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Abstract
Single-particle reconstruction in cryo-electron microscopy (cryo-EM) is an 
increasingly popular technique for determining the 3D structure of a molecule 
from several noisy 2D projections images taken at unknown viewing angles. 
Most reconstruction algorithms require a low-resolution initialization for the 
3D structure, which is the goal of ab initio modeling. Suggested by Zvi Kam 
in 1980, the method of moments (MoM) offers one approach, wherein low-
order statistics of the 2D images are computed and a 3D structure is estimated 
by solving a system of polynomial equations. Unfortunately, Kam’s method 
suffers from restrictive assumptions, most notably that viewing angles should 
be distributed uniformly. Often unrealistic, uniformity entails the computation 
of higher-order correlations, as in this case first and second moments fail to 
determine the 3D structure. In the present paper, we remove this hypothesis, by 
permitting an unknown, non-uniform distribution of viewing angles in MoM. 
Perhaps surprisingly, we show that this case is statistically easier than the 
uniform case, as now first and second moments generically suffice to determine 
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low-resolution expansions of the molecule. In the idealized setting of a known, 
non-uniform distribution, we find an efficient provable algorithm inverting first 
and second moments. For unknown, non-uniform distributions, we use non-
convex optimization methods to solve for both the molecule and distribution.

Keywords: cryo-EM, ab initio modeling, autocorrelation analysis, method of 
moments, spherical harmonics, Wigner matrices, non-convex optimization

(Some figures may appear in colour only in the online journal)

1. Introduction

Single-particle cryo-electron microscopy (cryo-EM) is an imaging method for determin-
ing the high-resolution 3D structure of biological macromolecules without crystallization  
[25, 35]. The reconstruction process in cryo-EM determines the 3D structure of a molecule 
from its noisy 2D tomographic projection images. By virtue of the experimental setup, each 
projection image is taken at an unknown viewing direction and has a very high level of noise, 
due to the small electron dose one can apply to the specimen before inflicting severe radia-
tion damage, e.g. [12, 24, 41]. The computational pipeline that leads from the raw data, given 
many large unsegmented micrographs of projections, to the 3D model consists of the fol-
lowing stages. The first step is particle picking, in which 2D projection images are selected 
from micrographs. The selected particle images typically undergo 2D classification to assess 
data quality and further improve particle picking. At this point, the 3D reconstruction process 
begins, where often it is divided into two substeps of low-resolution modeling and 3D refine-
ment. In this paper, we focus on the mathematical aspects of the former, namely the modeling 
part. In particular, we suggest using the method of moments (MoM) for ab initio modeling. 
We illustrate this workflow with an overview given in figure 1.

The last step in the reconstruction, also known as the refinement step, aims to improve the 
resolution as much as possible. This refinement process is typically a variant of the expecta-
tion-maximization (EM) algorithm which seeks the maximum likelihood estimator (MLE) via 
an efficient implementation, e.g. [52]. As such, 3D refinement requires an initial structure that 
is close to the correct target structure [28, 51]. Serving this purpose, an ab initio model is the 
result of a reconstruction process which depends solely on the data at hand with no a priori 
assumptions about the 3D structure of the molecule [49]. We remark that the two primary 
challenges for cryo-EM reconstruction are the high level of noise and the unknown viewing 
directions. Mathematically, without the presence of noise, the unknown viewing directions 
could be recovered using common lines [61, 62]. Then, the 3D structure follows, for example, 
by tomographic inversion, see, e.g. [2]. Reliable detection of common lines is limited how-
ever to high signal-to-noise (SNR) ratio. As a result, the application of common lines based 
approaches is often limited to 2D class averages rather than the original raw images [56]. 
Other alternatives such as frequency marching [7] and optimization using stochastic gradient 
have been suggested [48]. As optimization processes are designed to minimize highly non-
convex cost functions, methods like SGD are not guaranteed to succeed. In addition, as in the 
case of EM, it is not a priori clear how many images are required.

Approximately forty years ago, Zvi Kam proposed a method for 3D ab initio reconstruc-
tion based on computing the mean and covariance of the 2D noisy images [33]. In order to 
uniquely determine the volume, the third moment (triple correlation) is also used besides the 
mean and covariance. In this approach, known as Kam’s method, the 3D volume is recon-
structed without estimating the viewing directions. In this sense, Kam’s method is strikingly 
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different from common lines based approaches and maximum likelihood and other optimiza-
tion methods that rely on orientation estimation for each image. Crucially, Kam’s method is 
effective at arbitrary levels of noise, given sufficiently many picked particles for accurate 
estimation of the moment statistics. Additionally, Kam’s method does not require any starting 
model, and it requires only one pass through the data to compute moments (contrary to other 
approaches needing access to the measurements multiple times). Despite the aforementioned 
advantages, Kam’s method relies on the restrictive assumption that the viewing directions 
for the images are distributed uniformly over the sphere. This hypothesis, alongside other 
technical issues, has so far prevented a direct application of Kam’s method to experimental 
cryo-EM data, for which viewing angles are typically non-uniform [4, 26, 44, 59]. This situa-
tion motivates us to explore generalizations of Kam’s method better suited to cryo-EM data8.

In this paper, we generalize Kam’s theory to the case of non-uniform distribution of view-
ing directions. We regard Kam’s original approach with uniform distribution of viewing 
angles as a degenerate instance of MoM. In our formulation, we estimate both the 3D struc-
ture and the unknown distribution of viewing angles jointly from the first two moments of 
the Fourier transformed images. More precisely, for n images Ij, j = 1, . . . , n, the first and 
second empirical moments of the Fourier transformed images, given in polar coordinates, 
Îj(r,ϕ), j = 1, . . . , n, are

m̃1(r,ϕ) =
1
n

n∑
j=1

Îj(r,ϕ), and m̃2(r,ϕ, r′,ϕ′) =
1
n

n∑
j=1

Îj(r,ϕ)̂Ij(r′,ϕ′),

 (1)
which upon the above discretization become 2D and 4D tensors, respectively. Our basic ratio-
nale for trying to obtain the volume from the first two moments is as follows. Supposing 
the distribution of rotations of the image plane to be uniform, then in the limit n → ∞ the 
first moment is radially symmetric, that is, it is only a function of r but is independent of ϕ. 
Therefore, m̃1 may be regarded as a 1D vector. Similarly, the second moment is a 3D tensor 
(rather than 4D) since it will only depend on ϕ and ϕ′ through ϕ− ϕ′ as n → ∞. Also Ij(r′,ϕ′) 
is linearly related to the molecule’s volume via a tomographic projection. Thus, for images of 
size N × N  pixels, the first and second moments should give rise to O(N3) polynomial equa-
tions for the unknown volume and distribution. Assuming the volume is of size N × N × N  
(and the distribution is of lower dimensionality), then the first and second moments have 
‘just’ the right number of equations (in terms of leading order) to determine the unknowns. 
Unfortunately, when the distribution of viewing directions is uniform, as noted by Kam [33], 
the information encoded in the second moment is algebraically redundant; essentially it is the 
autocorrelation function (or equivalently, the power spectrum), and this information is insuffi-
cient for determining the structure of the molecule. As we will see, a non-uniform distribution 
of viewing directions introduces additional terms in both the first and second moments, and 

Micrographs
Input images

Low order statistics

Ab-initio model

Particle

picking

Steerable basis
expansion

MoM

Figure 1. A schematic flowchart of 3D reconstruction using method of moments 
(MoM).

