Congruent Numbers and Elliptic Curves

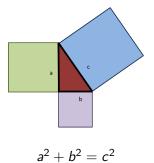
Jennifer Li

Department of Mathematics Louisiana State University Baton Rouge

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

History

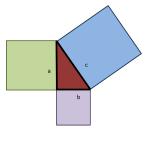
Pythagorean Theorem



<ロ> (日) (日) (日) (日) (日)

History

Pythagorean Theorem



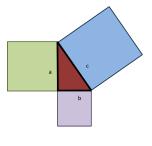
$$a^2 + b^2 = c^2$$

Then (a, b, c) is a Pythagorean Triple.

< 回 > < 三 > < 三 >

History

Pythagorean Theorem



$$a^2 + b^2 = c^2$$

Then (a, b, c) is a Pythagorean Triple.

Introduction to Irrational Numbers.

★ ∃ >

A positive number *n* is rational if $n = \frac{a}{b}$, where $a, b \in \mathbb{Z}^+$

(日) (同) (三) (三)

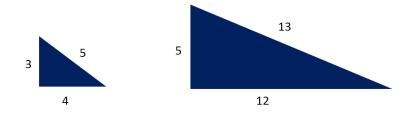
A positive number n is rational if $n = \frac{a}{b}$, where $a, b \in \mathbb{Z}^+$

Not rational: irrational.

• • = • • = •

Some right triangles have all rational sides: Rational Triangles

Some right triangles have all rational sides: Rational Triangles



- - E

Area of a triangle

$$A = \frac{1}{2}bh$$

個 と く ヨ と く ヨ と

Area of a triangle

$$A = \frac{1}{2}bh$$

Question: Given a number n, is there a rational triangle with area n?

Area of a triangle

$$A = \frac{1}{2}bh$$

Question: Given a number n, is there a rational triangle with area n?

If so, then we say n is a congruent number (or simply congruent).

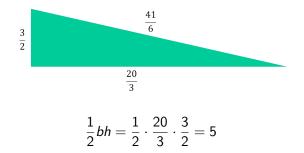
The Congruent Number Problem Given a number *n*, is it congruent?

The Congruent Number Problem Given a number *n*, is it congruent?

Example: n = 5 is congruent.

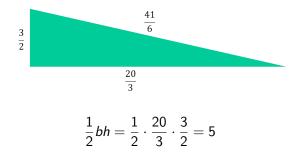
The Congruent Number Problem Given a number *n*, is it congruent?

Example: n = 5 is congruent.



The Congruent Number Problem Given a number *n*, is it congruent?

Example: n = 5 is congruent.

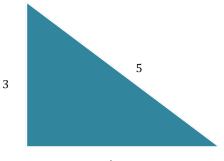


Can you think of another example?

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

(日) (同) (三) (三)

n = 6 is a congruent number!



-

→ < Ξ →</p>

Proposition. If n is a square-free positive integer, then the following are equivalent:

Proposition. If n is a square-free positive integer, then the following are equivalent:

(1) n is congruent.

Proposition. If n is a square-free positive integer, then the following are equivalent:

(1) *n* is congruent. i.e.,
$$n = \frac{1}{2}ab$$
, where (a, b, c) is a Pythagorean triple.

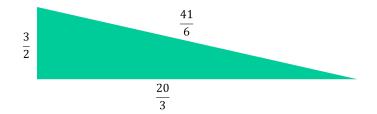
Proposition. If n is a square-free positive integer, then the following are equivalent:

n is congruent. i.e., n = ¹/₂ab, where (a, b, c) is a Pythagorean triple.
 There exist three rational squares in arithmetic progression with common difference n.

Example: n = 5

(日) (周) (三) (三)

Example: n = 5



< 回 > < 三 > < 三 >

Example: n = 541 6 $\frac{3}{2}$ $\frac{20}{3}$ $\left(\frac{961}{144}\right)$ $\left(\frac{1681}{144}\right)$

< 回 > < 三 > < 三 >

March 2, 2015 9 / 71

3

Example: n = 541 6 $\frac{3}{2}$ $\frac{20}{3}$ $\left(\frac{961}{144}\right) = \left(\frac{31}{12}\right)^2$ $\left(\frac{1681}{144}\right) = \left(\frac{41}{12}\right)^2 \qquad \left(\frac{2401}{144}\right) = \left(\frac{49}{12}\right)^2$

March 2, 2015 10 / 71

· · · · · · · · ·

Example: n = 541 6 $\frac{3}{2}$ $\frac{20}{3}$ $\left(\frac{961}{144}\right) = \left(\frac{31}{12}\right)^2$ $\left(\frac{1681}{144}\right) = \left(\frac{41}{12}\right)^2 \qquad \qquad \left(\frac{2401}{144}\right) = \left(\frac{49}{12}\right)^2$ 5 5

3

3

(日) (同) (日) (日) (日)

- n: square-free integer.
- $(1) \Rightarrow (2).$

(日) (同) (日) (日) (日)

- n: square-free integer.
- $(1) \Rightarrow (2).$
- Suppose *n* is congruent.

過 ト イヨ ト イヨト

 $(1) \Rightarrow (2).$

Suppose *n* is congruent.

Then
$$n=rac{1}{2}ab$$
, where (a,b,c) Pythagorean triple.

3

過 ト イヨ ト イヨト

 $(1) \Rightarrow (2).$

Suppose *n* is congruent.

Then
$$n = \frac{1}{2}ab$$
, where (a, b, c) Pythagorean triple.
WTS:

3

過 ト イヨ ト イヨト

 $(1) \Rightarrow (2).$

Suppose *n* is congruent.

Then
$$n=rac{1}{2}ab$$
, where (a,b,c) Pythagorean triple.

WTS:

- three rational squares

3

- ∢ ≣ →

3 ×

 $(1) \Rightarrow (2).$

Suppose *n* is congruent.

Then
$$n=rac{1}{2}ab$$
, where (a,b,c) Pythagorean triple.

WTS:

- three rational squares
- arithmetic progression of common difference n

Proof (Proposition)

Let
$$x = \frac{c^2}{4}$$
.

