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History

Pythagorean Theorem

a2 + b2 = c2

Then (a, b, c) is a Pythagorean Triple.

Introduction to Irrational Numbers.
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Rational and Irrational Numbers

A positive number n is rational if n =
a

b
, where a, b ∈ Z+

Not rational: irrational.
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Rational Right Triangles

Some right triangles have all rational sides: Rational Triangles
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Congruent Numbers

Area of a triangle

A =
1

2
bh

Question: Given a number n, is there a rational triangle with area n?

If so, then we say n is a congruent number (or simply congruent).
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The Congruent Number Problem

The Congruent Number Problem Given a number n, is it congruent?

Example: n = 5 is congruent.

1

2
bh =

1

2
· 20

3
· 3

2
= 5

Can you think of another example?
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The Congruent Number Problem

n = 6 is a congruent number!
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Proposition

An integer n is square-free if no divisor is a perfect square.

Proposition. If n is a square-free positive integer, then the following are
equivalent:

(1) n is congruent. i.e., n =
1

2
ab, where (a, b, c) is a Pythagorean triple.

(2) There exist three rational squares in arithmetic progression with
common difference n.
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Arithmetic Progression Example

Example: n = 5
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Proof (Proposition)

n: square-free integer.

(1) ⇒ (2).

Suppose n is congruent.

Then n =
1

2
ab, where (a, b, c) Pythagorean triple.

WTS:
- three rational squares
- arithmetic progression of common difference n
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Proof (Proposition)

Let x =
c2

4
.

(a− b)2

4
=

a2 − 2ab + b2

4

=
a2 − 4n + b2

4
since n =

1

2
ab

=
(c2 − 4n)

4
since a2 + b2 = c2

=
c2

4
− n

= x − n
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Proof (Proposition)

(c2 − 4n)

4
=

(
a− b

2

)2

= x − n

c2

4
=

(
c

2

)2

= x

(c2 + 4n)

4
=

(
a + b

2

)2

= x + n

Rational square
Arithmetic progression with common difference n
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Proof (Proposition)

(2) ⇒ (1).

Suppose x − n, x , and x + n are rational squares.

Choose:

a =
√
x + n +

√
x − n ∈ Q

b =
√
x + n −

√
x − n ∈ Q

c = 2
√
x ∈ Q

Then:

a2 + b2 = c2

∴ (1) ≡ (2)
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Moreover...

(1) and (2) ⇒ (3):

(3) There exists a rational solution (x , y) on y2 = x3 − n2x other than
(−n, 0), (0, 0), (n, 0), and ∞.
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Proof Continued

Proof.

Suppose n is a congruent number. From previous slides:

(A)

(
a + b

2

)2

=

(
c

2

)2

+ n

(B)

(
a− b

2

)2

=

(
c

2

)2

− n

Multiplying (A) and (B):

(
a2 − b2

4

)2

=

(
c

2

)4

− n2
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Proof Continued

(
a2 − b2

4

)2

=

(
c

2

)4

− n2

v =
a2 − b2

4
and u =

c

2

Rational solution to the equation v2 = u4 − n2.
Multiply:

u2(v2) = u2(u4 − n2)

(uv)2 = (u2)3 − n2u2

Setting x = u2 and y = uv :

y2 = x3 − n2x
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Elliptic Curves

y2 = x3 − n2x

Elliptic Curve over field K

For K = Q,R,C:

y2 = x3 + ax + b

where a, b ∈ K
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Field K

K: Set

+ ?

1. Commutative
2. Associative
3. Every nonzero a←→ a−1

(K,+) Abelian Group

(K− {0}, ?) Multiplicative Group
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Elliptic Curves over R

(a) One Component (b) Two Components
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Singularities

Elliptic Curves: No singularities!

Singularity or Singular Point: point where tangent cannot be defined

How to tell?

No roots are the same.

Example (n 6= 0):

y2= x3 − nx

= x(x2 − n)

The roots are x = 0 and x = ±
√
n.
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Singularities

Example:

y2=x3 + x2

= x2(x + 1)

The roots are x = 0 (double root) and x = −1. Node

Example:

y2=x3

The roots are x = 0 (triple root). Cusp
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Singularities

(a) Node: 2 roots same (b) Cusp: 3 roots same
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The Binary Operation ?

Let P, Q be points on elliptic curve.
Find P ? Q.

P ? Q = Q ? P
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The Binary Operation ⊕

Define ⊕ in terms of ?.

