Sketch of the Proof of Birkar-Cascini-Hacon-Mckernan

Main Theorem

\[R(X, K_X) = \bigoplus_{m \in \mathbb{N}} H^0(X, \mathcal{O}_X(mK_X)) \] is finitely generated.

Goal

\((X, \Delta)\): projective klt pair,

\(\Delta\) big

\(K_X + \Delta\) pseudoeffective

Then

\(K_X + \Delta\) has log terminal model.

Remark

The authors use...

- "log terminal model" to mean "minimal model"
- "canonical model" to mean "ample model"
Important terms

Our Setting

- **X**: normal variety
- **D = \sum d_i D_i**: \(\mathbb{Q}\)-divisor on \(X\)
 - \(D_i\)'s: distinct, irreducible

- **\(K_X + D\)**: \(\mathbb{Q}\)-Cartier

- **f**: \(Y \to X\) proper birational morphism

We can write:

\[
K_Y = f^*(K_X + D) + \sum_{E \in Y, \text{ prime divisor}} a(E, D) E
\]

\[
\text{discrep}(X, D) := \inf_{E} \{ a(E, D) \text{ s.t. } E \text{ is an exceptional divisor over } X \}
\]

Assume that \(D\) is a boundary (i.e., the coefficients of \(D\) belong to \([0, 1]\)).
Singularities of Pairs

We say that \((x, D)\) has...

<table>
<thead>
<tr>
<th>Type of singularity</th>
<th>singularities if discrep((x, D)) is</th>
</tr>
</thead>
<tbody>
<tr>
<td>kit (Kawamata log terminal)</td>
<td>(\geq -1) and (LD_1 = 0)</td>
</tr>
<tr>
<td>plt (purely log terminal)</td>
<td>(> -1)</td>
</tr>
<tr>
<td>dlt (divisorial log terminal)</td>
<td>(\geq -1) and (\text{center}_x E \leq \text{non s.n.c. of } (x, D))</td>
</tr>
<tr>
<td>lc (log canonical)</td>
<td>(\geq -1)</td>
</tr>
</tbody>
</table>

dlt: If \(a(E, D) = -1\), then \(\text{center}_x E \leq \text{s.n.c. locus of } (x, D)\).

We say that \((x, D)\) is **kit/plt/dlt/lc** if it has **kit/plt/dlt/lc** singularities.

Note kit \(\neq\) plt \(\neq\) dlt \(\neq\) lc
(X, D) is dlt iff there exists a Zariski open $U \subseteq X$ s.t.

1. U is smooth and $D \mid U$ is a s.n.c. divisor; and
2. any log canonical center of (X, D) intersects U and is given by strata $\lfloor D \rfloor$.

The log discrepancy is $\alpha_E (X, D) : = 1 + a (E, D)$.

Note

\[a (E, D) > 0 \implies \alpha_E (X, D) > 1 \]
\[a (E, D) = 0 \implies \alpha_E (X, D) = 1 \]
\[a (E, D) = -1 \implies \alpha_E (X, D) = 0 \quad \leadsto \quad E \text{ is a log canonical place.} \]
Given a pair \((X,D)\).

A subvariety \(V \subseteq X\) is a log canonical center if there exists a

- proper birational morphism \(\mu : Y \to X\)
- prime divisor \(E\) on \(Y\)

with discrepancy \(a(E,D) = -1 \) s.t. \(\mu(E) = V\).

So \(\alpha_E(X,D) = 0\) (i.e., \(E\) is a l.c. place)

i.e., a log canonical center is the image of a log canonical place.

A log resolution of \((X,D)\) is a proper birational morphism \(f : Y \to X\) s.t.

1) \(\text{Exc}(f)\) is a divisor \(E = \sum E_i \subseteq Y\) irreducible components
2) \(Y\) nonsingular
3) \(\text{Supp}(f^{-1}(D) \cup E)\) is a s.n.c. divisor.
Example C: cone over an elliptic curve

\[\varphi^*(K_c) = K_y + cE \]
\[\Rightarrow \varphi^*(K_c) \mid_{\text{adj.}} = K_y + E \]
\[\Rightarrow \alpha_{E}(x, D) = 1 + (-1) = 0 \quad \text{and} \quad a(E, D) = -1 \]
\[\Rightarrow E \text{ is a l.c. place} \]

\[(\varphi')^*(K_c) = \pi^*(K_y + E) \]
\[= \pi^*(K_y) + \pi^*(cE) \]
\[= (K_y - F') + (E' + F') \]
\[= K_y' + E' + 0F' \]

\[\alpha_{E}(x, D) = 1 > 0, \text{ so } F' \text{ is not a l.c. place.} \]
Kit $\not\equiv$ plt $\not\equiv$ dlt $\not\equiv$ lc

Kit $\langle A^2, L \rangle$

quotient singularity cone over Fano var.