3

<ロ> (日) (日) (日) (日) (日)

Proof (Proposition)

Let $x = \frac{c^2}{4}$.

$$\frac{(a-b)^2}{4} = \frac{a^2 - 2ab + b^2}{4}$$

(日) (四) (王) (王) (王)

Let $x = \frac{c^2}{4}$.

$$\frac{(a-b)^2}{4} = \frac{a^2 - 2ab + b^2}{4}$$
$$= \frac{a^2 - 4n + b^2}{4} \qquad \text{since } n = \frac{1}{2}ab$$

Let $x = \frac{c^2}{4}$.

$$\frac{(a-b)^2}{4} = \frac{a^2 - 2ab + b^2}{4}$$
$$= \frac{a^2 - 4n + b^2}{4}$$
$$= \frac{(c^2 - 4n)}{4}$$

since
$$n = \frac{1}{2}ab$$

since $a^2 + b^2 = c^2$

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

Let $x = \frac{c^2}{4}$.

$$\frac{(a-b)^2}{4} = \frac{a^2 - 2ab + b^2}{4}$$
$$= \frac{a^2 - 4n + b^2}{4}$$
$$= \frac{(c^2 - 4n)}{4}$$
$$= \frac{c^2}{4} - n$$

since
$$n = \frac{1}{2}ab$$

since $a^2 + b^2 = c^2$

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

March 2, 2015 13 / 71

Let $x = \frac{c^2}{4}$.

$$\frac{(a-b)^2}{4} = \frac{a^2 - 2ab + b^2}{4}$$
$$= \frac{a^2 - 4n + b^2}{4}$$
$$= \frac{(c^2 - 4n)}{4}$$
$$= \frac{c^2}{4} - n$$
$$= x - n$$

since
$$n = \frac{1}{2}ab$$

since $a^2 + b^2 = c^2$

Also,

$$\frac{(a+b)^2}{4} = \frac{a^2 + 2ab + b^2}{4}$$

3

<ロ> (日) (日) (日) (日) (日)

Also,

$$\frac{(a+b)^2}{4} = \frac{a^2 + 2ab + b^2}{4}$$
$$= \frac{(a^2 + b^2) + 4n}{4} \qquad \text{since } n = \frac{1}{2}ab$$

March 2, 2015 14 / 71

3

<ロ> (日) (日) (日) (日) (日)

Also,

$$\frac{(a+b)^2}{4} = \frac{a^2 + 2ab + b^2}{4}$$
$$= \frac{(a^2 + b^2) + 4n}{4}$$
$$= \frac{(c^2 + 4n)}{4}$$

since
$$n = \frac{1}{2}ab$$

since $a^2 + b^2 = c^2$

<ロ> (日) (日) (日) (日) (日)

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

3

Also,

$$\frac{(a+b)^2}{4} = \frac{a^2 + 2ab + b^2}{4}$$
$$= \frac{(a^2 + b^2) + 4n}{4}$$
sinc
$$= \frac{(c^2 + 4n)}{4}$$
sinc
$$= \frac{c^2}{4} + n$$
sinc

since
$$n = \frac{1}{2}ab$$

since $a^2 + b^2 = c^2$
since $x = \frac{c^2}{4}$

<ロ> (日) (日) (日) (日) (日)

3

Also,

$$\frac{(a+b)^2}{4} = \frac{a^2 + 2ab + b^2}{4}$$

= $\frac{(a^2 + b^2) + 4n}{4}$ since $n = \frac{1}{2}ab$
= $\frac{(c^2 + 4n)}{4}$ since $a^2 + b^2 = c^2$
= $\frac{c^2}{4} + n$ since $x = \frac{c^2}{4}$
= $x + n$

March 2, 2015 14 / 71

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

3

<ロ> (日) (日) (日) (日) (日)

$$\frac{(c^2 - 4n)}{4} = \left(\frac{a - b}{2}\right)^2 = x - n$$
$$\frac{c^2}{4} = \left(\frac{c}{2}\right)^2 = x$$
$$\frac{(c^2 + 4n)}{4} = \left(\frac{a + b}{2}\right)^2 = x + n$$

イロン イヨン イヨン イヨン

$$\frac{(c^2 - 4n)}{4} = \left(\frac{a - b}{2}\right)^2 = x - n$$
$$\frac{c^2}{4} = \left(\frac{c}{2}\right)^2 = x$$
$$\frac{(c^2 + 4n)}{4} = \left(\frac{a + b}{2}\right)^2 = x + n$$

Rational square Arithmetic progression with common difference *n*

March 2, 2015

A B M A B M

3

 $(2) \Rightarrow (1).$

(2) \Rightarrow (1).

Suppose x - n, x, and x + n are rational squares.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(2) \Rightarrow (1).

Suppose x - n, x, and x + n are rational squares.

Choose:

(2) \Rightarrow (1).

Suppose x - n, x, and x + n are rational squares. Choose:

$$a = \sqrt{x+n} + \sqrt{x-n} \qquad \in \mathbb{Q}$$

(2) \Rightarrow (1).

Suppose x - n, x, and x + n are rational squares. Choose:

$$a = \sqrt{x + n} + \sqrt{x - n} \qquad \in \mathbb{Q}$$
$$b = \sqrt{x + n} - \sqrt{x - n} \qquad \in \mathbb{Q}$$

(2) \Rightarrow (1).

Suppose x - n, x, and x + n are rational squares. Choose:

$$a = \sqrt{x + n} + \sqrt{x - n} \qquad \in \mathbb{Q}$$

$$b = \sqrt{x + n} - \sqrt{x - n} \qquad \in \mathbb{Q}$$

$$c = 2\sqrt{x} \qquad \in \mathbb{Q}$$

(2) \Rightarrow (1).

Suppose x - n, x, and x + n are rational squares. Choose:

$$a = \sqrt{x + n} + \sqrt{x - n}$$
 $\in \mathbb{Q}$ $b = \sqrt{x + n} - \sqrt{x - n}$ $\in \mathbb{Q}$ $c = 2\sqrt{x}$ $\in \mathbb{Q}$

Then:

3

(人間) システン イラン

(2) \Rightarrow (1).