Projective space: The point at infinity, denoted O
O on every vertical line.

To define P ⊕ Q:
1. Draw a vertical line ` through P ? Q and O
2. P ⊕ Q is the third intersection of ` with elliptic curve
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Finding P ⊕ Q Geometrically

Case 1: P 6= Q
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Finding P ⊕ Q Geometrically

Case 2: P = Q
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Group Structure under ⊕

Points on an elliptic curve with operation ⊕ form an abelian group.
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The Identity Element

The Identity Element is O.
For any points P, Q on the elliptic curve,

P ⊕ Q = O ? (P ? Q)

O ⊕ P = O ? (O ? P)

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 39 / 71



The Identity Element

The Identity Element is O.

For any points P, Q on the elliptic curve,

P ⊕ Q = O ? (P ? Q)

O ⊕ P = O ? (O ? P)

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 39 / 71



The Identity Element

The Identity Element is O.
For any points P, Q on the elliptic curve,

P ⊕ Q = O ? (P ? Q)

O ⊕ P = O ? (O ? P)

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 39 / 71



The Identity Element

The Identity Element is O.
For any points P, Q on the elliptic curve,

P ⊕ Q = O ? (P ? Q)

O ⊕ P = O ? (O ? P)

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 39 / 71



The Identity Element

The Identity Element is O.
For any points P, Q on the elliptic curve,

P ⊕ Q = O ? (P ? Q)

O ⊕ P = O ? (O ? P)

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 39 / 71



The Identity Element

The Identity Element is O.
For any points P, Q on the elliptic curve,

P ⊕ Q = O ? (P ? Q)

O ⊕ P = O ? (O ? P)

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 39 / 71



The Identity Element

The Identity Element is O.
For any points P, Q on the elliptic curve,

P ⊕ Q = O ? (P ? Q)

O ⊕ P = O ? (O ? P)

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 40 / 71



The Identity Element

The Identity Element is O.
For any points P, Q on the elliptic curve,

P ⊕ Q = O ? (P ? Q)

O ⊕ P = O ? (O ? P)

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 41 / 71



The Additive Inverse

The additive inverse of P is P reflected over x-axis.
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The Additive Inverse

The additive inverse of P is P reflected over x-axis.

Then, P ? (−P) = O, so (reflection over x-axis) P ⊕ (−P) = O
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Bezout’s Theorem

Bezout’s Theorem.

Let A be a polynomial of degree n and
B a polynomial of degree m.
Also, suppose the polynomials do not have any common components.
Then A and B intersect at nm distinct points.
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Cayley-Bacharach Theorem

Cayley-Bacharach Theorem.

Let A, B, and C be polynomials of degree three.
Suppose that A and B do not have common components.
So by Bezout’s Theorem, A and B intersect at nine points.
Suppose C passes through eight of the intersections of A and B.
Then C must also pass through the ninth intersection.

Note: Projective Space
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Cayley-Bacharach Theorem
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Cayley-Bacharach Theorem
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Cayley-Bacharach Theorem
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Associative Property

Want to show the associative property of ⊕:

P ⊕ (Q ⊕ R) = (P ⊕ Q) ⊕ R

Sufficient to show

P ? (Q ⊕ R) = (P ⊕ Q) ? R

By reflection across the x-axis, the associative property holds.
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Associative Property

Let E be an elliptic curve, and suppose P, Q, R are points on E .
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Associative Property

Let l1 be the line passing through points P, Q, and P ? Q.
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Associative Property

Let l2 be the line passing through points Q, R, and Q ? R.
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Associative Property

Let m1 be the line passing through points Q ? R and Q ⊕ R.
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Associative Property

Let m2 be the line passing through points P ? Q and P ⊕ Q.
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Associative Property

Let n1 be the line passing through points P ⊕ Q and R.
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Associative Property

Let n2 be the line passing through points Q ⊕ R and P.
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Associative Property

Now we have defined the following lines:
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Associative Property

Lines n1 and n2 intersect at A.

Case (i): Suppose A lies on E .
Then,

A = P ? (Q ⊕ R)

= (P ⊕ Q) ? R

∴ the associative property holds.
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Associative Property

Case (ii): Suppose A does not lie on E .
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Associative Property

Define: S = { P, Q, R, P?Q, Q?R, P⊕Q, Q⊕R, A, O }

{l1,m1, n1} and {l2,m2, n2}
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Associative Property

Define two curves: A = l1 ·m1 · n1 and B = l2 ·m2 · n2

Now, curves A and B both pass through all nine points in S .