$\frac{\text{plt}}{\langle A^2, L_1 + L_2 \rangle}$
Consider:
\(f : X \to W \) projective birational morphism, small

\((X, D) : \text{plt with } S = L \text{ irreducible} \quad \text{Exc}(f) \text{ has codim} \geq 2 \text{ in } X \)

We say that \(f \) is a flippling contraction if \(\mathcal{E}(X/W) = 1 \) and \(-(K_x + D) \) is ample over \(W \).

If we replace \((X, \Delta) \) with \((X, \Delta + S) \) where \(S = \pi^* S_w \), then \((X, \Delta) \) plt \(\Rightarrow \) we still have a flip.

Moreover if \(S = \pi^* S_w \), then \(\text{flip}(X, \Delta + S) \equiv \text{flip}(X, \Delta) \).
Suppose that $S \cdot C > 0$. WTS $S^+ \cdot C^+ < 0$.

pf

There exists $\alpha > 0$ s.t. $(K_x + \Delta + \alpha S) \cdot C = 0$. By the Cone Theorem, $K_x + \Delta + \alpha S = \varphi^* L$.

$$\Rightarrow \pi_*(K_x + \Delta + \alpha S) = K_x + \Delta^+ + \alpha S^+.$$

$$\Rightarrow \pi_*(\varphi^* L) = (\varphi^+)^* L$$

Then,

$$C^+ (K_x^+ + \Delta^+ + \alpha S^+) = (\varphi^+)^* L \cdot C^+$$

$$= L \cdot [0]$$

$$= 0$$

$$C^+(K_x^+ + \Delta^+) > 0 \text{ so } \alpha S^+ \cdot C^+ < 0.$$

$$\Rightarrow S^+ \cdot C^+ < 0.$$
Why are s1-flips important?

Recall WTS \(\mathbb{Z} \oplus H^0(m(K_x + \Delta)) \) is finitely generated.

\[
\begin{align*}
\mathbb{P}(x|S) = 1 : & \quad \mathbb{Z} \oplus H^0(m(K_x + \Delta + S)) \quad \text{finitely generated} \\
\mathbb{P}(S) & \quad \mathbb{Z} \oplus H^0(m(K_s + \Delta s)) \quad \text{finitely generated}
\end{align*}
\]
Theorems Used
In the next few slides, we will discuss simplified versions of the theorems used.

Thm A (Existence of pl-flips)

$(X, \Delta) : pl$

$f : X \rightarrow \mathbb{P} \text{ pl-flipping contraction}$

Then the flip $\pi : X \dashrightarrow X^+$ exists.

Before stating Thm B, we explain some motivation:
Want finiteness of ample models
Start with $K_x + \Delta$ and consider all perturbations of Δ (those that keep $K_x + \Delta$ kit)

By finiteness of ample models: as we perturb Δ, we get finitely many ample models, i.e., finitely many of

$$\text{Proj} \left(\bigoplus_{m \geq 0} H^0 (m (K_x + \Delta)) \right)$$

where

Proj (elements in the same chamber) are equal.

$K_x + \Delta + ED :$ stabilize at some point.
Thm B (Special Finiteness)

\((X, \Delta) : \text{Klt}\)

\((X, \Delta + S) : \text{plt}\)

\(\geq \) the sum of finitely many prime divisors

\(|\Delta + S| = S : \text{irreducible}\)

Then there are finitely many ample models for perturbations of \(K_X + \Delta + S\), so that any other ample model of a perturbation of \(K_X + \Delta + S\) is isomorphic to one of the previous ones around \(S\).

