b - 1$):

$$k_I = \begin{cases}
-1 + \sum_{j=0}^{b-1} (k + j) & \text{if } |I| = 0, \\
-|I| + \sum_{j \notin I} (k + j) & \text{if } 1 \leq |I| \leq b - 2, \\
-(b - 1) + 2 \sum_{j \notin I} (k + j) & \text{if } |I| = b - 1, \\
l & \text{if } |I| = b.
\end{cases}$$
Generalization

Let b, l, k be integers with $b \geq 2$, $l \geq 0$, and $k \geq 2b - 2$. For each subset I of $\{0, \ldots, b - 1\}$, define (with j running through $0, 1, \ldots, b - 1$):

\[
k_I = \begin{cases}
-1 + \sum_{j=0}^{b-1} (k + j) & \text{if } |I| = 0, \\
-|I| + \sum_{j \notin I} (k + j) & \text{if } 1 \leq |I| \leq b - 2, \\
-(b - 1) + 2 \sum_{j \notin I} (k + j) & \text{if } |I| = b - 1, \\
l & \text{if } |I| = b.
\end{cases}
\]
Generalization

Let \(b, l, k \) be integers with \(b \geq 2, l \geq 0, \) and \(k \geq 2b - 2. \) For each subset \(I \) of \(\{0, \ldots, b - 1\} \), define (with \(j \) running through \(0, 1, \ldots, b - 1 \)):

\[
k_I = \begin{cases}
-1 + \sum_{j=0}^{b-1} (k + j) & \text{if } |I| = 0, \\
-l + \sum_{j \notin I} (k + j) & \text{if } 1 \leq |I| \leq b - 2, \\
-(b - 1) + 2 \sum_{j \notin I} (k + j) & \text{if } |I| = b - 1, \\
l & \text{if } |I| = b.
\end{cases}
\]
Let \(b, l, k \) be integers with \(b \geq 2, \ l \geq 0, \text{ and } k \geq 2b - 2 \). For each subset \(I \) of \(\{0, \ldots, b - 1\} \), define (with \(j \) running through \(0, 1, \ldots, b - 1 \)):

\[
k_I = \begin{cases}
-1 + \sum_{j=0}^{b-1} (k + j) & \text{if } |I| = 0, \\
-|I| + \sum_{j \notin I} (k + j) & \text{if } 1 \leq |I| \leq b - 2, \\
-(b - 1) + 2 \sum_{j \notin I} (k + j) & \text{if } |I| = b - 1, \\
|I| & \text{if } |I| = b.
\end{cases}
\]
Let b, l, k be integers with $b \geq 2$, $l \geq 0$, and $k \geq 2b - 2$. For each subset l of $\{0, \ldots, b-1\}$, define (with j running through $0, 1, \ldots, b - 1$):

\[
k_l = \begin{cases}
-1 + \sum_{j=0}^{b-1} (k + j) & \text{if } |l| = 0, \\
-|l| + \sum_{j \notin l} (k + j) & \text{if } 1 \leq |l| \leq b - 2, \\
-(b - 1) + 2 \sum_{j \notin l} (k + j) & \text{if } |l| = b - 1, \\
l & \text{if } |l| = b.
\end{cases}
\]
Let Y be the complex weighted projective space

$$P\left(\left(\prod_{j \in I}(k + j)\right)^{(k_i)} : I \subset \{0, \ldots, b - 1\}\right).$$

Let $d = (2b + l) \prod_{j=0}^{b-1} (k + j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2 \log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

$$\text{vol}(K_X) < 1/n^{(n\log n)/3}.$$
Let Y be the complex weighted projective space

$$P\left(\left(\prod_{j \in I}(k + j)^{(k_i)} : I \subset \{0, \ldots, b - 1\}\right)\right).$$

Let $d = (2b + l) \prod_{j=0}^{b-1} (k + j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2 \log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

$$\text{vol}(K_X) < 1/n^{(n \log n)/3}.$$
Let Y be the complex weighted projective space

$$P\left(\prod_{j \in I} (k + j)^{(k_j)} : l \subset \{0, \ldots, b - 1\}\right).$$

Let $d = (2b + l) \prod_{j=0}^{b-1} (k + j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2 \log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

$$\text{vol}(K_X) < 1/n^{(n \log n)/3}.$$
Let Y be the complex weighted projective space

$$P\left(\left(\prod_{j \in I}(k + j)^{k_l}\right) : I \subset \{0, \ldots, b - 1\}\right).$$

Let $d = (2b + l) \prod_{j=0}^{b-1}(k + j)$. Then a general hypersurface X of degree d in Y has canonical singularities and $K_X = O_X(1)$.

For X of sufficiently large dimension n, let $b = \lfloor (\log n)/(2 \log 2) \rfloor$ and $k = \lfloor \sqrt{n}/(\log n)^2 \rfloor$. Then

$$vol(K_X) < 1/n^{(n \log n)/3}.$$
Varieties of general type

Terminal Fano varieties.

(Birkar) For each integer $n > 0$, \exists a constant s_n s.t. for every terminal Fano n-fold X, $|−mK_X|$ gives a birational embedding for all $m \geq s_n$; and \exists a constant $b_n > 0$ s.t. every terminal Fano n-fold X has $\text{vol}(-K_X) \geq b_n$.

(J. Chen and M. Chen) The optimal cases:

- $\dim = 2$, $X_6 \subset P(1, 1, 2, 3)$ with volume 1,
- $\dim = 3$, $X_{66} \subset P(1, 5, 6, 22, 33)$ with volume $1/330$,
- $\dim = 4$, Brown-Kasprzyk’s example $X_{3486} \subset P(1, 41, 42, 498, 1162, 1743)$, with volume $1/498240036$.
Terminal Fano varieties.

