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Background

For a smooth projective variety Y , the cone of curves of Y is
defined by

Curv(Y ) = 〈Σai[Ci] | ai ∈ R>0 and curve Ci ⊂ Y 〉,
which is a subset of H2(Y,R). The dual of Curv(Y ) is the
nef cone, Nef(Y ). In some cases (e.g., when Y is Fano),
Curv(Y ) (and thus Nef(Y )) is rational polyhedral, meaning
it has finitely many generators. In some cases, the cone may
be round:

rational polyhedral cone round cone

Morrison’s cone conjecture states that for a smooth Calabi-
Yau manifold Y , the automorphism group of Y acts on its
effective nef cone with a rational polyhedral fundamental do-
main. Totaro generalized Morrison’s conjecture to Kawamata
log terminal (klt) Calabi-Yau pairs (Y,∆). My project is on a
version of the cone conjecture that is related to but different
from Totaro’s version.

Proof Sketch for Main Theorem 1

F Nef e(Ygen) is the union of rational polyhedral cones:
〈D1, . . . , Dn, E1, . . . , Ek〉R≥0 ∩ Nef(Ygen),

where:
D1, . . . , Dn: boundary components
E1, . . . , Ek: a collection of disjoint (−1)-curves
This builds on work of Engel-Friedman.

F The monodromy group acts with finitely many orbits on
collections {E1, . . . , Ek} (Friedman).
F It follows that Adm acts on Nef e(Ygen) with a rational
polyhedral fundamental domain (Looijenga).

Proof Sketch for Main Theorem 2

F Let W be the Weyl group, generated by reflections associ-
ated to (−2)-curves C ⊂ Ye \De.
F W E Adm (Gross-Hacking-Keel).
F By the Torelli Theorem for log Calabi-Yau surfaces (Gross-
Hacking-Keel),

Aut(Ye, De) .= Adm /W .
F W acts on Nef e(Ygen) with fundamental domain Nef e(Ye).
F Using these results, we show that Main Theorem 1 implies
Main Theorem 2 (cf. Sterk’s proof for K3 surfaces).

Main Theorem 1

Let (Ygen, Dgen) be a log Calabi-Yau surface. Then the monodromy group acts on the nef effective cone of Ygen with a rational
polyhedral fundamental domain.

Main Theorem 2

Let (Ye, De) be a log Calabi-Yau surface and suppose that U = Ye\De has a split mixed Hodge structure. Then the automorphism
group of (Ye, De) acts on the nef effective cone of Ye with a rational polyhedral fundamental domain.

Example: (Ye, De) with n = 3

Here Ȳ = P2 and D̄ is the toric boundary. The strict transform of D̄ is the boundary D = D0 + D1 + D2. The curve F , which
is the strict transform of a line F̄ in P2, intersects three chains of (−2)-curves at one point. We blow up a total of pi times at the
point qi on each boundary component D̄i. In this case, the cone of curves is generated by the curves drawn, and so in particular,
it is rational polyhedral.

Example: (Ygen, Dgen) with n = 3

By a theorem of Looijenga, for n = 3, the admissible group equals the Weyl group W (generated by reflections associated to the
(−2)-curves in Ye), which is associated to the root system Tp1,p2,p3. In this case, we know from Gross-Hacking-Keel that W acts on
Nef e(Ygen) with fundamental domain Nef(Ye), which is rational polyhedral (see the example above).

Definitions

A log Calabi-Yau surface is a pair (Y,D) where:
F Y is a smooth, complex, projective surface;
F D ⊂ Y is a normal crossing divisor; and
F KY + D = 0.
We always assume that D 6= 0 and D is singular.

If there are no (−2)-curves C ⊂ Y \D, then (Y,D) is said to
be generic and we write (Y,D) = (Ygen, Dgen).

The admissible group:
Adm := {θ ∈ Aut(Pic(Y ), ·) | θ(Nef(Ygen)) =
Nef(Ygen) and θ([Di]) = [Di] for i = 1, . . . , n}

By work of Gross-Hacking-Keel, the admissible group is equal
to the monodromy group.

The nef effective cone:
Nef e(Y ) = Nef(Y ) ∩ Eff(Y )

The nef cone:
Nef(Y ) := {L ∈ Pic(Y )⊗R | L·C ≥ 0 for all curves C ⊂ Y }
The effective cone:

Eff(Y ) := {Σai[Ci] | ai ∈ R≥0 and curves Ci ⊂ Y }

The automorphism group of a log Calabi-Yau surface:
Aut(Y,D) := {θ ∈ Aut(Y ) | θ(Di) = Di for i = 1, . . . , n}

Motivation

Results by Gross-Hacking-Keel on mirror symmetry for cusp
singularities suggest we consider the pair (Y,D) with a distin-
guished complex structure. Under our conditions, there exists
a contraction of (Y,D) to a cusp singularity (Y ′, p). Cusp
singularities come in mirror dual pairs, and the embedding di-
mension m of the dual cusp is equal to max(n, 3), where n
is the number of components of the boundary divisor D. By
studying the Nef cone of (Y,D), we hope to give a description
of the deformation space of the dual cusp, which is not well
understood for m greater than six.
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