Thm C (Existence of log terminal models)

\((X, \Delta) : \text{Klt}\)

\(K_X + \Delta : \text{big}\)

Then there exists an MMP that terminates with a log terminal model, i.e., there exists a \((K_X + \Delta)\)-negative contraction \((X \rightarrow \rightarrow X_{\text{min}})\) s.t. \(K_{X_{\text{min}}} + \Delta_{\text{min}}\) is nef.

Fact \(K_X + \Delta : \text{big} \implies \Delta : \text{big}\)

Trick: \((1 + \varepsilon)(K_X + \Delta) = K_X + \Delta + \varepsilon(K_X + \Delta)\)

Fact \(\text{big} \implies \text{effective}\)
Thm D (Nonvanishing Theorem)

\((X, \Delta) : \text{kit}\)

\(\Delta \text{ big}\)

\(K_x + \Delta \text{ pseudoeffective}\)

Then

\[K_x + \Delta \sim \Omega D \geq 0 \]

Thm E (Finiteness of Models)

This is the global version of Thm B.

Thm F

\((X, \Delta) : \text{kit}\)

If \(K_x + \Delta \) is \(\mathbb{Q}\)-Cartier, then \(R(X, K_x + \Delta)\) is finitely generated.

\[\bigoplus_{m \in \mathbb{N}} H^0(X, \mathcal{O}_X(Lm(K_x + \Delta))) \]
Main ideas of the proof (sketch)

K_x + Δ big

WTS: R(X, K_x + Δ) is finitely generated.

Approach: construct a log terminal model for X.

\[
\begin{align*}
\text{Existence and termination} & \quad \implies \quad \text{Existence of pl-flips} \\
\text{of flips in dimension (n-1)} & \quad \implies \quad \text{Existence of Klt-flips}
\end{align*}
\]

Hacon-McKernan 05:
WMA pl-flips in dim. n exist

Suppose that K_x + Δ is big.

Run MMP in dim. n.

\[(X, Δ) \rightarrow (X_1, Δ_1) \rightarrow \cdots \rightarrow (X_{\text{min}}, Δ_{\text{min}}) \]

K_{x_{\text{min}}} + Δ_{\text{min}} big and nef \implies K_{x_{\text{min}}} + Δ_{\text{min}} \text{ semiample.}

Kollar:
Basepoint Free Theorem

So there exists a morphism \(X_{\text{min}} \rightarrow X_{\text{can}} \)

\[
\begin{align*}
R(X, K_x + Δ) & \cong R(X, K_{x_{\text{min}}} + Δ_{\text{min}}) \\
& \cong R(X, K_{\text{can}} + Δ_{\text{can}})
\end{align*}
\]
MMP with scaling

\[K_x + \Delta \] s.t. \((X, \Delta) \) is a minimal model for some \(\lambda \geq 0 \)

choose minimal such \(\lambda \)

If \(\lambda = 0 \) : stop, since \(K_x + \Delta + \lambda A \) is nef.

Otherwise: there exists a \((K_x + \Delta)\)-extremal ray \(R \) s.t. \(R \) is a \((K_x + \Delta + \lambda A)\)-trivial ray.

Contraction associated to ray is a \((K_x + \Delta)\)-flip

\[\xrightarrow{\text{flip}} \]

\(a (K_x + \Delta + \lambda A) \)-flop

\[\Rightarrow X \text{ is a minimal model for } K_x + \Delta + \lambda A. \]

Idea of MMP with scaling

Do flips:

\[(X, \Delta) \rightarrow (X_1, \Delta_1) \rightarrow \ldots \rightarrow (X_j, \Delta_j) \]

minimal model \(\quad \) minimal model

for \(K_x + \Delta + \lambda A \) \(\quad \) for \(K_x + \Delta + \lambda A_1 \)

\(\lambda \) decreases \(\quad \) (say \(\lambda \Rightarrow \lambda' \))

Repeat

Process: MMP with Scaling
Quasi MMP with scaling

\((X, \Delta + s) : \rho t\)

Want \(S\) s.t. \(0 \leq S \sim_{\text{eq}} a \kappa_x + \Delta\).

Then \(k_x + \Delta + S|_S = K_s + \Delta_s\).