(Birkar) For each integer $n > 0$, \exists a constant s_n s.t. for every terminal Fano n-fold X, $|−mK_X|$ gives a birational embedding for all $m \geq s_n$; and \exists a constant $b_n > 0$ s.t. every terminal Fano n-fold X has $\text{vol}(−K_X) \geq b_n$.

(J. Chen and M. Chen) The optimal cases:
$\text{dim} = 2$, $X_6 \subset P(1, 1, 2, 3)$ with volume 1,
$\text{dim} = 3$, $X_{66} \subset P(1, 5, 6, 22, 33)$ with volume $1/330$,
$\text{dim} = 4$, Brown-Kasprzyk’s example $X_{3486} \subset P(1, 41, 42, 498, 1162, 1743)$, with volume $1/498240036$.
Terminal Fano varieties.

(Birkar) For each integer $n > 0$, \exists a constant s_n s.t. for every terminal Fano n-fold X, $|-mK_X|$ gives a birational embedding for all $m \geq s_n$; and \exists a constant $b_n > 0$ s.t. every terminal Fano n-fold X has $\text{vol}(-K_X) \geq b_n$.

(J. Chen and M. Chen) The optimal cases:
- $dim = 2$, $X_6 \subset P(1, 1, 2, 3)$ with volume 1,
- $dim = 3$, $X_{66} \subset P(1, 5, 6, 22, 33)$ with volume $1/330$,
- $dim = 4$, Brown-Kasprzyk’s example $X_{3486} \subset P(1, 41, 42, 498, 1162, 1743)$, with volume $1/498240036$.
Terminal Fano varieties.

(Birkar) For each integer $n > 0$, there exists a constant s_n such that for every terminal Fano n-fold X, $|-mK_X|$ gives a birational embedding for all $m \geq s_n$; and there exists a constant $b_n > 0$ such that every terminal Fano n-fold X has $\text{vol}(-K_X) \geq b_n$.

(J. Chen and M. Chen) The optimal cases:
- $\dim = 2$, $X_6 \subset P(1,1,2,3)$ with volume 1,
- $\dim = 3$, $X_{66} \subset P(1,5,6,22,33)$ with volume $1/330$,
- $\dim = 4$, Brown-Kasprzyk’s example $X_{3486} \subset P(1,41,42,498,1162,1743)$, with volume $1/498240036$.
Terminal Fano varieties.

- (Birkar) For each integer $n > 0$, \exists a constant s_n s.t. for every terminal Fano n-fold X, $|-mK_X|$ gives a birational embedding for all $m \geq s_n$; and \exists a constant $b_n > 0$ s.t. every terminal Fano n-fold X has $\text{vol}(-K_X) \geq b_n$.

- (J. Chen and M. Chen) The optimal cases:
 $\text{dim} = 2$, $X_6 \subset P(1, 1, 2, 3)$ with volume 1,
 $\text{dim} = 3$, $X_{66} \subset P(1, 5, 6, 22, 33)$ with volume $1/330$,
 $\text{dim} = 4$, Brown-Kasprzyk’s example $X_{3486} \subset P(1, 41, 42, 498, 1162, 1743)$, with volume $1/498240036$
Terminal Fano n-fold.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

1. There exists a complex terminal Fano n-fold X with $\text{vol}(-K_X) < 1 / n^{(n\log n)/3}$.

2. There exists a complex terminal Fano n-fold X such that the linear system $|-mK_X|$ does not give a birational embedding for any $m \leq n^{(\log n)/3}$.

Fujita’s conjecture: for every smooth complex projective variety X of dimension n with an ample line bundle A, $K_X + (n + 2)A$ is very ample.
Terminal Fano n-fold.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer $n,

1. **exist** a complex terminal Fano n-fold X with $\text{vol}(-K_X) < 1/n^{(n \log n)/3}$.

2. **exist** a complex terminal Fano n-fold X s.t. the linear system $|-mK_X|$ does not give a birational embedding for any $m \leq n^{(\log n)/3}$.

Fujita’s conjecture: for every smooth complex projective variety X of dimension n with an ample line bundle A, $K_X + (n + 2)A$ is very ample.
Terminal Fano n-fold.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

1. There exists a complex terminal Fano n-fold X with $vol(-K_X) < 1/n^{(n\log n)/3}$.

2. There exists a complex terminal Fano n-fold X such that the linear system $|−mK_X|$ does not give a birational embedding for any $m \leq n^{(\log n)/3}$.

Fujita’s conjecture: for every smooth complex projective variety X of dimension n with an ample line bundle A, $K_X + (n + 2)A$ is very ample.
Terminal Fano n-fold.

Adding two more weights equals to 1 in the weighted projective space Y.

Theorem (B. Totaro, C. Wang)

For every sufficiently large positive integer n,

1. ∃ a complex terminal Fano n-fold X with $\text{vol}(-K_X) < 1/n^{(n \log n)/3}$.
2. ∃ a complex terminal Fano n-fold X s.t. the linear system $|\ - mK_X|$ does not give a birational embedding for any $m \leq n^{(\log n)/3}$.

Fujita’s conjecture: for every smooth complex projective variety X of dimension n with an ample line bundle A, $K_X + (n + 2)A$ is very ample.
Kollár proposed what may be the klt pair \((X, \Delta)\) of general type with standard coefficients that has minimum volume.

There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-McKernan-Xu.

\((X, \Delta) = \left(P^n, \frac{1}{2} H_0 + \frac{2}{3} H_1 + \frac{6}{7} H_2 + \cdots + \frac{c_{n+1} - 1}{c_{n+1}} H_{n+1} \right) ,\)

where \(H_i\) are \(n + 2\) general hyperplanes and \(c_0, c_1, c_2, \ldots\) is Sylvester’s sequence, \(c_0 = 2\) and \(c_{m+1} = c_m(c_m - 1) + 1\).