8 We remark that Kam’s method, assuming uniform rotations, is of significant current interest in x-ray free electron 
laser (XFEL) single molecule imaging, where the assumption of uniformity more closely matches experimental 
reality [21, 45, 65].
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extends the number of independent equations beyond the autocorrelation case. In particular, 
we will show that non-uniformity guarantees uniqueness from the analytical counterparts of 
m̃1 and m̃2 in cases of a known distribution, and it guarantees finitely many solutions in other, 
more realistic, cases of an unknown distribution.

Our work is inspired by several earlier studies on simplified models in a setting called 
Multi-Reference Alignment (MRA). In MRA, a given group of transformations acts on a 
vector space of signals [5]. For example, the group SO (2) acts on the space of band-limited 
signals over the unit circle by rotating them counterclockwise (as a 1D analog of cryo-EM). 
The task then is to estimate a ground truth signal from multiple noisy samples, corresponding 
to unknown group elements of a finite cyclic subgroup of SO (2) acting on the signal. The 
papers [6, 9] show that for a uniform distribution over the group, the signal can be estimated 
from the third moment, and the number of samples required scales like the third power of the 
noise variance. On the other hand, for a non-uniform and also aperiodic distributions over 
the group, the signal can be estimated from the second moment, and the required number of 
samples scales quadratically with the noise variance [1].

Despite the success of signal recovery in MRA from the first two moments under the action 
of the cyclic group, it is not apparent that such a strategy is still applicable in the case of 
cryo-EM. First, in cryo-EM, each image is obtained from the ground truth volume not just 
by applying a rotation in SO (3), but also a tomographic projection. Moreover, the studies 
mentioned above (of MRA) consider finite abelian groups, whereas, in the case of cryo-EM, 
the group under consideration is the continuous non-commutative group SO (3). The goal of 
this paper is then to investigate whether the first and second moment of the images is also 
sufficient for solving the inverse problem of structure determination in the cryo-EM setting.

1.1. Our contribution

We formulate the reconstruction problem in cryo-EM as an inverse problem of determining the 
volume and the distribution of viewing directions from the first two moments of the images. 
Assuming the volume and distribution are band-limited functions, they are discretized by 
prolate spheroidal wave functions (PSWFs) and Wigner matrices, respectively. The moments 
give rise to a polynomial system in which the unknowns are the coefficients of the volume and 
the distribution. Using computational algebraic geometry techniques [20, 23, 58], we exhibit 
a range of band limits for the volume and the distribution such that the polynomial system has 
only finitely many solutions, pointing to the possibility of exact recovery in these regimes. 
Additionally, we comment on numerical stability issues, by providing condition number form-
ulas for moment inversion. In the setting where the rotational distribution is known, we prove 
that the number of solutions is generically 1 and present an efficient algorithm for recovering 
the volume using ideas from tensor decomposition [31]. For the practical case of an unknown 
distribution, we rely on methods from non-convex optimization and demonstrate, with synth-
etic data, successful ab initio model recovery of a molecule from the first two moments.

1.2. Organization

The paper is organized as follows. In section 2, we present discretizations for the volume 
and distribution and derive the polynomial system obtained from the first two moments. In 
 section 3, we demonstrate that there exists a range of band limits where the polynomial sys-
tem for the unknown molecule and distribution has only finitely many solutions. In section 4, 
we discuss some implementation details on how the system is solved and present numerical 
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and visual results. Proofs and background material are provided in appendices. For research 
reproducibility, MATLAB code is publicly available at GitHub.com9.

2. Method of moments

We begin by introducing the image formation model. Then, convenient basis for discretizing 
various continuous objects, namely the images and the volume (in the Fourier domain) as 
well as the distribution for orientations, are introduced. From these, relationships between the 
moments of the 2D images and the 3D molecular volume can be derived, enabling us to fit the 
molecular structure to the empirical moments of the images.

2.1. Image formation model and the 3D reconstruction problem

In cryo-EM, data is acquired by projecting particles embedded in ice along the direction of the 
beaming electrons, resulting in tomographic images of the particles. The particles orient them-
selves randomly with respect to the projection direction. More formally, let φ : R3 → R be the 
Coulomb potential of the 3D volume, and the projection operator be denoted by P : R3 → R2, 
where

Pφ(x1, x2) :=
∫ ∞

−∞
φ(x1, x2, x3) dx3. (2)

Assuming the j th particle comes from the same volume φ but rotated by Rj ∈ SO(3), the 
image formation model is [10, 25]

Ij = hj ∗ P
(
RT

j · φ
)
+ εj, Rj ∈ SO (3), j = 1, . . . , n , (3)

where εj is a random field modeling the noise term and hj  is a point spread function, whose 
Fourier transform is known as the contrast transfer function (CTF) [42, 50, 60]. Each image is 
assumed to lie within the box [−1, 1]× [−1, 1]. For size N × N  discretized images, we assume 
the random field εj ∼ N (0,σ2IN2), j = 1, . . . , n. Here Rj  denotes an element in the group of 
3 × 3 rotations SO (3), and we define the group action by10

RT
j · φ(x1, x2, x3) := φ(Rj

[
x1 x2 x3

]T
). (4)

The rotations Rj ’s are not known since the molecules can take any orientation with respect to 
projection direction. For the purpose of simplifying the exposition, we shall henceforth disre-
gard the CTF, by assuming

Ij = P
(
RT

j · φ
)
+ εj, j = 1, . . . , n. (5)

The presence of CTF is not expected to have a major impact on our main results, and we will 
incorporate the CTF in a future work. Typically, it is convenient to consider Fourier transform 
of the images, since by projection slice theorem, the Fourier transform Îj of Ij  gives a slice of 
the Fourier coefficients φ̂  of the volume φ:

Îj(x1, x2) = ̂P(RT
j · φ)(x1, x2) + ε̂j = (RT

j · φ̂)(x1, x2, x3)|x3=0 + ε̂j. (6)

9 The full address of the GitHub repository is https://github.com/nirsharon/nonuniformMoM
10 Here we prefer to write the action of RT and correspondingly later we use Wigner U-matrices, instead of R and 
Wigner D-matrices. While simply notational, these conventions allow us to cite identities from [19] verbatim, which 
are in terms of Wigner U-matrices and not Wigner D-matrices.
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The goal of cryo-EM is to recover φ̂  from the Fourier coefficients of the projections Îj(x1, x2). 
While reconstructing φ̂  given estimated Rj ’s amounts to solving a standard computed tomog-
raphy problem, we wish to reconstruct φ̂  directly from the noisy images without estimating 
the rotations, for reasons detailed above. To this end, we assume the rotations are sampled 
from a distribution ρ  on SO (3), where ρ : SO (3) → R is a smooth band-limited function. 
Then from the empirical moments of the images {Îj}n

j=1, we jointly estimate the volume φ̂  and 
the distribution ρ .

