MATH 202B, FINAL EXAM Time: 3 hours

Your name (print):
Please show all work. Books, notes and calculators are not permitted on this exam.
This exam consists of 11 questions, each of which is worth 15 points. You may CHOOSE 10 of these 11 questions. Please indicate clearly which question you choose to omit.
Write below and sign the Pledge: I pledge my honor that I have not violated the Honor
Code during this examination.

1. (15points) Find solution unique?	the traffic	flow in t	${ m he\ system}$	of one-way	streets shown	below. Is the

2. (15points) (a) Find the matrix for projection onto the plane x-y+z=0 relative to the basis $\mathcal{B}=\{\mathbf{v_1},\mathbf{v_2},\mathbf{v_3}\}$ where

$$\mathbf{v_1} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v_3} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

(b) What is the matrix of this transformation in standard coordinates?

3. (15points) Find a basis for the image of A, the kernel of A and for the orthogonal complement of the kernel of A if

$$A = \begin{bmatrix} 1 & 0 & 2 & 4 \\ 2 & 1 & 1 & 7 \\ 1 & 1 & -1 & 3 \\ 0 & 2 & -6 & -2 \end{bmatrix}$$

4. (15 points) Let V be the vector space in \mathbb{R}^4 spanned by

$$\mathbf{v_1} = \begin{bmatrix} 2\\0\\2\\1 \end{bmatrix}, \mathbf{v_2} = \begin{bmatrix} -4\\2\\-5\\0 \end{bmatrix}, \text{ and } \mathbf{v_3} = \begin{bmatrix} 3\\0\\3\\-3 \end{bmatrix}$$

- (a) Find an orthonormal basis for V.
- (b) Is the vector $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$ in V? If yes, then find its coordinates with respect to your orthonormal basis from (a). In no, then find the vector in V that is closest to \mathbf{b} .

5	(15noints)	(a)	Graph	the	curve $3x^2$	-4ru +	$6u^2 =$	= 20
J.	(LOPOTIUS)	(a	, Graph	ше	curve ox	-4xy+	$\mathbf{v}y$ -	_ 20.

(b) True or False (Justify your answer): If A is symmetric and $\det A>0$ then A is positive definite.

6. (15 points) Find the singular value decomposition of

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

What is the image of the unit disk $x^2 + y^2 \le 1$ under the map $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = A\begin{bmatrix} x \\ y \end{bmatrix}$?

7. (15points) (a) Sketch the phase portrait for the discrete dynamical system

$$\mathbf{x}(t+1) = \begin{bmatrix} 3 & -2 \\ 2 & 3 \end{bmatrix} \mathbf{x}(t)$$

(b) Solve the continuous dynamical system below given that $x_1(0) = 5$ and $x_2(0) = 3$.

$$dx_1/dt = 4x_1 - 2x_2$$

$$dx_2/dt = x_1 + x_2$$

8. (15 points) Find the line of best fit to the data points (-1,4), (0,3), (1,1) and (2,0).

9.(15points) What is the matrix of the linear transformation $T: \mathbf{R}^{2\times 2} \to \mathbf{R}^{2\times 2}$ defined by

$$T(A) = A \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A$$

relative to the standard basis on $\mathbb{R}^{2\times 2}$? Find a basis for the kernel of T.

10.(15points) Prove that similar matrices have the same eigenvalues and that the corresponding eigenspaces have the same dimension.	

- 11.(15points) True or False? Justify your answers.
- (a) If rref(A) has a zero row, then the system $A\mathbf{x} = \mathbf{b}$ will have infinitely many solutions for some choice of \mathbf{b} .

(b) If $A^2 - A - 6I = 0$ then either $\lambda = 3$ or $\lambda = -2$ is an eigenvalue of A.

(c) The rank of $A^T A$ is equal to the rank of A.