The volume of \(K_X + \Delta\) is

\[1/(c_{n+2} - 1)^n < 1/2^{2n} .\]

The optimal example is “Hurwitz orbifold” of volume \(1/42\) in dimension 1.
Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume. There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-McKernan-Xu.

$$(X, \Delta) = \left(P^n, \frac{1}{2} H_0 + \frac{2}{3} H_1 + \frac{6}{7} H_2 + \cdots + \frac{c_{n+1}-1}{c_{n+1}} H_{n+1} \right),$$

where H_i are $n+2$ general hyperplanes and c_0, c_1, c_2, \ldots is Sylvester’s sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$.

The volume of $K_X + \Delta$ is

$$1/(c_{n+2} - 1)^n < 1/2^{2^n}.$$

The optimal example is “Hurwitz orbifold” of volume $1/42$ in dimension 1.
Kollár proposed what may be the klt pair \((X, \Delta)\) of general type with standard coefficients that has minimum volume. There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-McKernan-Xu.

\[
(X, \Delta) = \left(P^n, \frac{1}{2} H_0 + \frac{2}{3} H_1 + \frac{6}{7} H_2 + \cdots + \frac{c_{n+1}-1}{c_{n+1}} H_{n+1} \right),
\]

where \(H_i\) are \(n + 2\) general hyperplanes and \(c_0, c_1, c_2, \ldots\) is Sylvester’s sequence, \(c_0 = 2\) and \(c_{m+1} = c_m(c_m - 1) + 1\). The volume of \(K_X + \Delta\) is

\[
\frac{1}{(c_{n+2} - 1)^n} < \frac{1}{2^{2^n}}.
\]

The optimal example is “Hurwitz orbifold” of volume \(1/42\) in dimension 1.
Kollár proposed what may be the klt pair \((X, \Delta)\) of general type with standard coefficients that has minimum volume. There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-M\(c\)Kernan-Xu.

\[(X, \Delta) = \left(P^n, \frac{1}{2} H_0 + \frac{2}{3} H_1 + \frac{6}{7} H_2 + \cdots + \frac{c_{n+1} - 1}{c_{n+1}} H_{n+1}\right),\]

where \(H_i\) are \(n + 2\) general hyperplanes and \(c_0, c_1, c_2, \ldots\) is Sylvester’s sequence, \(c_0 = 2\) and \(c_{m+1} = c_m(c_m - 1) + 1\). The volume of \(K_X + \Delta\) is

\[
1/(c_{n+2} - 1)^n < 1/2^{2^n}.
\]

The optimal example is “Hurwitz orbifold” of volume \(1/42\) in dimension 1.
Kollár proposed what may be the klt pair \((X, \Delta)\) of general type with standard coefficients that has minimum volume. There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-McKernan-Xu.

\[
(X, \Delta) = \left(P^n, \frac{1}{2} H_0 + \frac{2}{3} H_1 + \frac{6}{7} H_2 + \cdots + \frac{c_{n+1}-1}{c_{n+1}} H_{n+1} \right),
\]

where \(H_i\) are \(n + 2\) general hyperplanes and \(c_0, c_1, c_2, \ldots\) is Sylvester’s sequence, \(c_0 = 2\) and \(c_{m+1} = c_m(c_m - 1) + 1\). The volume of \(K_X + \Delta\) is

\[
1/(c_{n+2} - 1)^n < 1/2^{2^n}.
\]

The optimal example is “Hurwitz orbifold” of volume 1/42 in dimension 1.
Kollár proposed what may be the klt pair \((X, \Delta)\) of general type with standard coefficients that has minimum volume. There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-McKernan-Xu.

\[(X, \Delta) = \left(P^n, \frac{1}{2} H_0 + \frac{2}{3} H_1 + \frac{6}{7} H_2 + \cdots + \frac{c_{n+1} - 1}{c_{n+1}} H_{n+1} \right), \]

where \(H_i\) are \(n + 2\) general hyperplanes and \(c_0, c_1, c_2, \ldots\) is Sylvester’s sequence, \(c_0 = 2\) and \(c_{m+1} = c_m(c_m - 1) + 1\). The volume of \(K_X + \Delta\) is

\[1/(c_{n+2} - 1)^n < 1/2^{2n}.\]

The optimal example is “Hurwitz orbifold” of volume \(1/42\) in dimension 1.
Kollár proposed what may be the klt pair (X, Δ) of general type with standard coefficients that has minimum volume. There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-McKernan-Xu.

$$(X, \Delta) = \left(\mathbb{P}^n, \frac{1}{2} H_0 + \frac{2}{3} H_1 + \frac{6}{7} H_2 + \cdots + \frac{c_{n+1}-1}{c_{n+1}} H_{n+1} \right),$$

where H_i are $n+2$ general hyperplanes and c_0, c_1, c_2, \ldots is Sylvester’s sequence, $c_0 = 2$ and $c_{m+1} = c_m(c_m - 1) + 1$. The volume of $K_X + \Delta$ is

$$\frac{1}{(c_{n+2} - 1)^n} < \frac{1}{2^{2n}}.$$

The optimal example is “Hurwitz orbifold” of volume $1/42$ in dimension 1.
Kollár proposed what may be the klt pair \((X, \Delta)\) of general type with standard coefficients that has minimum volume. There is some positive lower bound for such volumes, the minimum is attained, and these volumes satisfy DCC by Hacon-McKernan-Xu.

\((X, \Delta) = \left(P^n, \frac{1}{2} H_0 + \frac{2}{3} H_1 + \frac{6}{7} H_2 + \cdots + \frac{c_{n+1}-1}{c_{n+1}} H_{n+1} \right) \),

where \(H_i\) are \(n+2\) general hyperplanes and \(c_0, c_1, c_2, \ldots\) is Sylvester’s sequence, \(c_0 = 2\) and \(c_{m+1} = c_m(c_m-1) + 1\). The volume of \(K_X + \Delta\) is

\[
\frac{1}{(c_{n+2} - 1)^n} < \frac{1}{2^{2^n}}.
\]

The optimal example is “Hurwitz orbifold” of volume 1/42 in dimension 1.
For a klt surface X with ample canonical class, the smallest known volume is $1/48983$, by an example of Alexeev and Liu.