Suppose x - n, x, and x + n are rational squares. Choose:

$$a = \sqrt{x + n} + \sqrt{x - n} \qquad \in \mathbb{Q}$$

$$b = \sqrt{x + n} - \sqrt{x - n} \qquad \in \mathbb{Q}$$

$$c = 2\sqrt{x} \qquad \in \mathbb{Q}$$

Then:

$$a^2 + b^2 = c^2$$

3

(人間) システン イラン

 $(2) \Rightarrow (1).$

Suppose x - n, x, and x + n are rational squares. Choose:

$$a = \sqrt{x + n} + \sqrt{x - n}$$
 $\in \mathbb{Q}$ $b = \sqrt{x + n} - \sqrt{x - n}$ $\in \mathbb{Q}$ $c = 2\sqrt{x}$ $\in \mathbb{Q}$

Then:

$$a^2 + b^2 = c^2$$

 \therefore (1) \equiv (2)

< 回 ト < 三 ト < 三 ト

(1) and (2)
$$\Rightarrow$$
 (3):

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

- (1) and (2) \Rightarrow (3):
- (3) There exists a rational solution (x, y) on $y^2 = x^3 n^2 x$ other than (-n, 0), (0, 0), (n, 0), and ∞ .

Proof.

・ロト ・四ト ・ヨト ・ヨト

Proof.

Suppose n is a congruent number. From previous slides:

3

- 4 同 6 4 日 6 4 日 6

Proof.

Suppose n is a congruent number. From previous slides:

(A)
$$\left(\frac{a+b}{2}\right)^2 = \left(\frac{c}{2}\right)^2 + n$$

(B) $\left(\frac{a-b}{2}\right)^2 = \left(\frac{c}{2}\right)^2 - n$

3

- 4 同 6 4 日 6 4 日 6

Proof.

Suppose n is a congruent number. From previous slides:

(A)
$$\left(\frac{a+b}{2}\right)^2 = \left(\frac{c}{2}\right)^2 + n$$

(B) $\left(\frac{a-b}{2}\right)^2 = \left(\frac{c}{2}\right)^2 - n$

Multiplying (A) and (B):

3

Proof.

Suppose n is a congruent number. From previous slides:

(A)
$$\left(\frac{a+b}{2}\right)^2 = \left(\frac{c}{2}\right)^2 + n$$

(B) $\left(\frac{a-b}{2}\right)^2 = \left(\frac{c}{2}\right)^2 - n$

Multiplying (A) and (B):

$$\left(\frac{a^2-b^2}{4}\right)^2 = \left(\frac{c}{2}\right)^4 - n^2$$

3

$$\left(\frac{a^2-b^2}{4}\right)^2 = \left(\frac{c}{2}\right)^4 - n^2$$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\left(\frac{a^2-b^2}{4}\right)^2 = \left(\frac{c}{2}\right)^4 - n^2$$

$$v = rac{a^2 - b^2}{4}$$
 and $u = rac{c}{2}$

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

$$\left(\frac{a^2-b^2}{4}\right)^2 = \left(\frac{c}{2}\right)^4 - n^2$$

$$v=rac{a^2-b^2}{4}$$
 and $u=rac{c}{2}$

Rational solution to the equation $v^2 = u^4 - n^2$.

3

$$\left(\frac{a^2-b^2}{4}\right)^2 = \left(\frac{c}{2}\right)^4 - n^2$$

$$v=rac{a^2-b^2}{4}$$
 and $u=rac{c}{2}$

Rational solution to the equation $v^2 = u^4 - n^2$. Multiply:

3

$$\left(\frac{a^2-b^2}{4}\right)^2 = \left(\frac{c}{2}\right)^4 - n^2$$

$$v=rac{a^2-b^2}{4}$$
 and $u=rac{c}{2}$

Rational solution to the equation $v^2 = u^4 - n^2$. Multiply:

$$u^2(v^2) = u^2(u^4 - n^2)$$

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

3

$$\left(\frac{a^2-b^2}{4}\right)^2 = \left(\frac{c}{2}\right)^4 - n^2$$

$$v=rac{a^2-b^2}{4}$$
 and $u=rac{c}{2}$

Rational solution to the equation $v^2 = u^4 - n^2$. Multiply:

$$u^{2}(v^{2}) = u^{2}(u^{4} - n^{2})$$
$$(uv)^{2} = (u^{2})^{3} - n^{2}u^{2}$$

3

$$\left(\frac{a^2-b^2}{4}\right)^2 = \left(\frac{c}{2}\right)^4 - n^2$$

$$v=rac{a^2-b^2}{4}$$
 and $u=rac{c}{2}$

Rational solution to the equation $v^2 = u^4 - n^2$. Multiply:

$$u^{2}(v^{2}) = u^{2}(u^{4} - n^{2})$$
$$(uv)^{2} = (u^{2})^{3} - n^{2}u^{2}$$

Setting $x = u^2$ and y = uv:

- 34

$$\left(\frac{a^2-b^2}{4}\right)^2 = \left(\frac{c}{2}\right)^4 - n^2$$

$$v=rac{a^2-b^2}{4}$$
 and $u=rac{c}{2}$

Rational solution to the equation $v^2 = u^4 - n^2$. Multiply:

$$u^{2}(v^{2}) = u^{2}(u^{4} - n^{2})$$
$$(uv)^{2} = (u^{2})^{3} - n^{2}u^{2}$$

Setting $x = u^2$ and y = uv:

$$y^2 = x^3 - n^2 x$$

Elliptic Curves

$$y^2 = x^3 - n^2 x$$

3

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

$$y^2 = x^3 - n^2 x$$

Elliptic Curve over field ${\mathbb K}$

æ

<ロ> (日) (日) (日) (日) (日)

$$y^2 = x^3 - n^2 x$$

Elliptic Curve over field K

For $\mathbb{K} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$:

$$y^2 = x^3 + ax + b$$

where $a, b \in \mathbb{K}$

March 2, 2015 20 / 71

æ

<ロ> (日) (日) (日) (日) (日)

$\mathsf{Field}\ \mathbb{K}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

三 のへの

▲口> ▲圖> ▲国> ▲国>

 $\mathsf{Field}\ \mathbb{K}$

 $\mathbb{K}:$ Set

+ *

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

+ *

1. Commutative

<ロ> (日) (日) (日) (日) (日)

+ *

- 1. Commutative
- 2. Associative

イロト イヨト イヨト イヨト

+ *

- 1. Commutative
- 2. Associative
- 3. Every nonzero $a \longleftrightarrow a^{-1}$

(日) (周) (三) (三)

+*

- 1. Commutative
- 2. Associative
- 3. Every nonzero $a \leftrightarrow a^{-1}$
- $(\mathbb{K},+)$ Abelian Group $(\mathbb{K} - \{0\}, \star)$ Multiplicative Group

通 ト イヨ ト イヨト

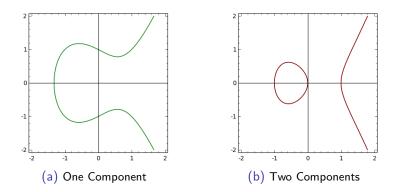
Elliptic Curves over $\mathbb R$

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

3

<ロ> (日) (日) (日) (日) (日)

Elliptic Curves over $\mathbb R$



3. 3

Elliptic Curves: No singularities!

