MATH 202B, MIDTERM EXAM
 Time: 90 minutes

Your name (print):
Please show all work. Books, notes and calculators are not permitted on this exam.

Write below and sign the Pledge: I pledge my honor that I have not violated the Honor Code during this examination.

1. (12 points) Consider the system

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =2 \\
x_{1}+2 x_{2}+x_{3} & =3 \\
x_{1}+x_{2}+\left(a^{2}-5\right) x_{3} & =a
\end{aligned}
$$

For what values of a does this system have solutions? For what values of a does it have exactly one solution? For what values of a does it have infinitely many solutions?
2. (18 points) Find a matrix A for the following linear transformations:
(a) In \mathbf{R}^{2}, reflection across the line $3 x=4 y$ followed by rotation through 90 degrees counterclockwise.
(b) In \mathbf{R}^{3}, orthogonal projection onto the plane $x+y+z=0$.
(c) In \mathbf{R}^{2}, the transformation that sends

$$
\left[\begin{array}{c}
-1 \\
5
\end{array}\right] \mapsto\left[\begin{array}{l}
1 \\
8
\end{array}\right] \text { and }\left[\begin{array}{l}
5 \\
1
\end{array}\right] \mapsto\left[\begin{array}{c}
3 \\
-2
\end{array}\right]
$$

3. (12points) Find a basis for the row space of A, the column space of A and the kernel of A if

$$
A=\left[\begin{array}{cccccc}
1 & 2 & -1 & 2 & 1 & 2 \\
-1 & -2 & 1 & 2 & 3 & 6 \\
0 & 0 & 1 & 2 & 2 & 1 \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right]
$$

4. (18 points) Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & -2 \\
1 & 0 & 3
\end{array}\right]
$$

(a) Find an orthonormal basis for $V=\operatorname{image}(A)$ and find the $Q R$ factorization of A.
(d) Find a basis for the orthogonal complement of V.
5. (12 points) Given any three linearly independent vectors \vec{v}_{1}, \vec{v}_{2} and \vec{v}_{3}, define

$$
\vec{w}_{1}=\vec{v}_{1}+\vec{v}_{2}, \quad \vec{w}_{2}=\vec{v}_{2}+\vec{v}_{3}, \quad \vec{w}_{3}=\vec{v}_{1}+\vec{v}_{3}
$$

Show that the vectors \vec{w}_{1}, \vec{w}_{2} and \vec{w}_{3} are also linearly independent.