In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \geq 2$, there exists a complex klt n-fold X with ample canonical class such that $\text{vol}(K_X) < 1/2^{2n}$.

$\log(\text{vol}(K_X))$ of our klt varieties is asymptotic to $\log(\text{vol}(K_X + \Delta))$ in Kollár’s klt pair above, as $n \to \infty$.
For a klt surface X with ample canonical class, the smallest known volume is $1/48983$, by an example of Alexeev and Liu. In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \geq 2$, there exists a complex klt n-fold X with ample canonical class such that $\text{vol}(K_X) < 1/2^{2n}$.

$log(\text{vol}(K_X))$ of our klt varieties is asymptotic to $log(\text{vol}(K_X + \Delta))$ in Kollár’s klt pair above, as $n \to \infty$.
For a klt surface X with ample canonical class, the smallest known volume is $1/48983$, by an example of Alexeev and Liu.

In high dimensions:

Theorem (B. Totaro, C. Wang)

For every integer $n \geq 2$, there exists a complex klt n-fold X with ample canonical class such that $\text{vol}(K_X) < 1/2^{2^n}$.

$log(\text{vol}(K_X))$ of our klt varieties is asymptotic to $log(\text{vol}(K_X + \Delta))$ in Kollár’s klt pair above, as $n \to \infty$.
construct klt varieties with ample canonical class

- Construct weighted projective space $P(a_0, \ldots, a_{n+1})$.
- Sylvester’s sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$, \ldots and $c_{n+1} = c_n(c_n - 1) + 1$.
- $n \geq 2$. Let $y = c_{n-1} - 1$ and

 \[
 a_2 = y^3 + y + 1 \\
 a_1 = y(y + 1)(1 + a_2) - a_2 \\
 a_0 = y(1 + a_2 + a_1) - a_1.
 \]

- Let $x = 1 + a_0 + a_1 + a_2$,

 \[
 d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y,
 \]
 and $a_{i+3} = c_0 \cdots \hat{c}_i \cdots c_{n-2}x$ for $0 \leq i \leq n - 2$.
construct klt varieties with ample canonical class

- Construct weighted projective space $P(a_0, \ldots, a_{n+1})$.
- Sylvester’s sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$, \ldots and $c_{n+1} = c_n(c_n - 1) + 1$.
- $n \geq 2$. Let $y = c_{n-1} - 1$ and

 \[
 a_2 = y^3 + y + 1 \\
 a_1 = y(y + 1)(1 + a_2) - a_2 \\
 a_0 = y(1 + a_2 + a_1) - a_1.
 \]

- Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \hat{c}_i \cdots c_{n-2}x$ for $0 \leq i \leq n - 2$.
construct klt varieties with ample canonical class

- Construct weighted projective space $P(a_0, \ldots, a_{n+1})$.
- Sylvester’s sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$, \ldots and $c_{n+1} = c_n(c_n - 1) + 1$.
- $n \geq 2$. Let $y = c_{n-1} - 1$ and

 \begin{align*}
 a_2 &= y^3 + y + 1 \\
 a_1 &= y(y + 1)(1 + a_2) - a_2 \\
 a_0 &= y(1 + a_2 + a_1) - a_1.
 \end{align*}

- Let $x = 1 + a_0 + a_1 + a_2$, $d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y$, and $a_{i+3} = c_0 \cdots \hat{c}_i \cdots c_{n-2}x$ for $0 \leq i \leq n - 2$.
construct klt varieties with ample canonical class

- Construct weighted projective space $P(a_0, \ldots, a_{n+1})$.
- Sylvester’s sequence: $c_0 = 2$, $c_1 = 3$, $c_2 = 7$, $c_3 = 43$, $c_4 = 1807$, \ldots and $c_{n+1} = c_n(c_n - 1) + 1$.
- $n \geq 2$. Let $y = c_{n-1} - 1$ and

$$
\begin{align*}
 a_2 &= y^3 + y + 1 \\
 a_1 &= y(y + 1)(1 + a_2) - a_2 \\
 a_0 &= y(1 + a_2 + a_1) - a_1.
\end{align*}
$$

- Let $x = 1 + a_0 + a_1 + a_2$,

$$
 d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y,
$$

and $a_{i+3} = c_0 \cdots \hat{c}_i \cdots c_{n-2}x$ for $0 \leq i \leq n - 2$.
Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3} x^{n-2} a_0 a_1 a_2}.$$

Thus $vol(K_X) < \frac{1}{(c_{n-1} - 1)^{7n-1}}$ and hence $vol(K_X) < \frac{1}{2^{2^n}}$.

which should be fairly close to optimal.

It is about the $7/8$th power of the volume of Kollár’s conjecturally optimal klt pair (X, Δ), since

$$vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n = 1/(c_{n-1} - 1)^{8n}.$$
Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$\text{vol}(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $\text{vol}(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $\text{vol}(K_X) < \frac{1}{2^{2n}}$.

which should be fairly close to optimal. It is about the $7/8$th power of the volume of Kollár’s conjecturally optimal klt pair (X, Δ), since

$$\text{vol}(K_X + \Delta) = \frac{1}{(c_{n+2} - 1)^n} = \frac{1}{(c_{n-1} - 1)^{8n}}.$$
Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$\text{vol}(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $\text{vol}(K_X) < \frac{1}{(c_n-1)^{7n-1}}$ and hence $\text{vol}(K_X) < \frac{1}{2^{2n}}$.

which should be fairly close to optimal.

It is about the $7/8$th power of the volume of Kollár’s conjecturally optimal klt pair (X, Δ), since

$$\text{vol}(K_X + \Delta) = 1/(c_{n+2} - 1)^n = 1/(c_{n-1} - 1)^{8n}.$$
Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$vol(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $vol(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $vol(K_X) < \frac{1}{2^{2n}}$.

which should be fairly close to optimal.

