MMP Learning Seminar

Week 2:
Bend and break,
Rational curves,
Cone Theorem
MMP learning seminar:

Week 2:

1. Bend and break,
2. Finding rat curves when Kx is not nef,
3. The Cone Theorem.

1. Bend and break:

(B&B 1)

Proposition: X proper, C smooth proper curve $p \in C$, $g_0: C \to X$ non-const.

$\sigma \in D$ poincud curve, $G: C \times D \to X$ s.t.

1. $G|_{C \times \{p\}} = g_0$,
2. $G|_{C \times \{p\} \times D} = g_0 \circ p$ and
3. $G|_{C \times \{p\} \times \{t\}}$ is diff thin from g_0 for general t.
There exists \(g_1 : C \rightarrow X, \quad Z = \sum_{\alpha > 0} \alpha Z \), of rat curves so that

1. \((g_0) \circ C \sim \text{alg} (g_1) *CC + Z, \) and.
2. \(g_0 \circ p) \in U_i \times Z_i.

In particular there is a rat curve through \(g_0 \circ p)\).

Proof: \(\overline{G} : C \times \overline{D} \longrightarrow X, \) is undefined at \(\{ p_2 \times \overline{D} \) (Rigidity Lemma).

S the norm of the graph of \(\overline{G}, \) \(\pi : S \rightarrow C \times \overline{D}, \) \(G_s : S \rightarrow X. \)

\(h : S \rightarrow C \times \overline{D} \rightarrow \overline{D}. \)

There exists \((p,d) \in C \times \overline{D} \) so that \(\pi \) is not an isom over \((p,d) \)

\(h^{-1}(d) = C^1 + E, \) \(C^1 \) bit transform of \(C, \) \(E \) \(\pi \)-exc.

\(g_1 : C \rightarrow X, \) restriction of \(G_s \) to \(C^1 \) and \(Z = G_s \circ E. \)

(Induction Lemma): \(E \) is a union of rat curves.
(Luroth Thm): \(Z \) is a union of rat curves.

\[(g_0)_* C \sim \text{deg} (g_1)_* C + Z. \]

Abhyankar Lemma: \(X \) has mild sing and \(Y \xrightarrow{r} X \) proper birational morphism. For any \(x \in X \), either \(r^{-1}(x) \) is a point or is covered by rat curves.

\[x \in Z \cup (g_1)_* C \]
Proposition: Let X be a proj. var, $g_0: \mathbb{P}' \rightarrow X$ non-const.

1) $G(\mathbb{P}' \times \{0\}) = g_0$.

2) $G(\{0\} \times D) = g_0(c_0)$, $G(\{00\} \times D) = g_0(c_00)$, and

3) $G(\mathbb{P}' \times D)$ is a surface.

Then $(g_0)_{|\mathbb{P}'_{g_0}}$ is alg. to a reducible curve or a multiple curve.

Proof: $\tilde{G}: \tilde{S} \rightarrow X$, \tilde{S} is a \mathbb{P}'-bundle contrary $\mathbb{P}' \times D$.

$\tilde{G}: \tilde{S} \rightarrow X$, do induction on $\rho(\tilde{S}/\tilde{S}) = \rho$.

$\tilde{S} \rightarrow S$
Case 1: \(p = 0 \), \(\mathbb{C} \) and \(\mathbb{C}^0 \) two sections at \(10^2 \) and \(100^2 \)

If ample on \(X \), \((\tilde{G}^* H)^2 > 0 \) and \((\mathbb{C} \cdot \tilde{G}^* H) = (\mathbb{C}^0 \cdot \tilde{G}^* H) = 0 \).

Proj formula: \(\tilde{f} : Y \to X \)

\[\mathcal{C} \subset X \] line bundle

\[\tilde{f}^* \mathcal{C} = \mathcal{L} \cdot f^* \mathcal{C} \]

\(\mathbb{C}^2 < 0 \), \(\mathbb{C}^0 < 0 \)

\(\mathbb{C} \cdot \mathbb{C}^0 = 0 \)

Hodge index Thm: if \(H^2 > 0 \) for some curve, then the self int form is neg def in \(H^2 \).

\(\tilde{G}^* H \), \(\mathbb{C} \) and \(\mathbb{C}^0 \) are 2.i.

\[\alpha \tilde{G}^* H + b \mathbb{C} + c \mathbb{C}^0 = 0. \]

\(\rho(C) = 2 \)
Case 2: Assume G is not defined at $Q \neq P$.

\[G_* ((\text{gor})^* c_\gamma) = \widehat{G}_* \text{red}(\phi^*(p)) + \widehat{G}_* \text{red}(\phi^*(\sigma_2)) + \text{eff} \]

Assume G' is not defined at Q_0, in this case we need to blow-up Q_0. so $(\text{gor})^* c_\gamma$ contains a comp of mult 2^2.

Claim: \overline{G}' is a morphism around F_2.

F_1 is the ex of r.

F_2 is the strict tran of $\phi^*(\gamma)$ in S'.
Theorem: \(X \) smooth proj, \(-K_X \) ample. For every \(x \in X \), there exists a rat curve \(C \) through \(x \) s.t.
\[
0 < -K_x \cdot C \leq \dim X + 1
\]

Proof: Prove \(C \subseteq X \) through \(x \).

