1. Find all vectors \vec{b} so that the system

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =b_{1} \\
2 x_{1}-x_{2}+3 x_{3} & =b_{2} \\
3 x_{1}+x_{2}+2 x_{3} & =b_{3}
\end{aligned}
$$

is solvable. Interpret your answer geometrically. For those choices of \vec{b} that make the system solvable, interpret the solution geometrically.
2. If the matrix A can be transformed to the matrix B by the sequence of row operations given below:

- add twice row 1 to row 2
- divide row 3 by 5
- switch row 2 and row 3
then can B be transformed to A by a sequence of row operations? Explain.

3. (a) If A is a 4×5 matrix of rank 3 , then what can you say about solutions to $A \vec{x}=\vec{b}$? about $A \vec{x}=\overrightarrow{0}$?
(b) If A is a 7×5 matrix of rank 5 , then what can you say about solutions of the system $A \vec{x}=\vec{b}$?
4. The vectors $\vec{x}, \vec{y}, \vec{u}$ and \vec{v} are pictured below. Use the diagram to write \vec{x} and \vec{y} as a linear combination of \vec{u} and \vec{v}, or explain why this is impossible.
5. (a) If $P(\vec{x})$ is the orthogonal projection of \vec{x} onto the line $2 x_{1}=3 x_{2}$, then find the matrix for P.
(b) Find the matrix for the transformation that reflects \vec{x} across the line $2 x_{1}=3 x_{2}$.
(c) Show that the matrix $\left[\begin{array}{cc}3 / 5 & 4 / 5 \\ -1 / 5 & 7 / 5\end{array}\right]$ defines a shearing transformation.
(d) Which of the transformations above are invertible? For those that are, find the inverse transformations.