It is about the $7/8$th power of the volume of Kollár’s conjecturally optimal klt pair (X, Δ), since $vol(K_X + \Delta) = 1/(c_{n+2} - 1)^n = 1/(c_{n-1} - 1)^{8n}$.
Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$\text{vol}(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $\text{vol}(K_X) < \frac{1}{(c_{n-1} - 1)^{7n-1}}$ and hence $\text{vol}(K_X) < \frac{1}{2^{2n}}$.

which should be fairly close to optimal.

It is about the $7/8$th power of the volume of Kollár’s conjecturally optimal klt pair (X, Δ), since $\text{vol}(K_X + \Delta) = 1/(c_{n+2} - 1)^n \approx 1/(c_{n-1} - 1)^{8n}$.

Let X be a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$\text{vol}(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $\text{vol}(K_X) < \frac{1}{(c_{n-1} - 1)^{7n-1}}$ and hence $\text{vol}(K_X) < \frac{1}{2^{2n}}$.

which should be fairly close to optimal.
It is about the $7/8$th power of the volume of Kollár’s conjecturally optimal klt pair (X, Δ), since

$$\text{vol}(K_X + \Delta) = 1/(c_{n+2} - 1)^n = 1/(c_{n-1} - 1)^{8n}.$$
Let X be a general hypersurface of degree d in $\mathbb{P}(a_0, \ldots, a_{n+1})$. Then X is a klt with dimension n and K_X ample,

$$\text{vol}(K_X) = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}.$$

Thus $\text{vol}(K_X) < \frac{1}{(c_{n-1}-1)^{7n-1}}$ and hence $\text{vol}(K_X) < \frac{1}{2^{2n}}.$

which should be fairly close to optimal.

It is about the $7/8$th power of the volume of Kollár’s conjecturally optimal klt pair (X, Δ), since

$$\text{vol}(K_X + \Delta) = 1/(c_{n+2} - 1)^n \gg 1/(c_{n-1} - 1)^{8n}.$$

construct klt varieties with ample canonical class
some weights (the biggest ones) divide d and the ratios close to Sylvester’s sequence c_i.

Let $\frac{d}{a_{i+3}} \div c_i$ for $0 \leq i \leq n - 2$. Let $d = c_0 \cdots c_{n-2}x$ for some integer x.

d – $\sum a_i$ equals 1 $\iff x = 1 + a_0 + a_1 + a_2$.
some weights (the biggest ones) divide d and the ratios close to Sylvester’s sequence c_i. Let $\frac{d}{a_{i+3}} \div c_i$ for $0 \leq i \leq n - 2$. Let $d = c_0 \cdots c_{n-2}x$ for some integer x.

$d - \sum a_i$ equals 1 $\iff x = 1 + a_0 + a_1 + a_2$.
some weights (the biggest ones) divide d and the ratios close to Sylvester’s sequence c_i.

Let $d = \frac{a_i}{3}$ for $0 \leq i \leq n - 2$. Let $d = c_0 \cdots c_{n-2}x$ for some integer x.

Let $d - \sum a_i$ equals 1 $\iff x = 1 + a_0 + a_1 + a_2$.

Varieties of general type
Construction
Klt varieties
some weights (the biggest ones) divide d and the ratios close to Sylvester’s sequence c_i.
Let $\frac{d}{a_{i+3}} \div c_i$ for $0 \leq i \leq n - 2$. Let $d = c_0 \cdots c_{n-2}x$ for some integer x.

$d - \sum a_i$ equals $1 \iff x = 1 + a_0 + a_1 + a_2$.
some weights (the biggest ones) divide d and the ratios close to Sylvester’s sequence c_i.
Let $\frac{d}{a_{i+3}} = c_i$ for $0 \leq i \leq n - 2$. Let $d = c_0 \cdots c_{n-2}x$ for some integer x.

$d - \sum a_i$ equals $1 \iff x = 1 + a_0 + a_1 + a_2.$
From a criterion for quasi-smoothness proved by Iano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_0, \ldots, a_{n+1}, a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \geq a_i$ for every i and there is a positive integer r such that:

1. $a_i | d$ if $i \geq r$,
2. $d - a_{i-1} \equiv 0 \, (\text{mod} \, a_{i-2})$, \ldots, $d - a_1 \equiv 0 \, (\text{mod} \, a_0)$, and $d - a_0 \equiv 0 \, (\text{mod} \, a_{r-1})$.

Choose other weights a_i to make X quasi-smooth. a_0, a_1, a_2 satisfy a "cycle" of congruences:

$$d - a_2 \equiv 0 \, (\text{mod} \, a_1), \quad d - a_1 \equiv 0 \, (\text{mod} \, a_0), \quad d - a_0 \equiv 0 \, (\text{mod} \, a_2),$$
From a criterion for quasi-smoothness proved by Iano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_0, \ldots, a_{n+1}, a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \geq a_i$ for every i and there is a positive integer r such that:

1. $a_i | d$ if $i \geq r$,
2. $d - a_{r-1} \equiv 0 \pmod{a_{r-2}}$, \ldots, $d - a_1 \equiv 0 \pmod{a_0}$, and $d - a_0 \equiv 0 \pmod{a_{r-1}}$.

Choose other weights a_i to make X quasi-smooth. a_0, a_1, a_2 satisfy a "cycle" of congruences:

$d - a_2 \equiv 0 \pmod{a_1}$, $d - a_1 \equiv 0 \pmod{a_0}$, $d - a_0 \equiv 0 \pmod{a_2}$,
From a criterion for quasi-smoothness proved by Iano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers \(d \) and \(a_0, \ldots, a_{n+1} \), a general hypersurface of degree \(d \) in \(P(a_0, \ldots, a_{n+1}) \) is quasi-smooth if \(d \geq a_i \) for every \(i \) and there is a positive integer \(r \) such that:

1. \(a_i \mid d \) if \(i \geq r \),

2. \(d - a_{r-1} \equiv 0 \pmod{a_{r-2}} \), \ldots, \(d - a_1 \equiv 0 \pmod{a_0} \), and \(d - a_0 \equiv 0 \pmod{a_{r-1}} \).