The space of deg of \(C \) on \(X \) fixing \(x \) has \(\dim \geq
\[
\dim X
\]

\((C) \quad g(C) = 0, \checkmark \)

\((c) \quad g(C) = 1 \quad C \xrightarrow{h} C
\]

\[-(f \circ h) \cdot K_X - \dim X = -n^2 (f \circ h \cdot C) \cdot K_X - \dim X > 0\]
(3) \(g : C \to \mathbb{Z}_2 \). (No endomorphisms of par degree).

Assume \(X \) and \(E \) are defined over \(\mathbb{Z}_2 \).

\[X^p \] and \(C^p \) reduction to \(F_{p^m} \).

\[
\begin{align*}
(y_0, \ldots, y_m) & \mapsto (y_0^p, \ldots, y_m^p) \\
\end{align*}
\]

\(X \) is an injective endomorphism, but it is a morphism of degree \(p \).

By generic flatness, \((f_p) \ast (C^p) \cdot K_{X^p} : g(C^p) \cdot X(TX(C^p)) \) for almost all \(p \) are the same.

\[
\begin{align*}
C^p & \xrightarrow{F_{p^m}} C^p & \xrightarrow{f_p} X^p.
\end{align*}
\]

Deform space has dim \(-p^m ((f_p) \ast (C^p) \cdot K_{X^p}) - g(C^p) \cdot \dim(X) \geq 0 \)

We produce a rational curve on \(X^p \) through the point.
If \(A_p(\mathcal{K} \cdot p) > \dim X + 1 \), then \(A_p \) deforms with two fixed pts by B&B II. \(A_p \sim_{alg} A_p^i + A_p^j \), so that \(A_p^i \) and \(A_p^j \) are rat func, pass through the point and have less "degree".

In \(X_p \), we have the curve \(C_p \) through the pt with \(-\mathcal{K} \cdot p \). \(C_p \leq \dim X + 1 \).

Principle: If a homogeneous system of alg eqs with coeff on \(\mathbb{Z}_p \) has non-trivial sols over \(\overline{F}_p \) for oo many \(p \)'s, then it has a solution over any alg closed field.

Idea: \(\mathcal{Z} \subseteq \mathcal{D}^N \text{speer}, \quad \pi: \mathcal{D}^N \text{speer} \to \text{Spec} R, \quad \text{proper}, \quad \pi(\mathcal{Z}) \) is closed. If \(\pi(\mathcal{Z}) \) contains a Zariski dense set, we have that \(\pi(\mathcal{Z}) = \text{Spec} R \).
Theorem: X smooth proj. variety and H ample on X.

Assume there exists $C \subseteq X$ st. $- (C : K_X) > 0$.

Then there exists E rational such that:

1) $\dim X + 1 \geq - (C : K_X) > 0$

2) $\frac{- (C : K_X)}{E : H} \geq \frac{- (C : K_X)}{C : H}$

Theorem (Cone Theorem): X smooth proj.

There exists countably many curves $C \subseteq X$:

1) $0 < - K_X \cdot C_i \leq \dim X + 1$.

and

$$\overline{NE}(X) = \overline{NE}(X)_{K_X = 0} + \sum_i \mathbb{R}_{\geq 0} [C_i].$$
Proof: Choose G (comparable) with $0 < -CC.Kx < \text{dim} X + 1$.

$$W = \text{closure } \left(\overline{NE}_{k>0} + \sum_i \mathbb{R}_{\geq 0}[G] \right)$$

$$\overline{NE}(x) \supseteq W$$

D positive on $W \setminus \{0\}$ and neg somewhere on $\overline{NE}(x)$.

H ample, $\mu = \max \{ \mu' \mid H + \mu'D \text{ is nef} \}$.

$H + \mu D$ is nef, $H + \mu'D$ is ample for $\mu' < \mu$.

$0 \neq \mathcal{Z} \in \overline{NE}(x)$. $(H + \mu D). \mathcal{Z} = 0$.

Then $Kx.\mathcal{Z} < 0$, since $\overline{NE}_{k\geq 0} \subseteq W$.

$$\mathcal{Z}_k = \sum_j \alpha_{kj} \mathcal{Z}_j, \quad [\mathcal{Z}_k] \rightarrow \mathcal{Z}.$$
\[
\begin{align*}
\max_{s} & \quad - \left(Z_{k} \cdot s \right) \quad \geq \quad - \frac{Z_{k} \cdot K_{x}}{(Z_{k} \cdot (H + \mu D))} \\
& \text{cycles } [Z_{k}] \\
\max \text{ attained by } Z_{k_{0}}.
\end{align*}
\]
Replace Z_k with $K_x.Z_k < 0$ by existence of RIT curves when K_x is not nef.

$E_i(\alpha)$ rational with

1) $\dim X + 1 \geq -E_i(\alpha) \cdot K_x > 0$.

2) $\frac{-E_i(\alpha) \cdot K_x}{E_i(\alpha) \cdot (H + \mu'D)} \geq \frac{-Z_{k0} \cdot K_x}{Z_{k0} \cdot (H + \mu'D)}$.

because $E_i(\alpha) \cdot D \geq 0$, we have

$\frac{-E_i(\alpha) \cdot K_x}{E_i(\alpha) \cdot H} \geq \frac{-Z_k \cdot K_x}{Z_k \cdot (H + \mu'D)}$.

Fix $M > 0$ such that $MH + K_x$ ample.

$(MH + K_x).E_i(\alpha) > 0$
Take $k \to \infty$.

$$\mu' \to \mu.$$