2.2. Representation of the volume, the distribution of rotations and the images

As mentioned previously, the proposed method of moments consists of fitting the analytical 
moments

m1 = ER∼ρ[ ̂P (RT · φ)], and m2 = ER∼ρ[ ̂P (RT · φ)⊗ ̂P (RT · φ)] (7)

to their empirical counterparts m̃1 and m̃2 as appears in (1) after debiasing11. Through fitting to 
the empirical moments, we seek to determine the Fourier volume φ̂ and also the distribution 
ρ . In this section, we present discretizations of φ̂ and ρ  by expanding them using convenient 
bases.

2.2.1. Basis for the Fourier volume φ̂ . Since the image formation model involves rotations of 
the Fourier volume φ̂ , it is convenient to represent φ̂  as an element of a function space closed 
under rotations; in fact, this is the same as representing φ̂  using spherical harmonics (see the 
Peter–Weyl theorem [19]):

φ̂ (κ, θ,ϕ) =
L∑

�=0

�∑
m=−�

S(�)∑
s=1

A�,m,sF�,s(κ)Ym
� (θ,ϕ). (8)

Here Ym
�  are the (complex) spherical harmonics:

Ym
� (θ,ϕ) =

√
(2�+ 1)

4π
(�− m)!

(�+ m)!
Pm
� (cos θ) eimϕ (9)

with associated Legendre polynomials Pm
�  defined by:

Pm
� (x) =

(−1)m

2��!
(1 − x2)m/2 d�+m

dx�+m (x2 − 1)�. (10)

In Cartesian coordinates, spherical harmonics are polynomials of degree �. Without loss of 
generality, the radial frequency functions F�,s should form an orthonormal family (for each 
fixed �) with respect to κ2dκ, where s = 1, . . . , S(�) is referred to as the radial index. Choices 
of radial functions suitable for molecular densities include spherical Bessel functions [3], 
which are eigenfunctions of the Laplacian on a closed ball with Dirichlet boundary condition, 
as well as the radial components of 3D prolate spheroidal wave functions [57].

We assume the volume is band-limited with Fourier coefficients supported within a radius 
of size πN/2, i.e. the Nyquist cutoff frequency for the images Ij ’s discretized on a grid of 
size N × N  (over the square [−1, 1]× [−1, 1]). Under this assumption, the maximum degree 

11 By the law of large numbers, m̃1 → m1 and m̃2 → m2 + σ2I almost surely as n → ∞, so m1 is fitted to m̃1 and m2 
to m̃2 − σ2I . For notational convenience, we drop σ2I in what follows, either assuming m̃2 has been appropriately 
debiased already or σ = 0.
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and radial indices L and S(�) in (8) are essentially finite. Further details on the particular 
basis functions F�,s and cutoffs L and S(�) that we choose to use are deferred to appendix A 
in the appendix. Note that in practice, as we target low-resolution modeling, one can choose 
to decrease either the cutoff or the grid size to obtain more compact settings. The coefficients 
A�,m,s ∈ C furnish our representation of φ̂  using spherical harmonics. Note that since φ is real 
valued, its Fourier transform is conjugate-symmetric, which imposes restrictions on the coef-
ficients A�,m,s. The specific constraints are presented in section 4.1.

The advantage of expanding φ̂  in terms of spherical harmonics is that the space of degree 
� spherical harmonics is closed under rotation; in group-theoretic language, this space forms a 
linear representation of SO(3)12. Thus the action of a rotation on φ̂  amounts to a linear transfor-
mation on the expansion coefficients A�,m,s (with a block structure according to � and s). More 
precisely, fixing the vector space spanned by {Ym

� (θ,ϕ)}�m=−�
 for a specific �, the action of a 

rotation R on this vector space is represented by the Wigner matrix U�(R) ∈ C(2�+1)×(2�+1) 
(see [19, p 343]) so that:

RT · Ym
� (x) = Ym

� (Rx) =
�∑

m′=−�

U�
m,m′(R)Ym′

� (x), x ∈ S2. (11)

In particular, the matrix U�(R) is unitary, with entries degree � polynomials in the 
entries of R [19]. For all R1, R2 ∈ SO(3) and �, the group homomorphism property reads 
U�(R1R2) = U�(R1)U�(R2). In light of (11), 3D bases of the form {F�,s(κ)Ym

� (θ,φ)}�,m,s have 
been called steerable bases.

2.2.2. Basis for the probability distribution of rotations ρ . As we shall see, when expand-
ing the volume in terms of spherical harmonics, the analytical moments (7) involve integrat-
ing different monomials of {Ul(R)}L

�=0 with respect to the measure ρ(R)dR. To this end, we 
assume the probability density ρ  over SO (3) is a smooth band-limited function (and in a 
function space closed under rotation) by expanding

ρ(R) =
P∑

p=0

p∑
u,v=−p

Bp,u,vU p
u,v(R), R ∈ SO (3). (12)

By Peter–Weyl, these form an orthonormal basis for L2(SO(3)), and for higher p  they are 
increasingly oscillatory functions on SO(3). Thus, expansion (12) is analogous to using 
spherical harmonics to expand a smooth function on the sphere, or using Fourier modes for a 
function on the circle. The cutoff P ∈ N is the band limit of the distribution ρ; we shall see 
in the next section that since we use only first and second moments it makes sense to assume 
P � 2L. Note that in the special case of a uniform distribution, the only nonzero coefficient is 
B0,0,0  =  1. Also, dR denotes the Haar measure, which is the unique volume form on the group 
of total mass one that is invariant under left action. Using the Euler angles parameterization of 
SO (3), the Haar measure is of the form

dR =
1

8π2 sin(β)dαdβdγ, (13)

where the normalizing constant ensures 
∫

SO(3) dR =
∫ 2π
α=0

∫ π

β=0

∫ 2π
γ=0 dR = 1.

