Minimal Model Program Learning Seminar 01/20/2021

The Minimal Model Program:

Classify smooth proj complex varieties \(X \subseteq \mathbb{P}^n \).

\(T_x \) the tangent bundle and \(\Omega_x \) the cotangent bundle.

\(\Omega_x = \Omega^n_x \) is called the canonical line bundle.

\(\omega_x \sim \mathcal{O}_x (K_x) \) for some Cartier divisor \(K_x \).

Aim: Understand the geometry of \(X \) using numerical properties of \(K_x \).

\(C \subseteq X \) curve, \(L \) a line bundle on \(X \). \(L.C = \deg_c (\mathcal{O}_x) \), \(i : C \hookrightarrow X \).

\(K_x \) is ample (resp. anti-ample) if \(K_x.C > 0 \) (resp. <0) for all \(C \subseteq X \)

\(K_x \) is numerically trivial if \(K_x.C = 0 \) for all curve \(C \subseteq X \).
Definition:

We say that \(X \) is a Fano if\(K_X \) is ample. We say that \(X \) is Calabi-Yau if \(K_X \) is numerically trivial.

Example:

1. If \(C \) is a Fano curve, then \(C \cong \mathbb{P}^1 \).
2. If \(C \) is a Calabi-Yau curve, then \(C \) is an elliptic curve.
3. If \(C \) is canonically polarized, then \(C \) is a curve of genus \(g \).

Example: \(X \subseteq \mathbb{P}^N \) is a smooth hypersurface of degree \(d \).

By adjunction, \(K_X \sim (K_{\mathbb{P}^N} + X)|_X \)

\[\sim (N-1)H + dH |_X \]

\[\sim (d-N)H |_X \]

If \(d < N \), then \(X \) is Fano, quadratic or a line.

If \(d = N+1 \), then \(X \) is Calabi-Yau, elliptic.

If \(d > N+1 \), then \(X \) is canonically polarized, curve of genus type.
Obs: $E \times \ell^d$, have $K \cdot C = 0$ for some curves and $K \cdot C < 0$ for others.

Fano

τ_1 for linear algebraic groups.

Aut monostable groups.

Bir $\text{Bir}(\ell^d)$

Geom simple geometry (spheres)

Arithmetic A lot of \mathbb{Q}-points

Birational categories:

CY canonically polarized.

$? \text{ in general } \infty$

$? \text{ finite groups}$

$? \text{ finite groups}$

$? \text{ complicated rich}$

$? \text{ } \mathbb{Q}\text{-points in a proper Zariski closed}$

$h^{1,0} = 0$, i.e. $(0, \dim(X))$

pure Calabi–Yau

$\text{inred, symplectic, complex, toric}$
Birationally categories:

- closed pt on \(X \)

\(\xrightarrow{\times} \)

\(Bl_\times X \)

\(E \) parameterizes tangent directions at \(x \).

\(Bl_\times X \setminus E \cong X \setminus \{ x \} \)

Example:

\(\mathbb{P}^2 \), \(p_1, \ldots, p_n, \ldots \in \mathbb{P}^2 \) "random" sequence of points.

Blow-up these points in a sequence. We obtain a sequence of varieties

\(X_1, X_2, \ldots, X_n, \ldots \) over \(\mathbb{P}^2 \setminus \{ p_2, \ldots, p_n \} \), the morphism \(X_i \rightarrow \mathbb{P}^2 \) is an isom.

For \(i \neq j \), \(X_i \) is not isomorphic to \(X_j \), because \(P(X_i) \neq P(X_j) \).

\(P_{\text{icord rank}} \)

\(X_1 \sim_{\text{bir}} X_2 \) if there are open \(\mathcal{U}_1 \subseteq X_1, \mathcal{U}_2 \subseteq X_2 \) so that \(\mathcal{U}_1 \simeq \mathcal{U}_2 \).
Goal of the MMP: X projective + "mild singularities". (K$_X$ well-defined).