3

- 4 @ > - 4 @ > - 4 @ >

Singularity or Singular Point: point where tangent cannot be defined

- - E

► < Ξ ►</p>

Singularity or Singular Point: point where tangent cannot be defined

How to tell?

Singularity or Singular Point: point where tangent cannot be defined

How to tell? No roots are the same.

→ 3 → 4 3

Singularity or Singular Point: point where tangent cannot be defined

How to tell? No roots are the same. Example $(n \neq 0)$:

• • = • • = •

Singularity or Singular Point: point where tangent cannot be defined

How to tell? No roots are the same. Example $(n \neq 0)$:

$$y^2 = x^3 - nx$$

• • = • • = •

Singularity or Singular Point: point where tangent cannot be defined

How to tell? No roots are the same. Example $(n \neq 0)$:

 $y^2 = x^3 - nx$ $= x(x^2 - n)$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Singularity or Singular Point: point where tangent cannot be defined

How to tell? No roots are the same. Example $(n \neq 0)$:

$$y^2 = x^3 - nx$$
$$= x(x^2 - n)$$

The roots are x = 0 and $x = \pm \sqrt{n}$.

Example:

(日) (四) (王) (王) (王)

Example:

 $y^2 = x^3 + x^2$ $= x^2(x+1)$

<ロ> (日) (日) (日) (日) (日)

Example:

$$y^2 = x^3 + x^2$$
$$= x^2(x+1)$$

The roots are x = 0 (double root) and x = -1.

イロト イポト イヨト イヨト

Example:

$$y^2 = x^3 + x^2$$
$$= x^2(x+1)$$

The roots are x = 0 (double root) and x = -1. Node

(日) (周) (三) (三)

Example:

$$y^2 = x^3 + x^2$$
$$= x^2(x+1)$$

The roots are x = 0 (double root) and x = -1. Node

Example:

Example:

$$y^2 = x^3 + x^2$$
$$= x^2(x+1)$$

The roots are x = 0 (double root) and x = -1. Node

Example:

$$y^2 = x^3$$

3

Example:

$$y^2 = x^3 + x^2$$
$$= x^2(x+1)$$

The roots are x = 0 (double root) and x = -1. Node

Example:

$$y^2 = x^3$$

The roots are x = 0 (triple root).

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Example:

$$y^2 = x^3 + x^2$$
$$= x^2(x+1)$$

The roots are x = 0 (double root) and x = -1. Node

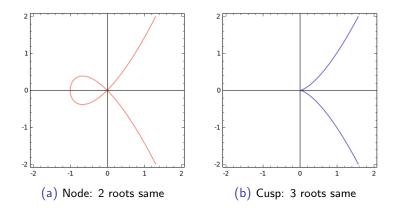
Example:

$$y^2 = x^3$$

The roots are x = 0 (triple root). Cusp

3

・ 同 ト ・ ヨ ト ・ ヨ ト



æ

過 ト イヨト イヨト

The Binary Operation \star

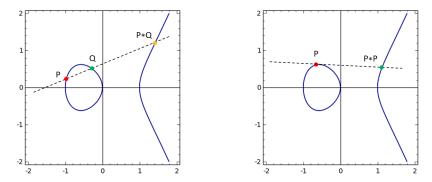
Let P, Q be points on elliptic curve. Find P \star Q.

3

< 回 ト < 三 ト < 三 ト

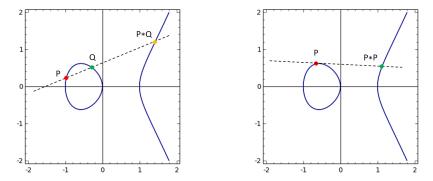
The Binary Operation \star

Let P, Q be points on elliptic curve. Find P \star Q.



The Binary Operation \star

Let P, Q be points on elliptic curve. Find P \star Q.



 $P \star Q = Q \star P$

The Binary Operation \oplus

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

3

<ロ> (日) (日) (日) (日) (日)

Define \oplus in terms of \star .

3

(日) (同) (三) (三)

Define \oplus in terms of \star .

Projective space: The point at infinity, denoted ${\cal O}$

- ∢ ≣ →

Define \oplus in terms of \star .

Projective space: The point at infinity, denoted \mathcal{O} \mathcal{O} on every vertical line.

- ∢ ≣ →

- ∢ ∃ ▶

Define \oplus in terms of $\star.$

Projective space: The point at infinity, denoted \mathcal{O} \mathcal{O} on every vertical line.

To define $P \oplus Q$:

1. Draw a vertical line ℓ through P \star Q and $\mathcal O$

- ∢ ≣ →

- ∢ ∃ ▶

Define \oplus in terms of $\star.$

Projective space: The point at infinity, denoted ${\cal O}$

 \mathcal{O} on every vertical line.

