# The Mordell-Schinzel conjecture for cubic surfaces # János Kollár, Jennifer Li # This is the output of integerTriples.py Integer triples (x, y, z) for the first equation (11.1): * (-925, 17, 50385) * (-383, -67, -2207) * (-83, 293, -1007) * (-67, -383, -2207) * (-59, 7, 505) * (-17, -7, -47) * (-7, -17, -47) * (-1, -1, -3) * (-1, 1, 1) * (1, -1, 1) * (1, 1, 1) * (7, -59, 505) * (17, -925, 50385) * (229, 671, 2041) * (293, -83, -1007) * (671, 229, 2041) Integer triples (x, y, z) for the second equation (11.2): * (-601, 293, 1095) * (-1, -1, -3) * (-1, 1, 3) * (1, -1, 3) * (1, 1, -3) * (293, -601, 1095) Integer triples (x, y, z) for the third equation (11.3): * (-473, -13, -17283) * (-101, -197, -439) * (-67, 287, -1209) * (-55, 97, -137) * (-43, -13, -153) * (-25, -83, -287) * (-23, -307, -4113) * (-5, -13, -39) * (-1, -1, -3) * (-1, 1, 1) * (1, -1, 3) * (1, 1, -1) * (11, -13, 9) * (17, -7, -33) * (59, 7, 481) Integer triples (x, y, z) for the fourth equation (11.4): * (-307, -23, -4113) * (-197, -101, -439) * (-83, -25, -287) * (-13, -473, -17283) * (-13, -43, -153) * (-13, -5, -39) * (-13, 11, 9) * (-7, 17, -33) * (-1, -1, -3) * (-1, 1, 3) * (1, -1, 1) * (1, 1, -1) * (7, 59, 481) * (97, -55, -137) * (287, -67, -1209)