Rational surfaces with a non-arithmetic automorphism group

Jennifer Li ${ }^{\boldsymbol{\wedge}}$ and Sebastián Torres $\boldsymbol{\aleph}$

A Princeton University, Department of Mathematics and \& University of Miami, Department of Mathematics

Abstract

In [7], Totaro proved that the automorphism group of a $K 3$ surface need not be commensurable with an arithmetic group, answering a question of Mazur $[5, \S 7]$. We give examples of rational surfaces with the same property. Our examples Y are log Calabi-Yau surfaces, i.e., there is a normal crossing divisor $D \subset Y$ such that $K_{Y}+D=0$.

Background

A \log Calabi-Yau surface with maximal boundary is a pair (Y, D) in which Y is a smooth, complex projective surface and boundary $D \in\left|-K_{Y}\right|$ is an anticanonical cycle, given either by a (reduced) cycle of smooth rational curves or by an irreducible rational curve with a single node. Such a surface Y must be rational. We fix an orientation of the cycle D and write $D=D_{1}+\ldots+D_{r}$, where D_{i} are the irreducible components of D, and where the order is compatible with the orientation. If $r>1$, then D is a cycle of r copies of \mathbb{P}^{1}.

When (Y, D) is negative definite, D can be analytically contracted to a cusp singularity [2], and in this way we obtain a normal complex analytic surface \hat{Y} with trivial dualizing sheaf. In this way, \hat{Y} is a singular analog of a $K 3$ surface.
An automorphism of a log Calabi-Yau surface (Y, D) is an automorphism $\varphi: Y \xrightarrow{\sim} Y$ such that $\varphi\left(D_{i}\right)=D_{i}$ for every i and φ preserves the orientation if $r \leq 2$. We denote by $\operatorname{Aut}(Y, D)$ the group of automorphisms of the pair (Y, D).
The period point of (Y, D) is the homomorphism
$\phi_{Y}: \Lambda(Y, D) \rightarrow \operatorname{Pic}^{0}(D) \cong \mathbb{G}_{m}$, given by $\left.L \mapsto L\right|_{D}$,
where $\Lambda(Y, D)=\left\langle D_{1}, \ldots, D_{r}\right\rangle^{\perp}$ is the sublattice of classes $\alpha \in \operatorname{Pic} Y$ such that $\alpha \cdot D_{i}=0$ for every i.

Two algebraic groups G, H are said to be commensurable with each other if there exist finite index subgroups $G^{\prime} \subset G$ and $H^{\prime} \subset H$ such that $G^{\prime} \cong H^{\prime}$. In this case, we write $G \doteq H$
An arithmetic group is a subgroup of the group of \mathbb{Q}-points of some \mathbb{Q}-algebraic group $H_{\mathbb{Q}}$ which is commensurable with $H(\mathbb{Z})$ for some integral structure on $H_{\mathbb{Q}}$. Some examples of arithmetic groups are $\operatorname{SL}(2, \mathbb{Z}), \operatorname{PSL}(n, \mathbb{Z}), \operatorname{GL}(n, \mathbb{Z})$, and $\operatorname{PGL}(n, \mathbb{Z})$.
For an elliptic fibration $\pi: Y \rightarrow B$, the corresponding Mordell-Weil group is defined as $\operatorname{MW}(\pi)=\operatorname{Pic}^{0}\left(Y_{\eta}\right)$, where Y_{η} is the generic fiber of π.

References

[^0]Main Theorem
Let (\tilde{Y}, \tilde{D}) be the \log Calabi-Yau surface from the Main Construction below.
Then $\operatorname{Aut}(\tilde{Y}, \tilde{D})$ is not commensurable with an arithmetic group.

General Idea

Totaro [7, Theorem 7.1]. Let M be a lattice of signature $(1, m)$ for $m \geq 3$. Let S be an infinite-index subgroup in $O(M)$. Suppose that \mathbb{Z}^{m-1} is an infiniteindex subgroup of S. Then S is not commensurable with an arithmetic group.