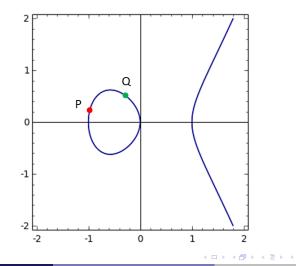
To define $P \oplus Q$:

- 1. Draw a vertical line ℓ through P \star Q and $\mathcal O$
- 2. $\mathsf{P} \oplus \mathsf{Q}$ is the third intersection of ℓ with elliptic curve

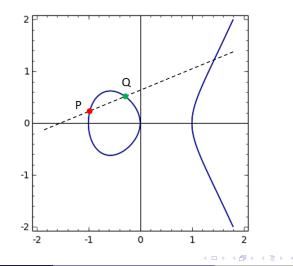
Case 1: $P \neq Q$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

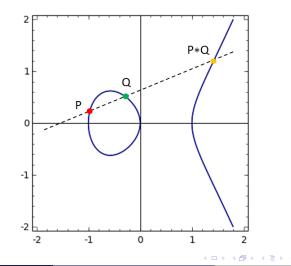
Case 1: $P \neq Q$



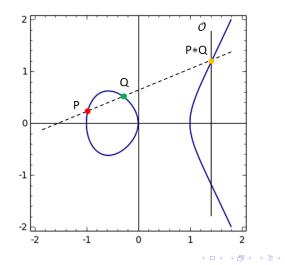
Case 1: $P \neq Q$



Case 1: $P \neq Q$

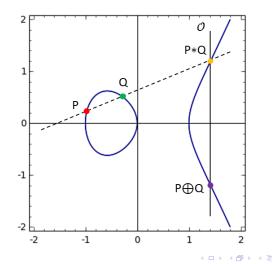


Case 1: $P \neq Q$



3 x 3

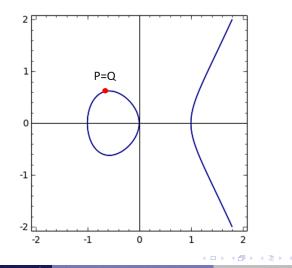
Case 1: $P \neq Q$



Case 2: P = Q

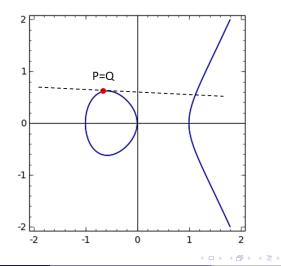
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Case 2: P = Q



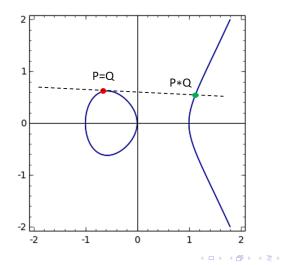
3. 3

Case 2: P = Q



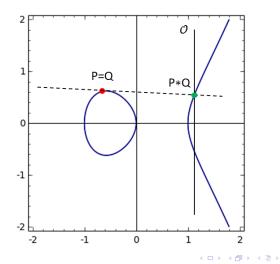
3. 3

Case 2: P = Q



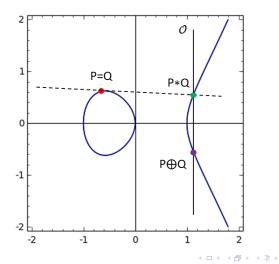
3 x 3

Case 2: P = Q



3 x 3

Case 2: P = Q



3. 3

Points on an elliptic curve with operation \oplus form an abelian group.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

3

<ロ> (日) (日) (日) (日) (日)

The Identity Element is \mathcal{O} .

3

(日) (同) (三) (三)

The Identity Element is \mathcal{O} . For any points P, Q on the elliptic curve,

- ∢ ≣ →

The Identity Element is \mathcal{O} . For any points P, Q on the elliptic curve,

 $\mathsf{P} \oplus \mathsf{Q} = \mathcal{O} \star (\mathsf{P} \star \mathsf{Q})$

3

- ∢ ≣ →

▲ 同 ▶ → ● ▶

The Identity Element is \mathcal{O} . For any points P, Q on the elliptic curve,

 $\mathsf{P} \oplus \mathsf{Q} = \mathcal{O} \star (\mathsf{P} \star \mathsf{Q})$ $\mathcal{O} \oplus \mathsf{P} = \mathcal{O} \star (\mathcal{O} \star \mathsf{P})$

3

< 回 ト < 三 ト < 三 ト

The Identity Element is \mathcal{O} . For any points P, Q on the elliptic curve,

> $\mathsf{P} \oplus \mathsf{Q} = \mathcal{O} \star (\mathsf{P} \star \mathsf{Q})$ $\mathcal{O} \oplus \mathsf{P} = \mathcal{O} \star (\mathcal{O} \star \mathsf{P})$ 0 1 Ρ 0 -1 -2 -2 -1 0 1 2

The Identity Element is \mathcal{O} . For any points P, Q on the elliptic curve,

> $\mathsf{P} \oplus \mathsf{Q} = \mathcal{O} \star (\mathsf{P} \star \mathsf{Q})$ $\mathcal{O} \oplus \mathsf{P} = \mathcal{O} \star (\mathcal{O} \star \mathsf{P})$ 0 1 0 0 * P -1 -2 -2 -1 0 1 2

The Identity Element is \mathcal{O} . For any points P, Q on the elliptic curve,

> $\mathsf{P} \oplus \mathsf{Q} = \mathcal{O} \star (\mathsf{P} \star \mathsf{Q})$ $\mathcal{O} \oplus \mathsf{P} = \mathcal{O} \star (\mathcal{O} \star \mathsf{P})$ 2 0 0 * (0 * P) 0 -1 -2 -2 -1 0 1 2

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

æ

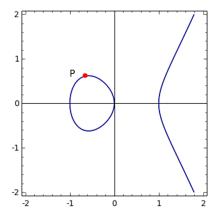
<ロ> (日) (日) (日) (日) (日)

The additive inverse of P is P reflected over x-axis.

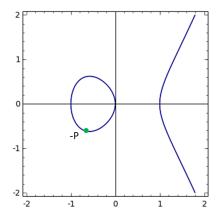
3

(日) (同) (三) (三)

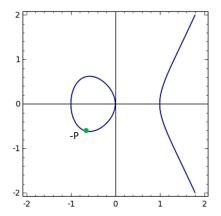
The additive inverse of P is P reflected over x-axis.



The additive inverse of P is P reflected over x-axis.



The additive inverse of P is P reflected over x-axis.



Then, $P \star (-P) = \mathcal{O}$, so (reflection over x-axis) $P \oplus (-P) = \mathcal{O}$

Jennifer Li (Louisiana State University)

3

(日) (同) (三) (三)

Bezout's Theorem. Let \mathcal{A} be a polynomial of degree n and

-

Let \mathcal{A} be a polynomial of degree n and \mathcal{B} a polynomial of degree m.

Let \mathcal{A} be a polynomial of degree n and

 \mathcal{B} a polynomial of degree m.

Also, suppose the polynomials do not have any common components.

Let \mathcal{A} be a polynomial of degree n and \mathcal{B} a polynomial of degree m. Also, suppose the polynomials do not have any common components. Then \mathcal{A} and \mathcal{B} intersect at nm distinct points. Cayley-Bacharach Theorem.