Consider two sequences of flips \(A\) and \(B\):

- \(B\) \((X, \Delta + s) \longrightarrow (X, \Delta_1 + s_1) \longrightarrow \ldots\) \(B\) terminates around \(S\)

- \(A\) \((S, \Delta_s) \longrightarrow (S_1, \Delta_{s_1}) \longrightarrow \ldots\) If \(A\) terminates

\((S, \Delta_s) \kappa t \Rightarrow\) there exist finitely many divisors over \((S, \Delta_s)\) with log discrepancy in \((0,1)\).

Then b.u.s in \(A\) eventually terminate.
Want \(C \) s.t. the following hold:

- \(K_x + \Delta \sim_{\mathbb{Q}} D + \alpha C \)
- \(K_x + \Delta + C \) is dlt and nef
- \(\text{Supp} (D) \leq \left\lfloor \Delta \right\rfloor_{S} \)

The point:

\[R: \text{extremal ray} \quad (K_x + \Delta) \cdot R < 0 \]

\(K_x + \Delta + C \) nef and \(C \cdot R \geq 0 \) \(\Rightarrow\) \((K_x + \Delta + C) \cdot R \geq 0 \).

So \((K_x + \Delta) \cdot R < 0 \) \(\Rightarrow\) \((D + \alpha C) \cdot R < 0 \) \(\text{ (also } D \cdot R < 0 \text{) }\)

\(\Rightarrow\) \([R] \leq \text{Supp} (D) \)

Done: \(D \leq S \) so every \((K_x + \Delta)\)-negative curve lies in \(S \)

\(\Rightarrow\) a minimal model for \(K_x + \Delta \) around \(S \) is a minimal model for \(K_x + \Delta \).
Then construct $D + \alpha C$ s.t. $K_x + \Delta \cong \mathcal{O}_D + \alpha C$.

Note Since $K_x + \Delta$ is big, we have $K_x + \Delta = A + E$ where A is ample.

Write $D = D_1 + D_2$ s.t. $D_1 \subseteq S$ and $D_2 \not\subseteq S$.

Do induction on the number of components of D_2.

If $D_2 = \emptyset$, then $D \subseteq S$ and we are done (see note at the bottom of previous slide).

If $D_2 \neq \emptyset$, then we're done by induction and adjunction.

This finishes the proof if $K_x + \Delta \cong \mathcal{O}_D \geq 0$.

\square
Sketch of Effectivity
\(K_x + \Delta \) pseudoeffective and \(\Delta \) big \(\Rightarrow \) \(K_x + \Delta \sim_{\mathbb{Q}} D \geq 0 \) \((1)\)

If \(K_x + \Delta \) is big, then the conclusion of \((1)\) holds.

For any ample \(H \),

\[h^0(X, \mathcal{O}_X (\lfloor m (K_x + \Delta) \rfloor + H)) \]

is a bounded function of \(m \).

If \(h^0(X, \mathcal{O}_X (\lfloor m (K_x + \Delta) \rfloor + H)) \leq c \) for all \(m \), then

\[K_x + \Delta \equiv N_{\mathbb{Q}} (K_x + \Delta) \geq 0, \]

i.e., \(K_x + \Delta \) has no positive part in the Nakayama decomposition.

Next trick:

Produce a lc center for \(K_x + \Delta + \frac{H}{m} \).

Then apply adjunction on the lc center: \(K_x + \Delta + \frac{H}{m} \mid_s = K_s + \Delta_s + \frac{H_s}{m_s} \).
Idea of next steps

• Show that $K_S + \Delta_S$ is pseudo-effective with Δ_S big.

• S has lesser dimension because it's a lc center.

$\Rightarrow K_S + \Delta_S$ has a section.

- Lift to a section of $K_X + \Delta$ using Kawamata-Viehweg Vanishing.

- If $\mathcal{O} - (K_X + D)$ is big and nef, then $h'(\mathcal{O}) = 0$.

- Take $\mathcal{O} = m (K_X + \Delta) - S$.
References

1. Existence of minimal models for varieties of log general type, by Caucher Birkar, Paolo Cascini, Christopher Hacon, and James McKernan.

2. Flips for 3-folds and 4-folds, by Alessio Corti.

3. Classification of Higher Dimensional Algebraic Varieties, by Christopher Hacon and Sandor Kovács.

5. Birational Geometry of Algebraic Varieties, by János Kollár and Shigefumi Mori.
Acknowledgements

Thanks to Joaquín Moraga!