# A Cone Conjecture for Log Calabi-Yau Surfaces 

Jennifer Li

Princeton University, Department of Mathematics

## Background

For a smooth projective variety $Y$, the cone of curves of $Y$ is defined by

$$
\left.\overline{\operatorname{Curv}}(Y)=\overline{\left\langle\Sigma a_{i}\left[C_{i}\right]\right.} \mid a_{i} \in \mathbb{R}_{>0} \text { and curve } C_{i} \subset Y\right\rangle,
$$

which is a subset of $H_{2}(Y, \mathbb{R})$. The dual of $\overline{\operatorname{Curv}}(Y)$ is the nef cone, $\operatorname{Nef}(Y)$. In some cases (e.g., when $Y$ is Fano), $\operatorname{Curv}(Y)$ (and thus $\operatorname{Nef}(Y)$ ) is rational polyhedral, meaning it has finitely many generators. In some cases, the cone may be round:

rational polyhedral cone

round cone

Morrison's cone conjecture states that for a smooth CalabiYau manifold $Y$, the automorphism group of $Y$ acts on it effective nef cone with a rational polyhedral fundamental domain. Totaro generalized Morrison's conjecture to Kawamata log terminal (klt) Calabi-Yau pairs $(Y, \Delta)$. My project is on a version of the cone conjecture that is related to but differen from Totaro's version.

## Proof Sketch for Main Theorem 1

$\star$ Nef $^{e}\left(Y_{\text {gen }}\right)$ is the union of rational polyhedral cones:

$$
\left\langle D_{1}, \ldots, D_{n}, E_{1}, \ldots, E_{k}\right\rangle_{\mathbb{R} \geq 0} \cap \operatorname{Nef}\left(Y_{\text {gen }}\right)
$$

where:
$D_{1}, \ldots, D_{n}$ : boundary components
$E_{1}, \ldots, E_{k}$ : a collection of disjoint ( -1 )-curves
This builds on work of Engel-Friedman.


* The monodromy group acts with finitely many orbits on collections $\left\{E_{1}, \ldots, E_{k}\right\}$ (Friedman).
$\star$ It follows that $\operatorname{Adm}$ acts on $\operatorname{Nef}^{e}\left(Y_{\text {gen }}\right)$ with a rational polyhedral fundamental domain (Looijenga)


## Proof Sketch for Main Theorem 2

$\star$ Let $W$ be the Weyl group, generated by reflections associated to ( -2 -curves $C \subset Y_{e} \backslash D_{e}$
$\star W \triangleleft$ Adm (Gross-Hacking-Keel).
$\star$ By the Torelli Theorem for log Calabi-Yau surfaces (Gross-Hacking-Keel),
$\operatorname{Aut}\left(Y_{e}, D_{e}\right) \doteq \operatorname{Adm} / W$
$\star W$ acts on $\operatorname{Nef}^{e}\left(Y_{\text {gen }}\right)$ with fundamental domain $\operatorname{Nef}^{e}\left(Y_{e}\right)$. $\star$ Using these results, we show that Main Theorem 1 implies Main Theorem 2 (cf. Sterk's proof for $K 3$ surfaces).

## Main Theorem 1

Let $\left(Y_{\text {gen }}, D_{\text {gen }}\right)$ be a $\log$ Calabi-Yau surface. Then the monodromy group acts on the nef effective cone of $Y_{\text {gen }}$ with a rational polyhedral fundamental domain.

## Main Theorem 2

Let $\left(Y_{e}, D_{e}\right)$ be a log Calabi-Yau surface and suppose that $U=Y_{e} \backslash D_{e}$ has a split mixed Hodge structure. Then the automorphism group of $\left(Y_{e}, D_{e}\right)$ acts on the nef effective cone of $Y_{e}$ with a rational polyhedral fundamental domain.