12 In fact, this is an irreducible representation of SO(3) and varying � these give all irreps.
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2.2.3. Basis for the 2D images. At this point, we discuss convenient representations for the 
images after Fourier transform, Îj. Similarly to volumes, it is desirable to represent images 
using a function space closed under in-plane rotations, i.e. SO(2). By the Peter–Weyl theorem, 
this is the same as expanding using Fourier modes, in a 2D steerable basis:

Îj(κ,ϕ) =
Q∑

q=−Q

T(q)∑
t=1

a j
q,t fq,t(κ) eiqϕ. (14)

Here the radial frequency functions f q,t (for fixed q) are taken to be an orthonormal basis with 
respect to κdκ, with κ referred to as the radial frequency. Comparing to expansion (8) (see 
section 2.2), it makes most sense to set Q  =  L. Again, owing to the Nyquist frequency for the 
discretized images Ij , we may bound the cutoffs T(q). Typical choices for f q,t for represent-
ing tomographic images include Fourier–Bessel functions [66] and the radial components of 
2D prolate spheroidal wave functions [57]. Details on our specific choices are given in the 
appendix A.2.

2.2.4. Choice of radial functions. For the finite expansions in (8) and (14) to accurately repre-
sent the Fourier transforms of the electric potential and its slices, one should carefully choose 
the radial functions F�,s and f q,t, together with the truncation-related quantities L, S(�), Q, and 
T(q). In this work, we consider F�,s and f q,t to be the radial parts of the three-dimensional and 
two-dimensional PSWFs [57], respectively. In appendix A, we describe some of the key prop-
erties of the PSWFs, and propose upper bounds for setting L, S(�), Q, and T(q). In practice, 
band limits would be selected by balancing these expressivity considerations together with the 
well-posedness and conditioning considerations of section 3.

2.3. Low-order moments

In this section, we derive the analytical relationship between the first two moments for the 

observed images {a j
q,t}j,q,t, and the coefficients {A�,m,s}�,m,s and {Bp,u,v}p,u,v of the volume 

and distribution of rotations. These relationships will be used to determine {A�,m,s}�,m,s and 
{Bp,u,v}p,u,v via solving a nonlinear least-squares problem.

To this end, we first register a crucial relationship between the coefficients of the 2D images 
and the 3D volume. By indexing the images in terms of R ∈ SO (3) (instead of j  in (14)), we 
have:

ÎR(κ,ϕ) =
Q∑

q=−Q

T(q)∑
t=1

aR
q,tfq,t(κ)eiqϕ. (15)

On the other hand, using the Fourier slice theorem and (11):

ÎR(κ,ϕ) = RT · φ̂(κ,
π

2
,ϕ) (16)

=

L∑
�=0

S(�)∑
s=1

�∑
m=−�

A�,m,s F�,s(κ) RT · Ym
� (

π

2
,ϕ) (17)

=

L∑
�=0

S(�)∑
s=1

�∑
m=−�

�∑
m′=−�

A�,m,s F�,s(κ)U�
m,m′(R) Ym′

� (
π

2
,ϕ). (18)
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Multiplying (15) and (16) by fq,t(κ)e−iqϕ and integrating against 1
2πκdκdϕ, then combining 

the orthogonality relation

1
2π

∫ ∞

0

∫ 2π

0
fq1,t1(κ)e

iq1ϕfq2,t2(κ)e
−iq2ϕdϕκdκ = q1=q2 t1=t2

with Ym′

� (π2 ,ϕ) ∝ eim′ϕ, tells us

aR
q,t =

L∑
�=|q|

S(�)∑
s=1

�∑
m=−�

A�,m,s U�
m,q(R) γ

q,t
�,s, (19)

where γq,t
�,s  are constants depending on the radial functions:

γq,t
�,s :=

1
2π

∫ ∞

0

∫ 2π

0
Yq
� (
π

2
,ϕ) e−iqϕ F�,s(κ) fq,t(κ)κdκdϕ (20)

=
1

2π

√
(2�+ 1)

4π
(�− q)!
(�+ q)!

Pq
�(0)

∫ ∞

0
F�,s(κ) fq,t(κ)κdκ. (21)

From the term Pq
�(0), we see γq,t

�,s = 0 if q �≡ � (mod 2) (and if |q| > � then γq,t
�,s := 0). Also one 

may check γ−q,t
�,s = (−1)qγq,t

�,s. Equation (19) connects 2D image coefficients with 3D volume 
coefficients. We note we may as well choose Q  =  L in (15), since if |q| > L then aR

q,t = 0. In 
practice, the coefficients γq,t

�,s  are calculated via numerical integration over a closed segment, 
according to the localization property of the PSWFs, see appendix A and [39].

2.3.1. The first moment. In this section, from (19) the relationship between the first moment 
of the images and the volume is derived. Taking the expectation over R, and using the distribu-
tion expansion (12), we get

ER[aR
q,t] =

L∑
�=|q|

S(�)∑
s=1

�∑
m=−�

A�,m,sγ
q,t
�,s

∫
U�

m,q(R)ρ(R)dR (22)

=
L∑

�=|q|

S(�)∑
s=1

�∑
m=−�

P∑
p=0

p∑
u,v=−p

A�,m,s Bp,u,v γ
q,t
�,s

∫
U�

m,q(R)U
p

u,v(R)dR (23)

=

min(L,P)∑
�=|q|

S(�)∑
s=1

�∑
m=−�

A�,m,s B�,−m,−q γq,t
�,s

(−1)m+q

2�+ 1
. (24)

The last equation follows from the orthogonality of the Wigner matrix entries [11, p 68]
∫

SO(3)
U�

m,n(R)U
p

u,v(R) dR =
1

2�+ 1 �=p u=m v=n, (25)

and

U p
u,v(R) = (−1)u+v U p

−u,−v(R). (26)
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The first moment gives a set of bilinear forms in the unknowns {A�,m,s}�,m,s and {Bp,u,v}p,u,v, as 
seen in (24) for each (q, t) with |q| � min(L, P) and 1 � t � T(q).

It is convenient to provide compact notation for the first moment formula. To this end, we 
introduce:

 1.  A�, a matrix of size S(�)× (2�+ 1) given by (A�)s,m = A�,m,s

 2.  βq
� , a vector of size 2�+ 1 given by (βq

� )m = (−1)m

2�+1 B�,−m,−q

 3.  Γq
�, a matrix of size T(q)× S(�) given by (Γq

�)t,s = (−1)qγq,t
�,s.

Item 2 is zero if � < |q| and item 3 is zero if either � < |q| or � �≡ q (mod 2). In this notation, 
the first moment formula (24) (with fixed q and varying t) reads:

m1(q) :=
(
E[aR

q,t]
)

t=1,...,T(q)
=

∑
� : |q|���L

�≡q (mod 2)

Γq
� A� β

q
� .