3

∃ → (∃ →

< (T) > <

Cayley-Bacharach Theorem.

Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be polynomials of degree three.

-

Cayley-Bacharach Theorem.

Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be polynomials of degree three. Suppose that \mathcal{A} and \mathcal{B} do not have common components.

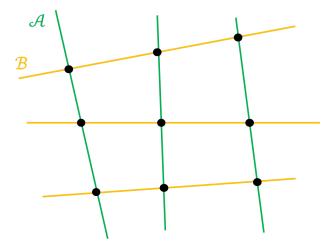
Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be polynomials of degree three. Suppose that \mathcal{A} and \mathcal{B} do not have common components. So by Bezout's Theorem, \mathcal{A} and \mathcal{B} intersect at nine points.

Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be polynomials of degree three. Suppose that \mathcal{A} and \mathcal{B} do not have common components. So by Bezout's Theorem, \mathcal{A} and \mathcal{B} intersect at nine points. Suppose \mathcal{C} passes through eight of the intersections of \mathcal{A} and \mathcal{B} .

Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be polynomials of degree three. Suppose that \mathcal{A} and \mathcal{B} do not have common components. So by Bezout's Theorem, \mathcal{A} and \mathcal{B} intersect at nine points. Suppose \mathcal{C} passes through eight of the intersections of \mathcal{A} and \mathcal{B} . Then \mathcal{C} must also pass through the ninth intersection.

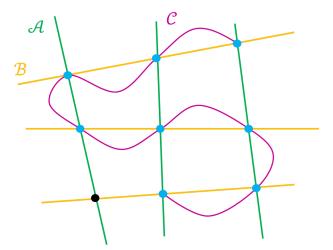
Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be polynomials of degree three. Suppose that \mathcal{A} and \mathcal{B} do not have common components. So by Bezout's Theorem, \mathcal{A} and \mathcal{B} intersect at nine points. Suppose \mathcal{C} passes through eight of the intersections of \mathcal{A} and \mathcal{B} . Then \mathcal{C} must also pass through the ninth intersection.

Note: Projective Space



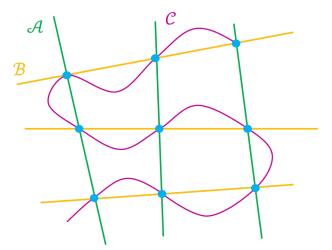
3

イロト イヨト イヨト イヨト



æ

イロト イヨト イヨト イヨト



æ

イロト イヨト イヨト イヨト

Want to show the associative property of \oplus :

$$\mathsf{P} \oplus (\mathsf{Q} \oplus \mathsf{R}) = (\mathsf{P} \oplus \mathsf{Q}) \oplus \mathsf{R}$$

-

Want to show the associative property of \oplus :

$$\mathsf{P} \oplus (\mathsf{Q} \oplus \mathsf{R}) = (\mathsf{P} \oplus \mathsf{Q}) \oplus \mathsf{R}$$

Sufficient to show

$$\mathsf{P} \star (\mathsf{Q} \oplus \mathsf{R}) = (\mathsf{P} \oplus \mathsf{Q}) \star \mathsf{R}$$

Want to show the associative property of \oplus :

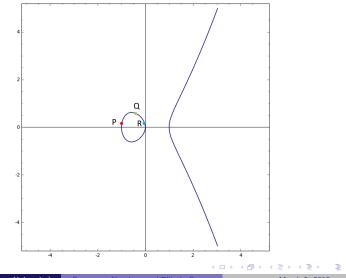
$$\mathsf{P} \oplus (\mathsf{Q} \oplus \mathsf{R}) = (\mathsf{P} \oplus \mathsf{Q}) \oplus \mathsf{R}$$

Sufficient to show

$$\mathsf{P} \star (\mathsf{Q} \oplus \mathsf{R}) = (\mathsf{P} \oplus \mathsf{Q}) \star \mathsf{R}$$

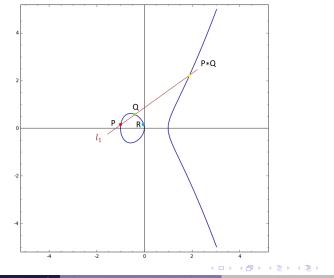
By reflection across the x-axis, the associative property holds.

Let ${\mathcal E}$ be an elliptic curve, and suppose P, Q, R are points on ${\mathcal E}$.

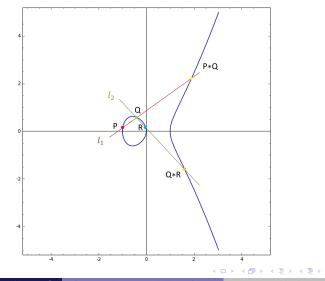


Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curve

Let l_1 be the line passing through points P, Q, and P \star Q.

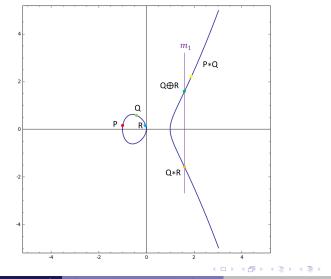


Let l_2 be the line passing through points Q, R, and Q \star R.



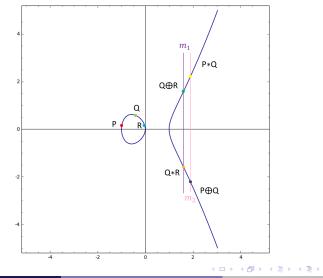
Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Cu

Let m_1 be the line passing through points $Q \star R$ and $Q \oplus R$.



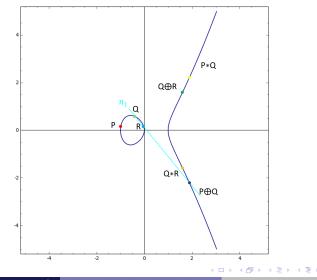
Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curv

Let m_2 be the line passing through points $P \star Q$ and $P \oplus Q$.



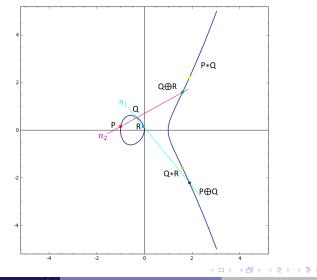
Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curv

Let n_1 be the line passing through points $P \oplus Q$ and R.