Choose other weights \(a_i \) to make \(X \) quasi-smooth. \(a_0, a_1, a_2 \) satisfy a "cycle" of congruences:

\[d - a_2 \equiv 0 \pmod{a_1}, \quad d - a_1 \equiv 0 \pmod{a_0}, \quad d - a_0 \equiv 0 \pmod{a_2}, \]
From a criterion for quasi-smoothness proved by Iano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_0, \ldots, a_{n+1}, a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \geq a_i$ for every i and there is a positive integer r such that:

1. $a_i | d$ if $i \geq r$,
2. $d - a_{r-1} \equiv 0 \pmod{a_{r-2}}$, \ldots, $d - a_1 \equiv 0 \pmod{a_0}$, and $d - a_0 \equiv 0 \pmod{a_{r-1}}$.

Choose other weights a_i to make X quasi-smooth. a_0, a_1, a_2 satisfy a "cycle" of congruences:

$d - a_2 = 0 \pmod{a_1}$, $d - a_1 = 0 \pmod{a_0}$, $d - a_0 = 0 \pmod{a_2}$,
From a criterion for quasi-smoothness proved by Iano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers d and a_0, \ldots, a_{n+1}, a general hypersurface of degree d in $P(a_0, \ldots, a_{n+1})$ is quasi-smooth if $d \geq a_i$ for every i and there is a positive integer r such that:

1. $a_i | d$ if $i \geq r$,
2. $d - a_{r-1} \equiv 0 \pmod{a_{r-2}}$, \ldots, $d - a_1 \equiv 0 \pmod{a_0}$, and $d - a_0 \equiv 0 \pmod{a_{r-1}}$.

Choose other weights a_i to make X quasi-smooth.

a_0, a_1, a_2 satisfy a "cycle" of congruences:

$d - a_2 = 0 \pmod{a_1}$, $d - a_1 = 0 \pmod{a_0}$, $d - a_0 = 0 \pmod{a_2}$,
From a criterion for quasi-smoothness proved by Iano-Fletcher, we get a sufficient condition for quasi-smooth:

For positive integers \(d \) and \(a_0, \ldots, a_{n+1} \), a general hypersurface of degree \(d \) in \(P(a_0, \ldots, a_{n+1}) \) is quasi-smooth if \(d \geq a_i \) for every \(i \) and there is a positive integer \(r \) such that:

1. \(a_i \mid d \) if \(i \geq r \),
2. \(d - a_{r-1} \equiv 0 \pmod{a_{r-2}} \), \ldots, \(d - a_1 \equiv 0 \pmod{a_0} \), and \(d - a_0 \equiv 0 \pmod{a_{r-1}} \).

Choose other weights \(a_i \) to make \(X \) quasi-smooth.

\(a_0, a_1, a_2 \) satisfy a "cycle" of congruences:

\[
d - a_2 = 0 \pmod{a_1}, \quad d - a_1 = 0 \pmod{a_0}, \quad d - a_0 = 0 \pmod{a_2},
\]
construct klt varieties with ample canonical class

- $dim = 2$, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \approx 3.5 \times 10^{-5}$.
- $dim = 3$, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \approx 1.8 \times 10^{-16}$.
- $dim = 4$, volume about 1.4×10^{-44}. The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47}.
construct klt varieties with ample canonical class

- $\dim = 2$, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \approx 3.5 \times 10^{-5}$.
- $\dim = 3$, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \approx 1.8 \times 10^{-16}$.
- $\dim = 4$, volume about 1.4×10^{-44}. The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47}.
construct klt varieties with ample canonical class

- $\dim = 2, \ X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.

- $\dim = 3, \ X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \doteq 1.8 \times 10^{-16}$.

- $\dim = 4$, volume about 1.4×10^{-44}. The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47}.
construct klt varieties with ample canonical class

- $\text{dim} = 2$, $X_{316} \subset P(158, 85, 61, 11)$ with volume $2/57035 \doteq 3.5 \times 10^{-5}$.
- $\text{dim} = 3$, $X_{340068} \subset P(170034, 113356, 47269, 9185, 223)$ with volume $1/5487505331993410 \doteq 1.8 \times 10^{-16}$.
- $\text{dim} = 4$, volume about 1.4×10^{-44}. The smallest known volume for a klt 4-fold with ample canonical class is about 1.4×10^{-47}.
Our construction of klt varieties with ample canonical class:

- **Sylvester’s sequence** \(\{ c_i \} \).
- \(n \geq 2 \). Let \(y = c_{n-1} - 1 \) and
 \[
 a_2 = y^3 + y + 1,
 \]
 \[
 a_1 = y(y + 1)(1 + a_2) - a_2,
 \]
 \[
 a_0 = y(1 + a_2 + a_1) - a_1.
 \]
- Let \(x = 1 + a_0 + a_1 + a_2 \),
 \[
 d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y,
 \]
 and \(a_{i+3} = c_0 \cdots \hat{c}_i \cdots c_{n-2}x \) for \(0 \leq i \leq n - 2 \).
- \(X \subset P(a_0, \ldots, a_{n+1}) \) is a general hypersurface of degree \(d \).
sketch of proof

Our construction of klt varieties with ample canonical class:

- Sylvester’s sequence \(\{ c_i \} \).
- \(n \geq 2 \). Let \(y = c_{n-1} - 1 \) and

 \[
 a_2 = y^3 + y + 1, \\
 a_1 = y(y + 1)(1 + a_2) - a_2, \\
 a_0 = y(1 + a_2 + a_1) - a_1.
 \]

- Let \(x = 1 + a_0 + a_1 + a_2 \),

 \[
 d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y,
 \]

 and \(a_{i+3} = c_0 \cdots \hat{c}_i \cdots c_{n-2}x \) for \(0 \leq i \leq n - 2 \).

