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Abstract

In [7], Totaro proved that the automorphism group of a K3 surface
need not be commensurable with an arithmetic group, answering a
question of Mazur [5, §7]. We give examples of rational surfaces with
the same property. Our examples Y are log Calabi-Yau surfaces, i.e.,
there is a normal crossing divisor D ⊂ Y such that KY + D = 0.

Background

A log Calabi–Yau surface with maximal boundary is a pair (Y,D)
in which Y is a smooth, complex projective surface and boundary
D ∈ | − KY | is an anticanonical cycle, given either by a (reduced)
cycle of smooth rational curves or by an irreducible rational curve
with a single node. Such a surface Y must be rational. We fix an
orientation of the cycle D and write D = D1 + . . .+Dr, where Di are
the irreducible components of D, and where the order is compatible
with the orientation. If r > 1, then D is a cycle of r copies of P1.
When (Y,D) is negative definite, D can be analytically contracted to
a cusp singularity [2], and in this way we obtain a normal complex
analytic surface Ŷ with trivial dualizing sheaf. In this way, Ŷ is a
singular analog of a K3 surface.
An automorphism of a log Calabi-Yau surface (Y,D) is an auto-
morphism ϕ : Y ∼−→ Y such that ϕ(Di) = Di for every i and ϕ
preserves the orientation if r ≤ 2. We denote by Aut(Y,D) the group
of automorphisms of the pair (Y,D).
The period point of (Y,D) is the homomorphism

φY : Λ(Y,D)→ Pic0(D) ∼= Gm, given by L 7→ L|D,
where Λ(Y,D) = 〈D1, . . . , Dr〉⊥ is the sublattice of classes α ∈ Pic Y
such that α ·Di = 0 for every i.
Two algebraic groups G, H are said to be commensurable with each
other if there exist finite index subgroups G′ ⊂ G and H ′ ⊂ H such
that G′ ∼= H ′. In this case, we write G .= H .
An arithmetic group is a subgroup of the group of Q-points of some
Q-algebraic group HQ which is commensurable with H(Z) for some
integral structure on HQ. Some examples of arithmetic groups are
SL(2,Z),PSL(n,Z),GL(n,Z), and PGL(n,Z).
For an elliptic fibration π : Y → B, the corresponding Mordell–Weil
group is defined as MW(π) = Pic0(Yη), where Yη is the generic fiber
of π.
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Main Theorem

Let (Ỹ , D̃) be the log Calabi-Yau surface from the Main Construction below.
Then Aut(Ỹ , D̃) is not commensurable with an arithmetic group.

General Idea

Totaro [7, Theorem 7.1]. LetM be a lattice of signature (1,m) for m ≥ 3.
Let S be an infinite-index subgroup in O(M). Suppose that Zm−1 is an infinite-
index subgroup of S. Then S is not commensurable with an arithmetic group.

We construct a log Calabi-Yau surface (Ỹ , D̃) with negative definite boundary
by blowing up a point on a log Calabi-Yau surface (Y,D) with boundary a cycle
of seven (−2)-curves. We then apply Totaro’s theorem to this example in the
following way. We let M = 〈D̃1, . . . , D̃7〉⊥, which has signature (1, 3). We
show that S = Aut(Ỹ , D̃) ⊂ O(M) and Z2 ⊂ Aut(Ỹ , D̃) are infinite-index
subgroups by constructing two non-minimal elliptic fibrations f, f ′ : Ỹ → P1.
The Shioda-Tate formula lets us compute the ranks of the Mordell-Weil groups of
π and π′. By using the tools on the right panel, we show that the two Mordell-
Weil groups have finite index subgroups contained in Aut(Ỹ , D̃) with trivial
intersection. Then by [7, Theorem 7.1], the automorphism group Aut(Ỹ , D̃) is
not commensurable with an arithmetic group.

Main Construction

Main Construction (continued)

In our main construction, we consider (Y,D) where D is a cycle of
seven (−2)-curves. We write (Ye, De) to denote the deformation equiv-
alent pair with a split mixed Hodge structure, or equivalently, such that
φYe = e is the identity [3, Proposition 2.9].
An internal (−2)-curve is a smooth rational curve of self-intersection
−2 disjoint from D.
We choose D so that φY (D) = 1 and φY is torsion and Y has no
internal (−2)-curves. Then Ỹ , which is obtained by carefully choosing
a point q to blow up, will contain infinitely many (−2)-curves. We
choose a curve C ′ through a point p to blow down, resulting in (Y ′, D′).
An important point is that p and q are chosen so thatO(p−q) is torsion
of order m > 1. Then we obtain the two elliptic fibrations π and π′,
as shown.

Tools

[1] and [3]. Let φ : Λ(Y,D) → Gm be any homomorphism. Then
there is a deformation equivalent pair (Y ′, D′) and an identification
Λ(Y,D) ∼= Λ(Y ′, D′) induced by parallel transport, such that the
period point φY ′ of (Y ′, D′) corresponds to φ.

We use this result to construct a log Calabi-Yau surface whose period
point satisfies certain conditions.

Lemma. Let D be a length r cycle of (−2)-curves. Identify
Pic0(D) ∼= Gm as above and suppose that OY (D)|D is torsion of or-
der m. Then there is a minimal elliptic fibration π : Y → P1 with
π∗(∞) = mD.

We use the Shioda–Tate formula to compute the rank of a Mordell-
Weil group: Let Y → B be an elliptic fibration. Let K ⊂ B be the
locus where the fibers π−1(p) are singular. For each p ∈ K, let mp be
the number of irreducible components of π−1(p). Then

ρ(Y ) = rank MW(Y ) + 2 +
∑
p∈K

(mp − 1)
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