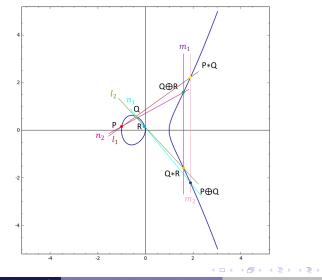
Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curr

Let n_2 be the line passing through points $Q \oplus R$ and P.



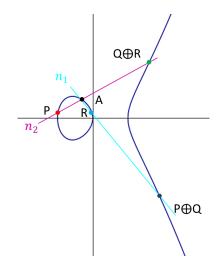
Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Cur

Now we have defined the following lines:



Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

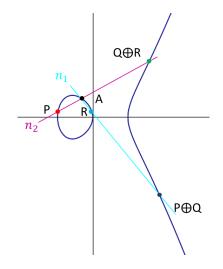
Lines n_1 and n_2 intersect at A.



3

э.

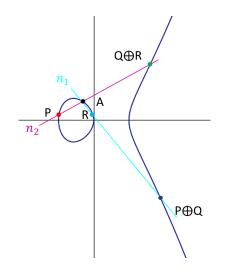
Lines n_1 and n_2 intersect at A. Case (i): Suppose A lies on \mathcal{E} . Then,



3 ×

Lines n_1 and n_2 intersect at A. Case (i): Suppose A lies on \mathcal{E} . Then,

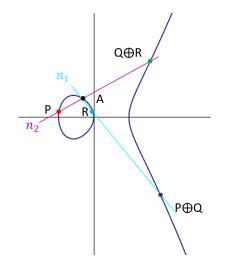
 $A = P \star (Q \oplus R)$



< ∃ >

Lines n_1 and n_2 intersect at A. Case (i): Suppose A lies on \mathcal{E} . Then,

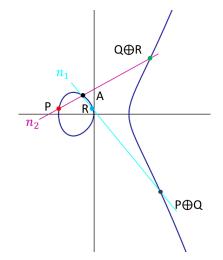
$$A = P \star (Q \oplus R)$$
$$= (P \oplus Q) \star R$$



3 ×

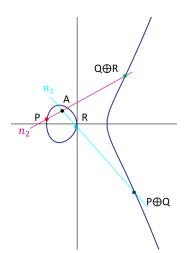
Lines n_1 and n_2 intersect at A. Case (i): Suppose A lies on \mathcal{E} . Then,

 $A = P \star (Q \oplus R)$ $= (P \oplus Q) \star R$



.: the associative property holds.

Case (ii): Suppose A does not lie on \mathcal{E} .



3

-

Define: S = { P, Q, R, P*Q, Q*R, P \oplus Q, Q \oplus R, A, O }

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

イロト イポト イヨト イヨト 二日

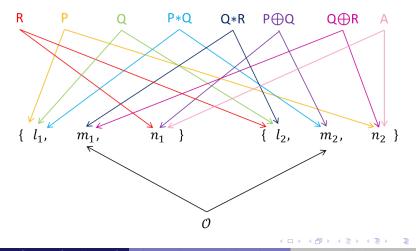
Define: S = { P, Q, R, P*Q, Q*R, P \oplus Q, Q \oplus R, A, O }

 $\{l_1, m_1, n_1\}$ and $\{l_2, m_2, n_2\}$

イロト イポト イヨト イヨト 二日

Define: $S = \{ P, Q, R, P \star Q, Q \star R, P \oplus Q, Q \oplus R, A, O \}$

 $\{l_1, m_1, n_1\}$ and $\{l_2, m_2, n_2\}$



Define two curves: $\mathcal{A} = l_1 \cdot m_1 \cdot n_1$ and $\mathcal{B} = l_2 \cdot m_2 \cdot n_2$

イロト イポト イヨト イヨト

Now, curves A and B both pass through all nine points in S.

(日) (周) (三) (三)

Now, curves \mathcal{A} and \mathcal{B} both pass through all nine points in S.

Elliptic curve \mathcal{E} intersects eight points in S (all except A).

- 4 同 6 4 日 6 4 日 6

Now, curves \mathcal{A} and \mathcal{B} both pass through all nine points in S.

Elliptic curve \mathcal{E} intersects eight points in S (all except A).

By Cayley-Bacharach Theorem, curve \mathcal{E} must pass through A.

- 4 同 6 4 日 6 4 日 6

Now, curves A and B both pass through all nine points in S.

Elliptic curve \mathcal{E} intersects eight points in S (all except A).

By Cayley-Bacharach Theorem, curve \mathcal{E} must pass through A.

Now we have *reduced* Case (ii) to Case (i).

- 本間 と えき と えき とうき

Now, curves A and B both pass through all nine points in S.

Elliptic curve \mathcal{E} intersects eight points in S (all except A).

By Cayley-Bacharach Theorem, curve \mathcal{E} must pass through A.

Now we have *reduced* Case (ii) to Case (i).

: the associative property holds.

医静脉 医静脉 医静脉 计算

Proposition The composition law \oplus has the following properties:

- (1) $P \oplus \mathcal{O} = P$
- (2) $P \oplus Q = Q \oplus P$
- (3) For every $P \longleftrightarrow -P$ such that $P \oplus (-P) = \mathcal{O}$
- (4) $(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$

・何・ ・ヨ・ ・ヨ・ ・ヨ

Proposition The composition law \oplus has the following properties:

- (1) $P \oplus \mathcal{O} = P$
- (2) $P \oplus Q = Q \oplus P$
- (3) For every $P \longleftrightarrow -P$ such that $P \oplus (-P) = \mathcal{O}$
- (4) $(P \oplus Q) \oplus R = P \oplus (Q \oplus R)$

Points on elliptic curve with \oplus form an abelian group!

・何・ ・ヨ・ ・ヨ・ ・ヨ

Finding $P \oplus Q$ Algebraically

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

イロン イヨン イヨン イヨン

Finding $P \oplus Q$ Algebraically

Geometric addition translates to algebra.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Finding $P \oplus Q$ Algebraically

Geometric addition translates to algebra.

Example 1. Consider elliptic curve $\mathcal{E}: y^2 = x^3 + 17$

イロト 不得 トイヨト イヨト 二日

Finding $P \oplus Q$ Algebraically

Geometric addition translates to algebra.

