A Cone Conjecture for Log Calabi-Yau Surfaces
Jennifer Li
Princeton University, Department of Mathematics

Background

For a smooth projective variety Y, the cone of curves of Y is defined by

$$\text{Curv}(Y) = \{ (\sum a_i C_i) | a_i \in \mathbb{R}_{\geq 0} \text{ and curve } C_i \subset Y \},$$
which is a subset of $H_2(Y, \mathbb{R})$. The dual of $\text{Curv}(Y)$ is the nef cone, $\text{Nef}(Y)$. In some cases (e.g., when Y is Fano), $\text{Curv}(Y)$ is rational polyhedral, meaning it has finitely many generators. In some cases, the cone may be round:

- rational polyhedral cone
- round cone

Morrison’s cone conjecture states that for a smooth Calabi-Yau manifold Y, the automorphism group of Y acts on its effective nef cone with a rational polyhedral fundamental domain. Totaro generalized Morrison’s conjecture to Kawamata log terminal (klt) Calabi-Yau pairs (Y, Δ). My project is on a version of the cone conjecture that is related to but different from Totaro’s version.

Proof Sketch for Main Theorem 1

- $\text{Nef}^{\prime}(Y_{gen})$ is the union of rational polyhedral cones:
 $$(D_1, \ldots, D_g, E_1, \ldots, E_k)_{n \geq 0} \cap \text{Nef}(Y_{gen}),$$
 where D_1, \ldots, D_g are boundary components, E_1, \ldots, E_k is a collection of disjoint (-1)-curves. This builds on work of Engel-Friedman.

- The monodromy group acts with finitely many orbits on collections (E_1, \ldots, E_k) (Friedman).

- It follows that Adm acts on $\text{Nef}^{\prime}(Y_{gen})$ with a rational polyhedral fundamental domain (Looijenga).

Proof Sketch for Main Theorem 2

- Let W be the Weyl group, generated by reflections associated to (-2)-curves $C \subset Y \setminus D_g$.
- $W \subseteq \text{Adm}$ (Gross-Hacking-Keel).
- By the Torelli Theorem for log Calabi-Yau surfaces (Gross-Hacking-Keel), $\text{Aut}(Y, D_g) = \text{Adm} / W$.

- W acts on $\text{Nef}^{\prime}(Y_{gen})$ with fundamental domain $\text{Nef}^{\prime}(Y)$.

- Using these results, we show that Main Theorem 1 implies Main Theorem 2 (cf. Sterk’s proof for $K3$ surfaces).

Main Theorem 1

Let (Y_{gen}, D_{gen}) be a log Calabi-Yau surface. Then the monodromy group acts on the nef effective cone of Y_{gen} with a rational polyhedral fundamental domain.

Main Theorem 2

Let (Y, D, X) be a log Calabi-Yau surface and suppose that $U = Y \setminus D$ has a split mixed Hodge structure. Then the automorphism group of (Y, D) acts on the nef effective cone of Y, with a rational polyhedral fundamental domain.

Example: (Y, D) with $n = 3$

Here $Y = \mathbb{P}^3$ and D is the toric boundary. The strict transform of D is the boundary $D = D_1 + D_2 + D_3$. The curve F, which is the strict transform of a line F in \mathbb{P}^3, intersects three chains of (-2)-curves at one point. We blow up a total of p_itimes at the point q_i on each boundary component D_i. In this case, the cone of curves is generated by the curves drawn, and so in particular, it is rational polyhedral.

Example: (Y_{gen}, D_{gen}) with $n = 3$

By a theorem of Looijenga, for $n = 3$, the admissible group equals the Weyl group W (generated by reflections associated to the (-2)-curves in Y), which is associated to the root system $\Gamma_{K3,p}$. In this case, we know from Gross-Hacking-Keel that W acts on $\text{Nef}^{\prime}(Y_{gen})$ with fundamental domain $\text{Nef}(Y)$ which is rational polyhedral (see the example above).

Definitions

A log Calabi-Yau surface is a pair (Y, D) where:
- Y is a smooth, complex, projective surface;
- $D \subset Y$ is a normal crossing divisor; and
- $K_Y + D = 0$.

We always assume that $D \neq 0$ and D is singular.

If there are no (-2)-curves $C \subset Y \setminus D$, then (Y, D) is said to be generic and we write $(Y, D) = (Y_{gen}, D_{gen})$.

The admissible group:

$\text{Adm} := \{ \theta \in \text{Aut}(\text{Pic}(Y)) \mid \theta(\text{Nef}(Y_{gen})) = \text{Nef}(Y_{gen}) \}$

By work of Gross-Hacking-Keel, the admissible group is equal to the monodromy group.

The nef effective cone:

$\text{Nef}^{\prime}(Y) = \text{Nef}(Y) \cap \text{Eff}(Y)$

The nef cone:

$\text{Eff}(Y) := \{ L \in \text{Pic}(Y) \cap \mathbb{R}_{\geq 0} \mid L \cdot C \geq 0 \text{ for all curves } C \subset Y \}$

The effective cone:

$\text{Eff}(Y) := \{ L \in \text{Pic}(Y) \cap \mathbb{R}_{\geq 0} \mid L \cdot C \geq 0 \text{ for all curves } C \subset Y \}$

The automorphism group of a log Calabi-Yau surface:

$\text{Aut}(Y, D) := \{ \theta \in \text{Aut}(Y) \mid \theta(D_i) = D_i \text{ for } i = 1, \ldots, n \}$

Motivation

Results by Gross-Hacking-Keel on mirror symmetry for cusp singularities suggest we consider the pair (Y, D) with a distinguished complex structure. Under our conditions, there exists a contraction of (Y, D) to a cusp singularity (Y^\prime, p). Cusp singularities come in mirror dual pairs, and the embedding dimension m of the dual cusp is equal to max$(n, 3)$, where n is the number of components of the boundary divisor D. By studying the Nef cone of (Y, D), we hope to give a description of the deformation space of the dual cusp, which is not well understood for m greater than six.

Acknowledgements

I thank my advisor, Paul Hacking, for his support. I also thank the organizers of the MPS Conference on Higher Dimensional Geometry and the Simons Foundation for this opportunity to present.