Background

For a smooth projective variety Y, the cone of curves of Y is defined by

 $\operatorname{Curv}(Y) = \langle \Sigma a_i [C_i] \mid a_i \in \mathbb{R}_{>0} \text{ and curve } C_i \subset Y \rangle,$

which is a subset of $H_2(Y, \mathbb{R})$. The dual of $\operatorname{Curv}(Y)$ is the nef cone, Nef(Y). In some cases (e.g., when Y is Fano), $\operatorname{Curv}(Y)$ (and thus $\operatorname{Nef}(Y)$) is rational polyhedral, meaning it has finitely many generators. In some cases, the cone may be round:

rational polyhedral cone

Morrison's cone conjecture states that for a smooth Calabi-Yau manifold Y, the automorphism group of Y acts on its effective nef cone with a rational polyhedral fundamental domain. Totaro generalized Morrison's conjecture to Kawamata log terminal (klt) Calabi-Yau pairs (Y, Δ) . My project is on a version of the cone conjecture that is related to but different from Totaro's version.

Proof Sketch for Main Theorem 1

 \bigstar Nef $^{e}(Y_{qen})$ is the union of rational polyhedral cones: $\langle D_1, \ldots, D_n, E_1, \ldots, E_k \rangle_{\mathbb{R}>0} \cap \operatorname{Nef}(Y_{qen}),$

where:

 D_1, \ldots, D_n : boundary components E_1, \ldots, E_k : a collection of disjoint (-1)-curves This builds on work of Engel-Friedman.

 \star The monodromy group acts with finitely many orbits on collections $\{E_1, \ldots, E_k\}$ (Friedman).

 \star It follows that Adm acts on Nef $^{e}(Y_{gen})$ with a rational polyhedral fundamental domain (Looijenga).

Proof Sketch for Main Theorem 2

 \star Let W be the Weyl group, generated by reflections associated to (-2)-curves $C \subset Y_e \setminus D_e$.

★ $W \leq \text{Adm}$ (Gross-Hacking-Keel).

 \star By the Torelli Theorem for log Calabi-Yau surfaces (Gross-Hacking-Keel),

 $\operatorname{Aut}(Y_e, D_e) \doteq \operatorname{Adm} / W.$

 $\bigstar W$ acts on Nef $^{e}(Y_{qen})$ with fundamental domain Nef $^{e}(Y_{e})$. \star Using these results, we show that Main Theorem 1 implies Main Theorem 2 (cf. Sterk's proof for K3 surfaces).

A Cone Conjecture for Log Calabi-Yau Surfaces

Jennifer Li

Princeton University, Department of Mathematics

Main Theorem 1

Let (Y_{gen}, D_{gen}) be a log Calabi-Yau surface. Then the monodromy group acts on the nef effective cone of Y_{gen} with a rational polyhedral fundamental domain.

Main Theorem 2

Let (Y_e, D_e) be a log Calabi-Yau surface and suppose that $U = Y_e \setminus D_e$ has a split mixed Hodge structure. Then the automorphism group of (Y_e, D_e) acts on the nef effective cone of Y_e with a rational polyhedral fundamental domain.

Example: (Y_e, D_e) with n = 3

Here $\overline{Y} = \mathbb{P}^2$ and \overline{D} is the toric boundary. The strict transform of \overline{D} is the boundary $D = D_0 + D_1 + D_2$. The curve F, which is the strict transform of a line F in \mathbb{P}^2 , intersects three chains of (-2)-curves at one point. We blow up a total of p_i times at the point q_i on each boundary component D_i . In this case, the cone of curves is generated by the curves drawn, and so in particular, it is rational polyhedral.

 $Bl_{q_0,q_1,q_2}Y$

Example: (Y_{qen}, D_{qen}) with n = 3

By a theorem of Looijenga, for n = 3, the admissible group equals the Weyl group W (generated by reflections associated to the (-2)-curves in Y_e , which is associated to the root system T_{p_1,p_2,p_3} . In this case, we know from Gross-Hacking-Keel that W acts on Nef $^{e}(Y_{qen})$ with fundamental domain Nef (Y_{e}) , which is rational polyhedral (see the example above).

 $\bigstar K_Y + D = 0.$

Eff

I thank my advisor, Paul Hacking, for his support. I also thank the organizers of the MPS Conference on Higher Dimensional Geometry and the Simons Foundation for this opportunity to present

Definitions

A log Calabi-Yau surface is a pair (Y, D) where: $\star Y$ is a smooth, complex, projective surface; $\bigstar D \subset Y$ is a normal crossing divisor; and

We always assume that $D \neq 0$ and D is singular.

If there are no (-2)-curves $C \subset Y \setminus D$, then (Y, D) is said to be **generic** and we write $(Y, D) = (Y_{qen}, D_{qen})$.

The admissible group:

 $Adm := \{\theta \in Aut(Pic(Y), \cdot) \mid \theta(Nef(Y_{gen})) =$ Nef (Y_{gen}) and $\theta([D_i]) = [D_i]$ for i = 1, ..., nBy work of Gross-Hacking-Keel, the admissible group is equal to the monodromy group.

The **nef effective cone**:

 $\operatorname{Nef}^{e}(Y) = \operatorname{Nef}(Y) \cap \operatorname{Eff}(Y)$

The **nef cone**:

 $Nef(Y) := \{ L \in Pic(Y) \otimes \mathbb{R} \mid L \cdot C \ge 0 \text{ for all curves } C \subset Y \}$ The **effective cone**:

$$\mathrm{ff}(Y) := \{ \sum a_i [C_i] \mid a_i \in \mathbb{R}_{>0} \text{ and curves } C_i \subset Y \}$$

The **automorphism group** of a log Calabi-Yau surface: $\operatorname{Aut}(Y, D) := \{ \theta \in \operatorname{Aut}(Y) \mid \theta(D_i) = D_i \text{ for } i = 1, \dots, n \}$

Motivation

Results by Gross-Hacking-Keel on mirror symmetry for cusp singularities suggest we consider the pair (Y, D) with a distinguished complex structure. Under our conditions, there exists a contraction of (Y, D) to a cusp singularity (Y', p). Cusp singularities come in mirror dual pairs, and the embedding dimension m of the dual cusp is equal to $\max(n,3)$, where n is the number of components of the boundary divisor D. By studying the Nef cone of (Y, D), we hope to give a description of the deformation space of the dual cusp, which is not well understood for m greater than six.

Acknowledgements