Example: $\left(Y_{e}, D_{e}\right)$ with $n=3$
Here $\bar{Y}=\mathbb{P}^{2}$ and $\bar{D}$ is the toric boundary. The strict transform of $\bar{D}$ is the boundary $D=D_{0}+D_{1}+D_{2}$. The curve $F$, which is the strict transform of a line $\bar{F}$ in $\mathbb{P}^{2}$, intersects three chains of ( -2 )-curves at one point. We blow up a total of $p_{i}$ times at the point $q_{i}$ on each boundary component $\bar{D}_{i}$. In this case, the cone of curves is generated by the curves drawn, and so in particular, it is rational polyhedral.
$\bar{Y}$

$B l_{q_{0}, q_{1}, q_{2} \bar{Y}}$
$\qquad$


Example: $\left(Y_{\text {gen }}, D_{\text {gen }}\right)$ with $n=3$
By a theorem of Looijenga, for $n=3$, the admissible group equals the Weyl group $W$ (generated by reflections associated to the $(-2)$-curves in $Y_{e}$ ), which is associated to the root system $T_{p_{1}, p_{2}, p_{2}}$. In this case, we know from Gross-Hacking-Keel that $W$ acts on Nef ${ }^{e}\left(Y_{\text {gen }}\right)$ with fundamental domain $\operatorname{Nef}\left(Y_{e}\right)$, which is rational polyhedral (see the example above).

$T_{p_{1}, p_{2}, p_{3}}$

## Definitions

A $\log$ Calabi-Yau surface is a pair $(Y, D)$ where
$\star Y$ is a smooth, complex, projective surface
$\star D \subset Y$ is a normal crossing divisor; and
$\star K_{Y}+D=0$
We always assume that $D \neq 0$ and $D$ is singular.
If there are no ( -2 -curves $C \subset Y \backslash D$, then $(Y, D)$ is said to be generic and we write $(Y, D)=\left(Y_{g e n}, D_{g e n}\right)$


The admissible group

$$
\begin{aligned}
& \operatorname{Adm}:=\left\{\theta \in \operatorname{Aut}(\operatorname{Pic}(Y), \cdot) \mid \theta\left(\operatorname{Nef}\left(Y_{\text {gen }}\right)\right)=\right. \\
& \operatorname{Nef}\left(Y_{\text {gen }}\right) \text { and } \theta\left(\left[D_{i}\right]\right)=\left[D_{i}\right] \text { for } i=, \ldots, n
\end{aligned}
$$

By work of Gross-Hacking-Keel, the admissible group is equal to the monodromy group.

The nef effective cone

$$
\operatorname{Nef}^{e}(Y)=\operatorname{Nef}(Y) \cap \operatorname{Eff}(Y)
$$

The nef cone:
$\operatorname{Nef}(Y):=\{L \in \operatorname{Pic}(Y) \otimes \mathbb{R} \mid L \cdot C \geq 0$ for all curves $C \subset Y\}$ The effective cone:
$\operatorname{Eff}(Y):=\left\{\Sigma a_{i}\left[C_{i}\right] \mid a_{i} \in \mathbb{R}_{\geq 0}\right.$ and curves $\left.C_{i} \subset Y\right\}$
The automorphism group of a $\log$ Calabi-Yau surface:
$\operatorname{Aut}(Y, D):=\left\{\theta \in \operatorname{Aut}(Y) \mid \theta\left(D_{i}\right)=D_{i}\right.$ for $\left.i=1, \ldots, n\right\}$

## Motivation

Results by Gross-Hacking-Keel on mirror symmetry for cusp ingularities suggest we consider the pair $(Y, D)$ with a distinguished complex structure. Under our conditions, there exists a contraction of $(Y, D)$ to a cusp singularity $\left(Y^{\prime}, p\right)$. Cusp singularities come in mirror dual pairs, and the embedding dimension $m$ of the dual cusp is equal to $\max (n, 3)$, where $n$ is the number of components of the boundary divisor $D$. By studying the Nef cone of $(Y, D)$, we hope to give a description of the deformation space of the dual cusp, which is not well understood for $m$ greater than six.

## Acknowledgements

thank my advisor. Paul Hacking, for his support. I also thank he organizers of the MPS Conference on Higher Dimensional Geometry and the Simons Foundation for this opportunity to present.