 (27)

Here m1(q) ∈ CT(q) is nonzero only if |q| � min(L, P).

2.3.2. The second moment. Higher moments require higher powers of the image coeffi-
cients, and so in the case of the second moment and for |q1|, |q2| � L , we have

ER
[
aR

q1,t1 aR
q2,t2

]
=

L∑
�1=|q1|

S(�1)∑
s1=1

�1∑
m1=−�1

L∑
�2=|q2|

S(�2)∑
s2=1

�2∑
m2=−�2

A�1,m1,s1γ
q1,t1
�1,s1 (28)

× A�2,m2,s2γ
q2,t2
�2,s2

∫
U�1

m1,q1
(R)U�2

m2,q2
(R)ρ(R)dR (29)

where

∫
U�1

m1,q1
(R)U�2

m2,q2
(R)ρ(R)dR =

P∑
p=0

p∑
u,v=−p

Bp,u,v

∫
U�1

m1,q1
(R)U�2

m2,q2
(R)U p

u,v(R)dR.

 (30)
The product of two Wigner matrix entries is expressed as a linear combination of Wigner 

matrix entries [19, p 351],

U�1
m1,q1

(R)U�2
m2,q2

(R) =
�1+�2∑

�3=|�2−�1|

C�3(�1, �2, m1, m2, q1, q2)U�3
m1+m2,n1+n2

(R),

 (31)
where

C�3(�1, �2, m1, m2, q1, q2) = C(�1, m1; �2, m2|�3, m1 + m2)C(�1, q1; �2, q2|�3, q1 + q2), (32)

is the product of two Clebsch–Gordan coefficients. This product is nonzero only if (�1, �2, �3) 
satisfy the triangle inequalities. Substituting (31) into (30), and invoking (25) and (26), we 
obtain:
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∫
U�1

m1,q1
(R)U�2

m2,q2
(R)ρ(R)dR =

∑
p

Cp(�1, �2, m1, m2, q1, q2)

× Bp,−m1−m2,−q1−q2

(−1)m1+m2+q1+q2

2p + 1

 

(33)

where the sum is over p  satisfying max(|�1 − �2|, |m1 + m2|, |q1 + q2|) � p � min(�1 + �2, P). 
Now substituting into (28) gives:

ER
[
aR

q1,t1 aR
q2,t2

]
=

∑
�1,s1,m1,�2,s2,m2

A�1,m1,s1 A�2,m2,s2 γ
q1,t1
�1,s1

γq2,t2
�2,t2 (−1)q1+q2

×
∑

p

Bp,−m1−m2,−q1−q2Cp(�1, �2, m1, m2, q1, q2)
(−1)m1+m2

2p + 1
 (34)

where the first sum has the range of (28) and the second sum has range of (33). The second 
moment thus gives a set of polynomials in unknowns {A�,m,s}�,m,s and {Bp,u,v}p,u,v, quadratic 
in the volume coefficients and linear in the distribution coefficients, namely, the expression 
in (34) for each (q1, t1, q2, t2) with |q1| � L, |q2| � L, |q1 + q2| � P, 1 � t1 � T(q1) and 
1 � t2 � T(q2). Also, it may be assumed that P � 2L, since Bp,u,v with p   >  2L does not con-
tribute in either (34) or (24).

As for the first moment, it will be convenient to rewrite the second moment in compact 
notation. Let us further introduce:

 4.  Bq1,q2
�1,�2

, a matrix of size (2�1 + 1)× (2�2 + 1) given by

(Bq1,q2
�1,�2

)m1,m2 =
∑

p

Bp,−m1−m2,−q1−q2Cp(�1, �2, m1, m2, q1, q2)
(−1)m1+m2

2p + 1
,

  where the sum is over max(|�1 − �2| , |m1 + m2| , |q1 + q2|) � p � min(�1 + �2, P) and 
Cp  denotes the product Clebsch-Gordan coefficients in (32).

Item 4 is zero if either �1 < |q1| or �2 < |q2| or max(|�1 − �2| , |q1 + q2|) > P . Now for fixed 
q1, q2 and varying t1, t2 , the second moment (34) neatly reads:

m2(q1, q2) :=
(
E[aR

q1,t1 aR
q2,t2 ]

)
t1=1,...,T(q1)
t2=1,...,T(q2)

=
∑

�1,�2 : |q1|��1�L
|q2|��2�L

�1≡q1 (mod 2)
�2≡q2 (mod 2)

|�1−�2|�P

Γq1
�1
A�1 B

q1,q2
�1,�2

AT
�2
(Γq2

�2
)T .

 

(35)

Here m2(q1, q2) ∈ CT(q1)×T(q2) is nonzero only if |q1| , |q2| � L and |q1 + q2| � P.

3. Uniqueness guarantees and conditioning

Here, we derive uniqueness guarantees and comment on intrinsic conditioning for the polyno-
mial system defined by the first and second moments, (27) and (35).

Analysis comes in four cases, according to assumptions on the distribution ρ: whether ρ  
is known or unknown; and if ρ  is invariant to in-plane rotations, i.e. ρ  depends only on the 
viewing directions up to rotations that retain the z-axis. This invariance restricts ρ  to be a 
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non-uniform distribution function over S2, see section 4.2. If ρ  is not invariant to in-plane rota-
tions, we say ρ  is totally non-uniform as a distribution on the entire SO (3). Throughout, our 
general finding is well-posedness, i.e. the molecule is uniquely determined by first and second 
moments up to finitely many solutions, under genericity assumptions, for a range of band lim-
its L and P. In the case of a known totally non-uniform distribution, we prove the number of 
solutions is 1, and give an efficient, explicit algorithm to solve for {A�,m,s}. For all cases, sen-
sitivity of the solution to errors in the moments is quantified by condition number formulas.

3.1. Known, totally non-uniform ρ

For this case, we have a provable algorithm that recovers {A�,m,s} from (27) and (35) (up to the 
satisfaction of technical genericity and band limit conditions). Remarkably, while the poly-
nomial system is nonlinear (consisting of both quadratic and linear equations), our method is 
based only on linear algebra. The main technical idea is simultaneous diagonalization bor-
rowed from Jennrich’s well-known algorithm for third-order tensor decomposition [31], that 
was also used recently for signal recovery in MRA [46].