- \(X \subset P(a_0, \ldots, a_{n+1}) \) is a general hypersurface of degree \(d \).
Our construction of klt varieties with ample canonical class:

- Sylvester’s sequence \(\{ c_i \} \).
- \(n \geq 2 \). Let \(y = c_{n-1} - 1 \) and
 \[
 a_2 = y^3 + y + 1, \\
 a_1 = y(y + 1)(1 + a_2) - a_2, \\
 a_0 = y(1 + a_2 + a_1) - a_1.
 \]
- Let \(x = 1 + a_0 + a_1 + a_2 \),
 \[
 d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y,
 \]
 and \(a_{i+3} = c_0 \cdots \hat{c}_i \cdots c_{n-2}x \) for \(0 \leq i \leq n - 2 \).
- \(X \subset P(a_0, \ldots, a_{n+1}) \) is a general hypersurface of degree \(d \).
Our construction of klt varieties with ample canonical class:

- Sylvester’s sequence \(\{c_i\} \).
- \(n \geq 2 \). Let \(y = c_{n-1} - 1 \) and
 \[
 a_2 = y^3 + y + 1, \\
 a_1 = y(y + 1)(1 + a_2) - a_2, \\
 a_0 = y(1 + a_2 + a_1) - a_1.
 \]
- Let \(x = 1 + a_0 + a_1 + a_2 \),
 \[
 d = yx = c_0 \cdots c_{n-2}x = y^7 + y^6 + y^5 + 4y^4 + 2y^3 + 2y^2 + 2y,
 \]
 and \(a_{i+3} = c_0 \cdots \hat{c}_i \cdots c_{n-2}x \) for \(0 \leq i \leq n - 2 \).
- \(X \subset P(a_0, \ldots, a_{n+1}) \) is a general hypersurface of degree \(d \).
sketch of proof when $r = 3$

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d - a_2 = (y^2 + 1)a_1$, $d - a_1 = (y + 1)a_0$, $d - a_0 = (y^4 + 3y - 1)a_2$. (by Lemma)

$$K_X = O_X(d - \sum a_i) \iff \begin{cases}
(a) \ X \text{ is well-formed} \\
(b) \ X \text{ is quasi-smooth}
\end{cases}$$

$$\text{vol}(K_X) = \text{vol}(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}$$
Varieties of general type

Construction

klt varieties

Construction

sketch of proof when \(r = 3 \)

- \(X \) is klt since it has only cyclic quotient singularities.
- \(X \) is quasi-smooth since
 \[
 d - a_2 = (y^2 + 1)a_1, \quad d - a_1 = (y + 1)a_0, \quad d - a_0 = (y^4 + 3y - 1)a_2.
 \]
 (by Lemma)

\[
K_X = O_X(d - \sum a_i) \iff \begin{cases} (a) & X \text{ is well-formed} \\ (b) & X \text{ is quasi-smooth} \end{cases}
\]

\[
vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}
\]
sketch of proof when $r = 3$

- X is klt since it has only cyclic quotient singularities.
- X is quasi-smooth since $d - a_2 = (y^2 + 1)a_1$, $d - a_1 = (y + 1)a_0$, $d - a_0 = (y^4 + 3y - 1)a_2$. (by Lemma)

$$K_X = O_X(d - \sum a_i) \iff \begin{cases} (a) & X \text{ is well-formed} \\ (b) & X \text{ is quasi-smooth} \end{cases}$$

$$vol(K_X) = vol(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2}$$
Varieties of general type

Construction

klt varieties

Construction

sketch of proof when \(r = 3 \)

- \(X \) is klt since it has only cyclic quotient singularities.
- \(X \) is quasi-smooth since \(d - a_2 = (y^2 + 1)a_1, \ d - a_1 = (y + 1)a_0, \ d - a_0 = (y^4 + 3y - 1)a_2. \) (by Lemma)

\[
K_X = O_X(d - \sum a_i) \iff \begin{cases}
(a) \ X \text{ is well-formed} \\
(b) \ X \text{ is quasi-smooth}
\end{cases}
\]

- \(\text{vol}(K_X) = \text{vol}(O_X(1)) = \frac{d}{a_0 \cdots a_{n+1}} = \frac{1}{y^{n-3}x^{n-2}a_0a_1a_2} \)
sketch of proof when $r = 3$

In terms of $y = c_{n-1} - 1$, we have

- $a_2 = y^3 + y + 1 > y^3$,
- $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5$,
- $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6$,
- $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$.

Thus $vol(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

There is a constant $c \approx 1.264$ such that c_i is the closest integer to c^{2i+1} for all $i \geq 0$. This implies the crude statement that $vol(K_X) < \frac{1}{2^{2n}}$ for all $n \geq 2$.
sketch of proof when $r = 3$

- In terms of $y = c_{n-1} - 1$, we have

 $a_2 = y^3 + y + 1 > y^3$,

 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5$,

 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6$,

 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6$.