We construct a \log Calabi-Yau surface (\tilde{Y}, \tilde{D}) with negative definite boundary by blowing up a point on a log Calabi-Yau surface (Y, D) with boundary a cycle of seven (-2)-curves. We then apply Totaro's theorem to this example in the following way. We let $M=\left\langle\tilde{D}_{1}, \ldots, \tilde{D}_{7}\right\rangle^{\perp}$, which has signature $(1,3)$. We show that $S=\operatorname{Aut}(\tilde{Y}, \tilde{D}) \subset O(M)$ and $\mathbb{Z}^{2} \subset \operatorname{Aut}(\tilde{Y}, \tilde{D})$ are infinite-index subgroups by constructing two non-minimal elliptic fibrations $f, f^{\prime}: \tilde{Y} \rightarrow \mathbb{P}^{1}$. The Shioda-Tate formula lets us compute the ranks of the Mordell-Weil groups of π and π^{\prime}. By using the tools on the right panel, we show that the two MordellWeil groups have finite index subgroups contained in $\operatorname{Aut}(\tilde{Y}, \tilde{D})$ with trivial intersection. Then by $[7$, Theorem 7.1], the automorphism $\operatorname{group} \operatorname{Aut}(\tilde{Y}, \tilde{D})$ is not commensurable with an arithmetic group.

Main Construction

Main Construction (continued)

In our main construction, we consider (Y, D) where D is a cycle of seven (-2)-curves. We write $\left(Y_{e}, D_{e}\right)$ to denote the deformation equivalent pair with a split mixed Hodge structure, or equivalently, such that $\phi_{Y_{e}}=e$ is the identity [3, Proposition 2.9].

An internal (-2)-curve is a smooth rational curve of self-intersection -2 disjoint from D.
We choose D so that $\phi_{Y}(D)=1$ and ϕ_{Y} is torsion and Y has no internal (-2)-curves. Then \tilde{Y}, which is obtained by carefully choosing a point q to blow up, will contain infinitely many (-2)-curves. We choose a curve C^{\prime} through a point p to blow down, resulting in $\left(Y^{\prime}, D^{\prime}\right)$. An important point is that p and q are chosen so that $\mathcal{O}(p-q)$ is torsion of order $m>1$. Then we obtain the two elliptic fibrations π and π^{\prime}, as shown.

Tools

[1] and [3]. Let $\phi: \Lambda(Y, D) \rightarrow \mathbb{G}_{m}$ be any homomorphism. Then there is a deformation equivalent pair $\left(Y^{\prime}, D^{\prime}\right)$ and an identification $\Lambda(Y, D) \cong \Lambda\left(Y^{\prime}, D^{\prime}\right)$ induced by parallel transport, such that the period point $\phi_{Y^{\prime}}$ of $\left(Y^{\prime}, D^{\prime}\right)$ corresponds to ϕ

We use this result to construct a log Calabi-Yau surface whose period point satisfies certain conditions.
Lemma. Let D be a length r cycle of (-2)-curves. Identify $\operatorname{Pic}^{0}(D) \cong \mathbb{G}_{m}$ as above and suppose that $\left.\mathcal{O}_{Y}(D)\right|_{D}$ is torsion of order m. Then there is a minimal elliptic fibration $\pi: Y \rightarrow \mathbb{P}^{1}$ with $\pi^{*}(\infty)=m D$.

We use the Shioda-Tate formula to compute the rank of a MordellWeil group: Let $Y \rightarrow B$ be an elliptic fibration. Let $K \subset B$ be the locus where the fibers $\pi^{-1}(p)$ are singular. For each $p \in K$, let m_{p} be the number of irreducible components of $\pi^{-1}(p)$. Then

$$
\rho(Y)=\operatorname{rank} \operatorname{MW}(Y)+2+\sum_{p \in K}\left(m_{p}-1\right)
$$

Acknowledgements
We thank Paul Hacking, János Kollár, Burt Totaro, and Chenyang Xu for very helpful discussions. We also thank AGNES and the UPenn Mathematics Department for this opportunity to present our research

[^0]: 11] R. Friedman, On the geometry of anticanonical pairs, preprint arXiv:1502.02560v2 [math.AG] (2015). 2] H. Grauert, Über Modifikationen und exceptionelle analytische Mengen, Math. Ann. 146, 331 -368 (1962 (3] M. Gross, P. Hacking, S. Keel, Moduli of surfaces with an anti-canonical cycle, Compos. Math. 151, no. 2, 265-291, K. Kodaira, On the structure of compact complex analytic surfaces, I. Amer. J. Math., $86: 751-798$ (1964).
 [5] B. Mazur. On the passage from local to global in number theory, Bull. Amer. Math. Soc. (N.S.), 29(1):14.50 (1993). [6] T. Shioda, On elliptic modular surfaees, J. Math. Soc. Japan, 24:20-59, (1972).