Theorem 1. The molecule {A�,m,s} is uniquely determined by the analytical first and second 
moments, (27) and (35), in the case the distribution {Bp,u,v} is totally non-uniform, known and 
P � 2L, provided it also holds:

 (i)  The matrices B1 := BL,L
L,L  and B2 = BL,−L

L,L  of size (2L + 1)× (2L + 1) both have full rank, 
and B1B−1

2  has distinct eigenvalues. Likewise B3 := BL−1,L−1
L−1,L−1 and B4 = BL−1,1−L

L−1,L−1  of size 
(2L − 1)× (2L − 1) both have full rank, and B3B−1

4  has distinct eigenvalues.
 (ii)  Writing B1B−1

2 =: Q12D12Q−1
12  and B3B−1

4 =: Q34D34Q−1
34  for eigendecompositions, the 

vectors b12 := Q−1
12 βL

L of size 2L  +  1 and b34 := Q−1
34 βL−1

L−1 of size 2L  −  1 both have no 
zero entries.

 (iii)  For � � L − 2, the matrix B�,L
�,L of size (2�+ 1)× (2L + 1) has full row rank.

 (iv)  For all �, the matrix A� of size S(�)× (2�+ 1) has full column rank.
 (v)  For � � |q| with � ≡ q (mod 2), the matrix Γq

� of size T(q)× S(�) has full column rank.

Moreover in this case, there is a provable algorithm inverting (27) and (35) to get {A�,m,s} in 
time O

(
L2 · T3

)
, where T := maxq T(q).

Proof. For this proof, we need some general properties of the Moore–Penrose pseudo-in-
verse, denoted by †, as in [8]. In particular, if Y ∈ Cn1×n2 has full column rank and Z ∈ Cn2×n3 
has full row rank, then Y†Y = In2, ZZ† = In2, (YZ)† = Z†Y†, and also, pseudo-inversion and 
transposition commute.

Proceeding, the second moment with q1 = L, q2 = L tells us:

m2(L, L) = ΓL
LALB1(AL)

T(ΓL
L)

T ∈ CT(L)×T(L), (36)

and with q1 = L, q2 = −L:

m2(L,−L) = ΓL
LALB2(AL)

T(Γ−L
L )T ∈ CT(L)×T(L), (37)

where ΓL
L = (−1)LΓ−L

L . We compute (−1)L times the Moore–Penrose psuedo-inverse of (37) 
and then multiply this on the right of (36). Because ΓL

L  and AL are each tall with full column 
rank by assumptions (v) and (iv), respectively, and B2 is invertible by (i), properties of the 
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pseudo-inverse imply:

(−1)Lm2(L, L)m2(L,−L)† =
(
ΓL

LALB1(AL)
T(ΓL

L)
T) (ΓL

LALB2(AL)
T(ΓL

L)
T)†

= (ΓL
LAL)B1(AL)

T(ΓL
L)

T(ΓL
L)

T†(AL)
T†B−1

2 (ΓL
LAL)

†

= (ΓL
LAL)B1B−1

2 (ΓL
LAL)

†

= (ΓL
LAL)Q12D12Q−1

12 (ΓL
LAL)

†

=
(
ΓL

LALQ12
)

D12
(
ΓL

LALQ12
)†

,
 

(38)

where we have substituted in an eigendecomposition B1B−1
2 = Q12D12Q−1

12 . As B1B−1
2  has 

distinct eigenvalues by condition (i), we see that the eigenvectors of (−1)Lm2(L, L)m2(L,−L)† 
are unique up to scale and given as the columns of ΓL

LALQ12. Thus, ΓL
LALQ12 = XΛ, where X 

consists of eigenvectors of (38) and Λ is an unknown (as yet) diagonal matrix.

To disambiguate the scales Λ, we compare with the first moment for q  =  L:

m1(L) = ΓL
LALβ

L
L = XΛQ−1

12 βL
L = XΛb12. (39)

Multiplying on the left by X† gives X†m1(L) = Λb12, an equality of matrix-vector products in 
which the only unknown is the diagonal matrix Λ. By the full support of b12 (assumption (ii)), 
this determines Λ. Substituting into XΛ, we now know ΓL

LALQ12. Multiplying on the left by 
ΓL†

L  and on the right by Q−1
12  tells us AL.

Backward marching, the second moment with q1  =  L  −  2 and q2  =  L reads:

m2(L − 2, L) = ΓL−2
L ALBL−2,L

L,L (AL)
T(ΓL

L)
T + ΓL−2

L−2AL−2BL−2,L
L−2,L(AL)

T(ΓL
L)

T .
 (40)

At this point, we know the first term, and thus the second term gives us AL−2 by appropriately 

multiplying by pseudo-inverses (BL−2,L
L,L  is right-invertible by (iii)).

Then, we may look at the second moments with q1  =  L  −  4 and q2  =  L to similarly deter-
mine AL−4, and so on, to A0 or A1 (depending on the parity of L). Analogous reasoning and 
usage of the assumptions gives AL−1,AL−3, . . .

We have provided an algorithm to solve for each A�, which proves uniqueness of A� as a 
byproduct. The time complexity of the algorithm is O(L2T3) since it involves O(L2) matrix 
operations—matrix multiplications, pseudo-inversions or eigendecompositions—of matrices 
whose dimensions are all bounded by T. (Note that back-substituting to solve for A� involves 
O(L − �) such matrix operations.) □ 

We remark that condition (iv), which just involves the choice of radial bases, appears to 
always hold for PSWFs using the cutoffs proposed in appendix A. Conditions (i), (ii) and 
(iii) just involve the distribution, and are full-rank, spectral and non-vanishing hypotheses. 
Condition (iv) just involves the molecule and in particular requires S(L) � 2L + 1, which 
limits L to be less than the Nyquist frequency where S(LNyquist) = 1.

Our algorithm goes by reverse13 frequency marching, as we solve for top-frequency coeffi-
cients from the second moment (35) where q1, q2 = ±L,±(L − 1) via eigenvectors (similar to 
simultaneous diagonalization in Jennrich’s algorithm), and then solving for lower-frequency 

13 Reverse frequency marching is natural given the sparsity structure of (35): only A�1 and A�2 with �1 � |q1|, 
�1 ≡ q1 (mod 2) and �2 � |q2|, �2 ≡ q2 (mod 2) appear in the moments m2(q1, q2).
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coefficients via linear systems. While our conditions in theorem 1 are certainly not necessary, 
fortunately for generic14 (A, B), those conditions are satisfied, so that the method applies:

Lemma 2. Condition (ii) in theorem 1 holds for Zariski-generic {Bp,u,v}. If S(L) � 2L + 1, 
then condition (iii) holds for Zariski-generic {A�,m,s}. At least for L � 100, conditions (i) and 
(iii) hold for Zariski-generic {Bp,u,v}.

