MATH 202B, Quiz 2

Time: 60 minutes

1. (12 points) Find the least squares best fit quadratic function $f(x) = ax^2 + bx + c$ to match the given 4 data points:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

2.(12 points) Consider the vectors

$$ec{v}_1 = egin{bmatrix} -1 \ 1 \ 0 \ 1 \end{bmatrix} \quad ext{and } ec{v}_2 = egin{bmatrix} 1 \ 0 \ 2 \ 1 \end{bmatrix}$$

- (a) Find the area of the parallelogram in \mathbb{R}^4 that has \vec{v}_1 and \vec{v}_2 as its edges.
- (b) Let V be the plane in \mathbb{R}^4 that is spanned by $\vec{v_1}$ and $\vec{v_2}$. Find a basis for the orthogonal complement of V.
- **3.**(12points)
- (a) Use elementary row operations to find

$$\det \begin{bmatrix} 0 & 1 & 3 & -3 \\ 0 & 0 & 4 & -2 \\ -2 & 0 & 4 & -7 \\ 4 & -4 & 4 & 15 \end{bmatrix}$$

- (b) A square $n \times n$ matrix is called skew-symmetric if $A^T + A = 0$. Prove that if A is skew-symmetric and if n is odd, then A is not invertible.
- 4.(12points) Find all eigenvalues and compute the corresponding eigenspaces for

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 2 & -5 \\ 4 & 5 & -8 \end{bmatrix}$$

Determine the algebraic and geometric multiplicity for each eigenvalue. Does A have an eigenbasis?

5.(12points) Suppose that A is a 2×2 matrix with eigenvalues $\lambda_1 = 0.5$ and $\lambda_2 = 0.2$ with corresponding eigenvectors

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

- (a) Find a solution in closed form to the dynamical system $\mathbf{x}(t+1) = A\mathbf{x}(t)$ given that $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.
- (b) Sketch the phaseportrait for this dynamical system.