Elliptic curve E intersects eight points in S (all except A).

By Cayley-Bacharach Theorem, curve E must pass through A.

Now we have reduced Case (ii) to Case (i).

∴ the associative property holds.
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Group Structure under ⊕

Proposition The composition law ⊕ has the following properties:

(1) P ⊕O = P

(2) P ⊕ Q = Q ⊕ P

(3) For every P ←→ −P such that P ⊕ (−P) = O
(4) (P ⊕ Q)⊕ R = P ⊕ (Q ⊕ R)

Points on elliptic curve with ⊕ form an abelian group!
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Finding P ⊕ Q Algebraically

Geometric addition translates to algebra.

Example 1. Consider elliptic curve E : y2 = x3 + 17

The point P = (2, 5) lies on this curve.
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Finding P ⊕ Q Algebraically

Example 2. Consider elliptic curve E : y2 − y = x3 − x2

The point Q = (0, 0) lies on this curve.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 64 / 71



Finding P ⊕ Q Algebraically

Example 2. Consider elliptic curve E : y2 − y = x3 − x2

The point Q = (0, 0) lies on this curve.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 64 / 71



Finding P ⊕ Q Algebraically

Example 2. Consider elliptic curve E : y2 − y = x3 − x2

The point Q = (0, 0) lies on this curve.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 64 / 71



Torsion Points

P + P = 2P
2P + P = 3P
...

If P + P + · · ·+ P︸ ︷︷ ︸
n

= O, then P is an n-torsion point.

Otherwise, P has infinite order.

Previously:

(Ex. 1) P is of infinite order on E
(Ex. 2) Q is of order 5 on E
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Mordell’s Theorem

Mordell’s Theorem. The group of rational points of an elliptic curve over
Q is finitely generated. Hence, it is Zr ⊕ F with F finite abelian.

Given a few points on a curve, can I obtain from these points the point P?

r: rank of E (Q)

r = 0 ⇒ every point is a torsion point.
larger r ⇒ more generators needed to obtain point P.
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Proposition

For a fixed integer n,

En : y2 = x3 − n2x

Proposition. A square-free integer n fails to be congruent if and only if the
elliptic curve En has the property that En(Q) has rank 0.
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A Million Dollar Conjecture

Birch-Swinnerton-Dyer Conjecture: Consider two formal power series:

x
∞∏
n=1

g(x) = (1− x8n)(1− x16n)

θj(x) = 1 + 2
∞∑
n=1

x2jn
2

where j = 1 or j = 2.

Then consider their products:

g(x)θ1(x) =
∞∑
n=1

a(n)xn

g(x)θ2(x) =
∞∑
n=1

b(n)xn
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Connection to Congruent Numbers

Corollary (of Birch-Swinnerton-Dyer Conjecture). Let n be any odd
square-free positive integer. Then

(i) n is congruent if and only if a(n) = 0,

(ii) 2n is congruent if and only if b(n) = 0.
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Conclusion

Study of congruent numbers =⇒ motivation for study of elliptic curves.

Discoveries in elliptic curves =⇒ progress on congruent number problem.

Theoretically Interesting.
Also very useful in cryptography.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 70 / 71



Conclusion

Study of congruent numbers =⇒ motivation for study of elliptic curves.

Discoveries in elliptic curves =⇒ progress on congruent number problem.

Theoretically Interesting.
Also very useful in cryptography.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 70 / 71



Conclusion

Study of congruent numbers =⇒ motivation for study of elliptic curves.

Discoveries in elliptic curves =⇒ progress on congruent number problem.

Theoretically Interesting.
Also very useful in cryptography.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 70 / 71



Conclusion

Study of congruent numbers =⇒ motivation for study of elliptic curves.

Discoveries in elliptic curves =⇒ progress on congruent number problem.

Theoretically Interesting.
Also very useful in cryptography.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 70 / 71



Conclusion

Study of congruent numbers =⇒ motivation for study of elliptic curves.

Discoveries in elliptic curves =⇒ progress on congruent number problem.

Theoretically Interesting.

Also very useful in cryptography.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 70 / 71



Conclusion

Study of congruent numbers =⇒ motivation for study of elliptic curves.

Discoveries in elliptic curves =⇒ progress on congruent number problem.

Theoretically Interesting.
Also very useful in cryptography.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves March 2, 2015 70 / 71



Thanks to Professor Long and Professor Hoffman!
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