Proof of lemma 2. Conditions (i)–(iv) are all Zariski-open, i.e. their failure implies 
{A�,m,s} or {Bp,u,v} obey polynomial equations. As such, to conclude genericity, it suffices 
to exhibit a single point {A�,m,s} or {Bp,u,v}, where the conditions are met. For conditions (i), 
(iii), we verified the conditions hold at randomly selected points on computer up to L � 100. 
Conditions (ii) and (iv) are obviously generic. □ 

By uniqueness, A is a well-defined function of the first and second moments m1 and m2 
almost everywhere. It is useful to quantify the ‘sensitivity’ of A to errors in m1, m2, as, e.g. in 
practice one can access only empirical estimates m̃1 and m̃2. An a posteriori (absolute) condi-
tion number for A is given by the reciprocal of the least singular value of the Jacobian matrix 
of the algebraic map:

mB : {A�,m,s} �→
{

m1(q), m2(q1, q2)
}

. (41)

Throughout this section, all condition formulas are in the sense of [16, section  14.3], for 
which the domain and image of our moment maps are viewed as Riemannian manifolds. To 
this end, when ρ  is unknown, dense open subsets of the orbit spaces {(A, B) mod SO(3)}, 
{A mod SO(3)}, {B mod SO(3)} naturally identify as Riemmannian manifolds (for the con-
struction, see [15]).

3.2. Known, in-plane uniform ρ

For this case, given a particular image size (and other image parameters), together with band 
limits L and P, we have code15 which decides if, for generic A and B, the molecule A is deter-
mined by (27) and (35), up to finitely many solutions. The basis for this code is the so-called 
Jacobian test for algebraic maps, see appendix B. Below is an illustrative computation.

Computational result 3. Consider 43 × 43 pixel images, and the following parameters 
for prolates (representative values): a bandlimit c (see appendix A) chosen as the Nyquist fre-

Table 1. Uniqueness for inverting the first two moments in the case of a known, in-
plane uniform ρ , according to band limits. Generically finitely many solutions for A is 
denoted by , infinitely many solutions for A is denoted by , and indecisive numerics 
is denoted by .

L  =  2 L  =  3 L  =  4 L  =  5 L  =  6 L  =  7 L  =  8 L  =  9 L  =  10

P  =  0
P  =  1
P  =  2
P  =  3
P  =  4

14 This means generic with respect to the Zariski topology [30]. Equivalently, there is a non-zero polynomial p  in 
A, B such that p(A, B) �= 0 implies the conditions in theorem 1 are met.
15 Available in GitHub: https://github.com/nirsharon/nonuniformMoM/JacobianTest
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quency, 2D prescribed accuracy (A.28) set to ε = 10−3 and 3D truncation parameter (A.8) to 
be δ = 0.9916. We varied band limits L in (8) and P in (12), and randomly fixed (12) to give 
a known in-plane uniform distribution. For each (L, P), we computed the numerical rank of 
the Jacobian matrix of the polynomial map mB of (41) at a randomly chosen A, with random 
B. The Jacobian was convincingly of full numerical rank for a variety of band limits, as seen 
in table 1. Cases where the gap between the two least singular values of the Jacobian matrix 
exceeds a threshold of 106 are set as indecisive numerics, and appears in the table as . Note 
that if the rank was calculated in exact arithmetic, this gives a proof that for generic (A, B) 
generic fibers of the map mB consist of finitely many A; i.e. first and second moments (with 
known in-plane uniform distribution) determine the molecule up to finitely many solutions. 
For fibers and related definitions, see appendix B.

Again, the sensitivity of A as a locally defined function of (27) and (35) is quantified by the 
reciprocal of the least singular value of the Jacobian matrix of mB.

3.3. Unknown, totally non-uniform ρ

In this case, it is important to note that solutions come in symmetry classes. If (A, B) have 
specified moments, then so too for (R · A, R · B) for all R ∈ SO(3), that is, we may jointly 
rotate the molecule and probability distribution and the moments are left invariant. So, solu-
tions come in 3-dimensional equivalence classes, and we are interested in solutions modulo 
SO(3).

That said, we have code which accepts a particular image size (and other image param-
eters), together with band limits L and P. The code then numerically decides which of the fol-
lowing situations occur: i) for generic (A, B), both A and B are determined by (27) and (35) up 
to finitely many solutions modulo SO(3); ii) for generic (A, B), the molecule A is determined 
by (27) and (35) up to finitely many solutions modulo SO(3), whereas the distribution B has 
infinitely many solutions; iii) for generic (A, B), both A and B have infinitely many solutions 
modulo SO(3). Note these cases are (essentially) exhaustive, since if B is determined so is A 
in the regime of theorem 1. Moreover, we noticed the case ii) really does arise, e.g. this seems 
to happen when P  =  2L.

Computational result 4. We keep the running example of 43 × 43 pixel images, and the 
prolates parameters of a bandlimit c chosen as the Nyquist frequency, 2D prescribed accuracy 
(A.28) set to ε = 10−3 and 3D truncation parameter (A.8) of δ = 0.99. We varied band limits 
L in (8) and P in (12). For each (L, P), we computed the numerical rank of the Jacobian matrix 
of the polynomial map

m : {A�,m,s, Bp,u,v} �→
{

m1(q), m2(q1, q2)
}

 (42)

at a randomly chosen point in the domain. The numerical rank of the Jacobian convincingly 
equaled three less (that is d1  =  3, see appendix B) than full column rank for a variety of band 
limits, see table 2. Cases where the gap between the third and fourth least singular values of 
the Jacobian matrix exceeds a threshold of 106 are set as indecisive numerics, and appears 
in the table as . If the rank were calculated in exact arithmetic, this furnishes a proof that 
generic fibers of the map m consist of finitely many SO(3)-orbits; that is, first and second 
moments determine both the molecule and the totally non-uniform distribution up to finitely 
many solutions (modulo global rotation).

16 The value of δ means we allow only 1% of the energy to be outside the ball, and is chosen to best model a mol-
ecule structure which is assumed to be mostly supported inside a ball.
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For band limits L and P such that generically there are only finitely many solutions for 
(A, B) mod SO(3), the sensitivity of (A, B)mod SO(3) as a (locally defined) function of (27) 
and (35) is quantified by the reciprocal of the fourth least singular of m. For band limits such 
that generically there are only finitely many solutions for A mod SO(3), the sensitivity of 
Amod SO(3) as a locally defined of (27) and (35) is quantified by the reciprocal of the fourth 
least singular value of

PA Jac(m|(A,B))
† (43)

where † denotes pseudo-inverse and PA is the differential of (A, B) �→ Amod SO(3). We com-
pute (43) by analytically differentiating (27) and (35), evaluating at (A, B) and place as diago-
nal blocks of a matrix, and finally applying pseudo-inverse which is SVD-based.

3.4. Unknown, in-plane uniform ρ

Again in this case, solutions come in 3-symmetry classes, orbits under the action of global 
rotation, so we are interested in solutions modulo SO(3). We have code which accepts a 
particular image size (and other image parameters), together with band limits L and P, and 
numerically decides if for generic (A, B), both A and B are determined by (27) and (35) up to 
finitely many solutions modulo SO(3), or if there are infinitely many solutions. We did not find 
parameters giving a ‘mixed’ result as in case ii) above.