 Thus $\text{vol}(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

- There is a constant $c \approx 1.264$ such that c_i is the closest integer to c^{2i+1} for all $i \geq 0$. This implies the crude statement that $\text{vol}(K_X) < \frac{1}{2^{2n}}$ for all $n \geq 2$.
sketch of proof when $r = 3$

In terms of $y = c_{n-1} - 1$, we have

$a_2 = y^3 + y + 1 > y^3,$
$a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5,$
$a_0 = y^6 + 3y^3 - y^2 + 1 > y^6,$

$x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6.$

Thus $\text{vol}(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

There is a constant $c \approx 1.264$ such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \geq 0$. This implies the crude statement that $\text{vol}(K_X) < \frac{1}{2^{2n}}$ for all $n \geq 2$.
sketch of proof when $r = 3$

- In terms of $y = c_{n-1} - 1$, we have

 $a_2 = y^3 + y + 1 > y^3,$
 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5,$
 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6,$
 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6.$

 Thus $\text{vol}(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}.$

- There is a constant $c \doteq 1.264$ such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \geq 0$. This implies the crude statement that $\text{vol}(K_X) < \frac{1}{2^{2^n}}$ for all $n \geq 2$.
sketch of proof when $r = 3$

- In terms of $y = c_{n-1} - 1$, we have

 $a_2 = y^3 + y + 1 > y^3,$
 $a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5,$
 $a_0 = y^6 + 3y^3 - y^2 + 1 > y^6,$
 $x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6.$

 Thus $\text{vol}(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

- There is a constant $c \doteq 1.264$ such that c_i is the closest integer to c^{2^i+1} for all $i \geq 0$. This implies the crude statement that $\text{vol}(K_X) < \frac{1}{2^{2^n}}$ for all $n \geq 2$.

sketch of proof when $r = 3$

- In terms of $y = c_{n-1} - 1$, we have
 \[a_2 = y^3 + y + 1 > y^3, \]
 \[a_1 = y^5 + y^4 + 3y^2 + y - 1 > y^5, \]
 \[a_0 = y^6 + 3y^3 - y^2 + 1 > y^6, \]
 \[x = y^6 + y^5 + y^4 + 4y^3 + 2y^2 + 2y + 2 > y^6. \]
 Thus $\text{vol}(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

- There is a constant $c \doteq 1.264$ such that c_i is the closest integer to c^{2i+1} for all $i \geq 0$. This implies the crude statement that $\text{vol}(K_X) < \frac{1}{2^{2n}}$ for all $n \geq 2$.
sketch of proof when $r = 3$

- In terms of $y = c_{n-1} - 1$, we have

 Thus $\text{vol}(K_X) < 1/y^{7n-1} = 1/(c_{n-1} - 1)^{7n-1}$.

- There is a constant $c \doteq 1.264$ such that c_i is the closest integer to $c^{2^{i+1}}$ for all $i \geq 0$. This implies the crude statement that $\text{vol}(K_X) < \frac{1}{2^{2^n}}$ for all $n \geq 2$.
Better klt varieties with ample canonical class

For any odd number \(r \geq 3 \) and any dimension \(n \geq r - 1 \), we give an example with weights chosen to satisfy a cycle of \(r \) congruences.

\[
\frac{\log(\text{vol}(K_X))}{\log(\text{vol}(K_Y + \Delta))} \to \frac{2^{r-1}}{2^r} \quad \text{as} \quad n \to \infty.
\]

For \(r = 3 \), this is the example above.

When \(r = 5 \), \(n = 4 \), it is a general hypersurface of degree 147565206676 in
\[
P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) \quad \text{with} \quad \div 7.4 \times 10^{-45}. \] (Better)
Better klt varieties with ample canonical class

For any odd number $r \geq 3$ and any dimension $n \geq r - 1$, we give an example with weights chosen to satisfy a cycle of r congruences.

\[
\frac{\log(\text{vol}(K_X))}{\log(\text{vol}(K_Y + \Delta))} \rightarrow \frac{2^r - 1}{2^r} \text{ as } n \rightarrow \infty.
\]

For $r = 3$, this is the example above.

When $r = 5$, $n = 4$, it is a general hypersurface of degree 147565206676 in $P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361)$ with $\div 7.4 \times 10^{-45}$. (Better)
For any odd number \(r \geq 3 \) and any dimension \(n \geq r - 1 \), we give an example with weights chosen to satisfy a cycle of \(r \) congruences.

\[
\frac{\log(\text{vol}(K_X))}{\log(\text{vol}(K_Y + \Delta))} \to \frac{2^r - 1}{2^r} \text{ as } n \to \infty.
\]

For \(r = 3 \), this is the example above.

When \(r = 5 \), \(n = 4 \), it is a general hypersurface of degree 147565206676 in

\(P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) \) with \(\frac{\Delta}{7.4 \times 10^{-45}} \). (Better)
Better klt varieties with ample canonical class

For any odd number \(r \geq 3 \) and any dimension \(n \geq r - 1 \), we give an example with weights chosen to satisfy a cycle of \(r \) congruences.

\[
\frac{\log(\text{vol}(K_X))}{\log(\text{vol}(K_Y + \Delta))} \to \frac{2^r - 1}{2^r} \text{ as } n \to \infty.
\]

For \(r = 3 \), this is the example above.

When \(r = 5 \), \(n = 4 \), it is a general hypersurface of degree 147565206676 in \(\mathbb{P}(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361) \) with \(\doteq 7.4 \times 10^{-45} \). (Better)
Better klt varieties with ample canonical class

For any odd number $r \geq 3$ and any dimension $n \geq r - 1$, we give an example with weights chosen to satisfy a cycle of r congruences.

\[
\frac{\log(\text{vol}(K_X))}{\log(\text{vol}(K_Y + \Delta))} \rightarrow \frac{2r - 1}{2^r} \text{ as } n \rightarrow \infty.
\]

For $r = 3$, this is the example above.

When $r = 5$, $n = 4$, it is a general hypersurface of degree 147565206676 in $P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361)$ with $\approx 7.4 \times 10^{-45}$. (Better)
For any odd number $r \geq 3$ and any dimension $n \geq r - 1$, we give an example with weights chosen to satisfy a cycle of r congruences.

$$\log(\frac{\text{vol}(K_X)}{\text{vol}(K_Y + \Delta)}) \rightarrow \frac{2r-1}{2^r} \text{ as } n \rightarrow \infty.$$

For $r = 3$, this is the example above.

When $r = 5$, $n = 4$, it is a general hypersurface of degree 147565206676 in $P(73782603338, 39714616165, 28421358181, 5458415771, 187980859, 232361)$ with $\div 7.4 \times 10^{-45}$. (Better)
Thank you!