Example 1. Consider elliptic curve $\mathcal{E}: y^2 = x^3 + 17$

The point P = (2, 5) lies on this curve.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Geometric addition translates to algebra.

Example 1. Consider elliptic curve $\mathcal{E}: y^2 = x^3 + 17$

The point P = (2, 5) lies on this curve.

P = (2,5)

2P = (-64/25, 59/125)

3P = (5023/3249, -842480/185193)

4P = (38194304/87025, -236046706033/25672375)

5P = (279124379042/111229587121, 212464088270704525/37096290830311831)

6P = (-22792283822695031/9224204064998400,

1225613646951190271274203/885917648237503131648000)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Example 2. Consider elliptic curve $\mathcal{E}: y^2 - y = x^3 - x^2$

Example 2. Consider elliptic curve $\mathcal{E}: y^2 - y = x^3 - x^2$

The point Q = (0, 0) lies on this curve.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Example 2. Consider elliptic curve $\mathcal{E}: y^2 - y = x^3 - x^2$

The point Q = (0, 0) lies on this curve.

Q = (0, 0)
2Q = (1, 1)
3Q = (1, 0)
4Q = (0, 1)
5Q = O

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Torsion Points

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国

Torsion Points

P + P = 2P

Torsion Points

P + P = 2P2P + P = 3P

÷

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

P + P = 2P 2P + P = 3P: If $\underbrace{P + P + \dots + P}_{n} = \mathcal{O}$, then *P* is an n-torsion point.

イロト イポト イヨト イヨト 二日

P + P = 2P 2P + P = 3P: If $\underbrace{P + P + \dots + P}_{n} = \mathcal{O}$, then *P* is an n-torsion point.

Otherwise, P has infinite order.

イロト 不得下 イヨト イヨト 二日

P + P = 2P 2P + P = 3P: If $\underbrace{P + P + \dots + P}_{n} = \mathcal{O}$, then *P* is an n-torsion point.

Otherwise, P has infinite order.

Previously:

(Ex. 1) P is of infinite order on \mathcal{E} (Ex. 2) Q is of order 5 on \mathcal{E}

超す イヨト イヨト ニヨ

Given a few points on a curve, can I obtain from these points the point P?

Given a few points on a curve, can I obtain from these points the point P?

r: rank of $E(\mathbb{Q})$

Given a few points on a curve, can I obtain from these points the point P?

r: rank of $E(\mathbb{Q})$

 $r=0 \Rightarrow$ every point is a torsion point. larger $r \Rightarrow$ more generators needed to obtain point P. For a fixed integer n,

$$E_n: y^2 = x^3 - n^2 x$$

3

<ロ> (日) (日) (日) (日) (日)

For a fixed integer n,

$$E_n: y^2 = x^3 - n^2 x$$

Proposition. A square-free integer *n* fails to be congruent if and only if the elliptic curve E_n has the property that $E_n(\mathbb{Q})$ has rank 0.

- - E - N

→ < ∃ →</p>

A Million Dollar Conjecture

Birch-Swinnerton-Dyer Conjecture: Consider two formal power series:

$$x \prod_{n=1}^{\infty} g(x) = (1 - x^{8n})(1 - x^{16n})$$
 $heta_j(x) = 1 + 2\sum_{n=1}^{\infty} x^{2jn^2}$

where j = 1 or j = 2.

3

- ∢ ≣ →

A Million Dollar Conjecture

Birch-Swinnerton-Dyer Conjecture: Consider two formal power series:

$$x \prod_{n=1}^{\infty} g(x) = (1 - x^{8n})(1 - x^{16n})$$

 $heta_j(x) = 1 + 2 \sum_{n=1}^{\infty} x^{2jn^2}$

where j = 1 or j = 2. Then consider their products:

$$g(x)\theta_1(x) = \sum_{n=1}^{\infty} a(n)x^n$$
$$g(x)\theta_2(x) = \sum_{n=1}^{\infty} b(n)x^n$$

Connection to Congruent Numbers

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

3

(日) (同) (三) (三)

Connection to Congruent Numbers

a(1) = 1	b(1) = 1
a(3) = 2	b(3) = 0
a(5) = 0	b(5) = 2
a(7) = 0	b(7) = 0
a(11) = -2	b(11) = 0
a(13) = 0	b(13) = -2
a(15) = 0	b(15) = 0
a(17) = -4	b(17) = 0
a(19) = -2	b(19) = 0
a(21) = 0	b(21) = -4

3

(日) (同) (三) (三)

Connection to Congruent Numbers

a(1) = 1	b(1) = 1
a(3) = 2	b(3) = 0
a(5) = 0	b(5) = 2
a(7) = 0	b(7) = 0
a(11) = -2	b(11) = 0
a(13) = 0	b(13) = -2
a(15) = 0	b(15) = 0
a(17) = -4	b(17) = 0
a(19) = -2	b(19) = 0
a(21) = 0	b(21) = -4

Corollary (of Birch-Swinnerton-Dyer Conjecture). Let n be any odd square-free positive integer. Then

(i) *n* is congruent if and only if a(n) = 0, (ii) 2n is congruent if and only if b(n) = 0.

Jennifer Li (Louisiana State University) Congruent Numbers and Elliptic Curves

- 2

▲口> ▲圖> ▲屋> ▲屋>

Study of congruent numbers \implies motivation for study of elliptic curves.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Study of congruent numbers \implies motivation for study of elliptic curves. Discoveries in elliptic curves \implies progress on congruent number problem.

3

- 4 週 ト - 4 三 ト - 4 三 ト

Study of congruent numbers \implies motivation for study of elliptic curves. Discoveries in elliptic curves \implies progress on congruent number problem.

Image: A matrix and a matrix

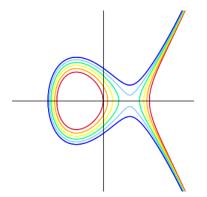
Study of congruent numbers \implies motivation for study of elliptic curves. Discoveries in elliptic curves \implies progress on congruent number problem.

Theoretically Interesting.

Study of congruent numbers \implies motivation for study of elliptic curves. Discoveries in elliptic curves \implies progress on congruent number problem.

Theoretically Interesting. Also very useful in cryptography.

Thanks to Professor Long and Professor Hoffman!



-

Image: A match a ma