There exists a birational map π and a fibration \mathcal{E} such that

contraction + pos. dim. gen. fiber

$E_*(O_{X'}) = O_Z$.

(Connected fibers)

MT_3

i) F is Fano, $\dim Z < \dim X'$.

ii) F is Calabi-Yau,

iii) $Z = \text{Spec}(\mathbb{C})$ and X' is canonically polarized.
How to construct the birational morphism?

Study the geometry of curves on X which intersect K_X negatively.

$C \subset X$, $K_X.C < 0$ under some hypotheses (extremality on NE(X))

we can find $\phi_c : X \to X_c$ so that ϕ_c contracts precisely

the curves which are numerically equiv to $g.C.$ up to $C_i \equiv C_0.$

\[C_i.L = c_0.L \text{ for every } i. \]

1) The curves which are \equiv to $g.C.$, with $g \geq 0$, cover X.

$\phi_c : X \to X_c$ have positive dim fibers, is a contraction, and the

general fiber F is Fano.

called a Mori fiber space.
(i) The curves which are \(\equiv \) to \(gC \) cover a divisor on \(X \).

In this case, we say that \(E : X \rightarrow X_1 \) is a divisorial contraction.

\[\rho(X_1) = \rho(X) - 1 \]

\(X_1 \) still has nice sing., so we iterate the process.

(ii) Small contraction: The curves which are \(\equiv \) to \(gC \) cover a set of codim \(\geq 2 \).

\(X_1 \) has very bad singularities (\(K_{X_1} \) is not \(Q \)-Cartier).

Contradict a new birational morphism \(E^+ : X^+ \rightarrow X_1 \) which

contrads \(K_{X^+} \)-positive curves.

Existence of flips:

Conjecture: Do flips always exist?

Flip is a small surgery (it only changes a loci codim \(\geq 2 \)).

\[\rho(X_1) = \rho(X^+). \]
Example: \(\mathbb{P}^1 \times \mathbb{P}^1 \), \(D = p_1^* \mathcal{O}(1) \otimes p_2^* \mathcal{O}(1) \) \(\mathrm{p} \leq 1 \)

\[
X = \text{Spec} \left(\bigoplus_{\mathrm{m} \geq 0} H^0 \left(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}(\mathrm{m}D) \right) \right).
\]

\(K_X \cdot C < 0 \)

\(K_X \cdot C > 0 \)

\(X_3 \xrightarrow{\text{flip}} X_2 \xrightarrow{\text{flip}} X_3 \xrightarrow{\text{flip}} X_4 \xrightarrow{\text{...}} X_n \)

\(\rho(X) \)

\(MFS \)

\(Z \)
Conjecture: Termination of flips. (Every sequence of flips is finite.)

$K_{X_2} C > 0$ for every curve C. (K_{X_2} is numerically effective)

Conjecture (Abundance): X has mild singularity and K_X is nef.

$|m K_{X_1}|$ is base point free for some $m >> 0$.

$X \xrightarrow{e} X_2$ contracts all K_X-trivial curves.

1) If general fiber is > 0, in such case $K_F = 0$.

2) If general fiber is $= 0$, $X \to X_1$ is birational and X_2 is commonly polarized.
Goal of the MHP is achieved if we can solve:

1) Existence of flips (we can run the MHP) \(\Rightarrow\) BCHM06

2) Termination of flips (the MHP stops) known in \(\dim \leq 3\) (some cases in \(\dim = 4\))

3) Abundance (When it stops, we have some nice fibration), known in \(\dim \leq 3\)

Structure of the seminar:

Part I:

- Kollár: Introduction to birational geometry, (*)
- Kollár: Singularity of the MMP
- Läusjö: Positivity in algebraic geometry I & II.

Part II:

- BCHM06: (*)
- Hassett: K-moduli: Higher dim alg varieties
- Several papers.

Part III: Selected topics (Over the summer).