A Cone Conjecture for Log Calabi-Yau Surfaces

Background

For a smooth projective variety Y, the cone of curves of Y is

defined by
Curv(Y) = (3a;|C;] | a; € Rsgand curve C; C Y),

which is a subset of Hy(Y,R). The dual of Curv(Y) is the
nef cone, Nef(Y). In some cases (e.g., when Y is Fano),
Curv(Y') (and thus Nef(Y')) is rational polyhedral, meaning
it has finitely many generators. In some cases, the cone may
be round:

rational polyhedral cone round cone

Morrison’s cone conjecture states that for a smooth Calabi-
Yau manifold Y, the automorphism group of Y acts on its
effective net cone with a rational polyhedral fundamental do-
main. Totaro generalized Morrison’s conjecture to Kawamata
log terminal (klt) Calabi-Yau pairs (Y, A). My project is on a
version of the cone conjecture that is related to but different
from Totaro’s version.

Proof Sketch for Main Theorem 1

% Nef “(Y,en) is the union of rational polyhedral cones:
<D1, Cee Dn, El, c . 7Ek>RZO M Nef(Ygen),

where:
D1, ..., D,: boundary components
Eq, ..., Ex: a collection of disjoint (—1)-curves

This builds on work of Engel-Friedman.
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% The monodromy group acts with finitely many orbits on

collections { £y, ..., i} (Friedman).
% [t follows that Adm acts on Nef “(Y,e,) with a rational
polyhedral fundamental domain (Looijenga).

Proof Sketch for Main Theorem 2

% Let W be the Weyl group, generated by reflections associ-
ated to (—2)-curves C' C Y, \ D..

* W < Adm (Gross-Hacking-Keel).

% By the Torelli Theorem for log Calabi-Yau surfaces (Gross-
Hacking-Keel),

Aut(Y,, D,) = Adm /W

% W acts on Nef “(Yy,) with fundamental domain Nef “(Y;).

% Using these results, we show that Main Theorem 1 implies
Main Theorem 2 (cf. Sterk’s proof for K3 surfaces).
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Main Theorem 1

Let (Yyen, Dgen) be a log Calabi-Yau surface. Then the monodromy group acts on the nef effective cone of Y, with a rational
polyhedral fundamental domain.

Main Theorem 2

Let (Y:, D.) be a log Calabi-Yau surface and suppose that U = Y.\ D, has a split mixed Hodge structure. Then the automorphism
group of (Y, D.) acts on the nef effective cone of Y, with a rational polyhedral fundamental domain.

Example: (Y., D.) with n =3

Here Y = P? and D is the toric boundary. The strict transform of D is the boundary D = Dy + Dy 4+ Ds. The curve F, which
is the strict transform of a line F in P2, intersects three chains of (—2)-curves at one point. We blow up a total of p; times at the
point g; on each boundary component D;. In this case, the cone of curves is generated by the curves drawn, and so in particular,
it is rational polyhedral.
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Example: (Yjen, Dgen) with n =3

By a theorem of Looijenga, for n = 3, the admissible group equals the Weyl group W (generated by reflections associated to the
(—2)-curves in Y. ), which is associated to the root system T, ,, .. In this case, we know from Gross-Hacking-Keel that W acts on
Nef “(Y,en) with fundamental domain Nef(Y:), which is rational polyhedral (see the example above).
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Definitions

A log Calabi-Yau surface is a pair (Y, D) where:
% Y is a smooth, complex, projective surface;
% D C Y is a normal crossing divisor; and

* Kyv+D =0.
We always assume that D # 0 and D is singular.

[f there are no (—2)-curves C' C Y \ D, then (Y, D) is said to
be generic and we write (Y, D) = (Yjen, Dyen)-

Nef (Ygen)
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The admissible group:

Adm = {0 € Aut(Pic(Y), ) | O(Nef(Yyen)) =
Nef(Yyen) and 0(|D;]) = |Dy] fori =1,...,n}

By work of Gross-Hacking-Keel, the admissible group is equal
to the monodromy group.

The nef effective cone:
Nef (V) = Nef(Y) N Eff(Y)
The nef cone:
Nef(Y) :={L € Pic(Y)®R | L-C > 0 for all curves C' C Y'}
The effective cone:

Eff(Y) .= {>Xa;|C}] | a; € R5p and curves C; C Y}

The automorphism group of a log Calabi-Yau surface:
Aut(Y,D) ={0 € Awt(Y) | 0(D;) = D; fori=1,...,n}

Motivation

Results by Gross-Hacking-Keel on mirror symmetry for cusp
singularities suggest we consider the pair (Y, D) with a distin-
ouished complex structure. Under our conditions, there exists
a contraction of (Y, D) to a cusp singularity (Y',p). Cusp
singularities come in mirror dual pairs, and the embedding di-
mension m of the dual cusp is equal to max(n,3), where n
is the number of components of the boundary divisor D. By
studying the Nef cone of (Y, D), we hope to give a description
of the deformation space of the dual cusp, which is not well
understood for m greater than six.
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