Computational result 5. For 43 × 43 pixel images, and the parameters for prolates (rep-
resentative values): a bandlimit c chosen as the Nyquist frequency, 2D prescribed accuracy 
(A.28) set to ε = 10−3 and 3D truncation parameter (A.8) of δ = 0.99. We varied band limits 
L in (8) and P in (12), restricting (12) to an in-plane uniform distribution. For each (L, P), we 
computed the numerical rank of the Jacobian matrix of the polynomial map:

m : {A�,m,s, Bp,u,0} �→
{

m1(q), m2(q1, q2)
}

 (44)

at a randomly chosen point in the domain. The numerical rank of the Jacobian convincingly 
equaled three less than full column rank for a variety of band limits, see table 3. Cases where 
the gap between the third and fourth least singular values of the Jacobian matrix exceeds a 
threshold of 106 are set as indecisive numerics, and appears in the table as . If the rank was 
calculated in exact arithmetic, this furnishes a proof that generic fibers of the map m consist 
of finitely many SO(3)-orbits; that is, first and second moments determine both the molecule 
and the in-plane uniform distribution up to finitely many solutions (modulo global rotation).

Table 2. Uniqueness for inverting the first two moments in the case of an unknown, 
totally non-uniform ρ , according to band limits. Generically finitely many solutions 
for (A, B)mod SO(3) is denoted by , finitely many solutions for Amod SO(3) but 
infinitely many solutions for Bmod SO(3) is denoted by , infinitely many solutions 
for Amod SO(3) is denoted by , and indecisive numerics is denoted by .

L  =  2 L  =  3 L  =  4 L  =  5 L  =  6 L  =  7 L  =  8 L  =  9 L  =  10

P  =  0
P  =  1
P  =  2
P  =  3
P  =  4
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For band limits L and P such that generically there are only finitely many solutions for 
(A, B) mod SO(3), the sensitivity of (A, B)mod SO(3) as a function of moments is quantified 
by the reciprocal of the fourth least singular of m. For example, in the P  =  2 row of table 3, 
when evaluating at random (A, B), this worked out to:

1.98 × 1015, 47.1, 209, 2700, 4.66 × 104, 1.17 × 106, 6.02 × 107, 9.10 × 108.

Further, in the L  =  4 column of table 1, evaluating at random (A, B) gave:

1.44 × 1016, 2.15 × 1015, 209, 154, 1360.

In practice, we run this refined Jacobian test (takes  <1 min on a standard laptop) to identify 
well-conditioned band limits L and P before we attempt non-convex optimization.

4. Numerical optimization and first visual examples

After studying the theoretical properties of the polynomial system which is defined by the first 
two moments, we discuss in this section aspects of numerically inverting the polynomial map 
via optimization.

4.1. Incorporating natural constraints in optimization

When determining the coefficients A = {A�,m,s}�,m,s and B = {Bp,u,v}p,u,v, the search space 
has to be restricted in order to ensure the coefficients stem from some physical volume and 
density.

4.1.1. Constraints on the volume. To ensure the volume φ : R3 → R is a real-valued func-
tion, one has to ensure its Fourier transformation φ̂ : R3 → C satisfies conjugate symmetry 

φ̂(κ, θ,ϕ) = ¯̂
φ(κ,π − θ,π + ϕ). That is, in spherical coordinates,

L∑
�=0

�∑
m=−�

S(�)∑
s=1

A�,m,sYm
� (θ,ϕ)F�,s(κ) =

L∑
�=0

�∑
m=−�

S(�)∑
s=1

A�,m,sYm
� (π − θ,π + ϕ)F�,s(κ).

Assuming the basis {F�,s} is a set of real-valued functions, along with the facts that 
Ym
� (θ,ϕ) = (−1)mY−m

� (θ,ϕ) and Ym
� (π − θ,π + φ) = (−1)�Ym

� (θ,φ), we get
∑
�,m,s

A�,−m,s(−1)−mY−m
� (θ,ϕ)F�,s =

∑
�,m,s

A�,m,s(−1)�Ym
� (θ,ϕ)F�,s

Table 3. Uniqueness for inverting the first two moments in the case of an unknown, 
in-plane uniform ρ , according to band limits. Generically finitely many solutions for 
(A, B)mod SO(3) is denoted by , infinitely many solutions for Amod SO(3) and 
Bmod SO(3) is denoted by , and indecisive numerics is denoted by .

L  =  2 L  =  3 L  =  4 L  =  5 L  =  6 L  =  7 L  =  8 L  =  9 L  =  10

P  =  0
P  =  1
P  =  2
P  =  3
P  =  4
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This further implies

A�,m,s(−1)−m = A�,−m,s(−1)�. (45)

Having such relationships, {A�,m,s}�,m,s can thus be written in terms of some real coefficients 
{α�,m,s}�,m,s as:

A�,m,s =





α�,m,s − i(−1)l+mα�,m,s, m > 0,
ilα�,m,s m = 0,
(−1)l+mα�,m,s + iα�,m,s, m < 0.

 (46)

The latter means that instead of solving a complex optimization problem in terms of the coef-
ficients A�,m,s, one can work with the real coefficients α�,m,s of (46). Otherwise, the equality 
constraints (45) are required.

4.1.2. Constraints on the density. Similarly, to ensure the density ρ  being a real-valued func-
tion, we need to ensure

P∑
p=0

p∑
u=−p

p∑
v=−p

Bp,u,vU p
u,v(R) =

P∑
p=0

p∑
u=−p

p∑
v=−p

Bp,u,vU p
u,v(R). (47)

The fact that U p
u,v(R) = (−1)v−uU p

−u,−v(R) leads to

Bp,u,v = (−1)u−vBp,−u,−v. (48)

Again, from such relationships, it can be shown that an alternative to (48) can be written in 
terms of real coefficients βp,u,v:

Bp,u,v =



βp,u,v + (−1)u−viβp,−u,−v, (u, v) �lex (0, 0),
βp,0,0, (u, v) = 0,
βp,u,v − (−1)u−viβp,−u,−v, (u, v) ≺lex (0, 0).

 (49)

Here, ≺lex  is the lexicographical order, that is (u1, v1) ≺lex (u2, v2) iff u1 < u2 or both u1 = u2 
and v1 < v2.

Two additional constraints are required. First, the integral of any density function is one. To 
ensure such a correct normalization, we simply let

B0,0,0 =

∫ P∑
p=0

p∑
u=−p

p∑
v=−p

Bp,u,vU p
u,v(R)dR = 1, (50)

which means it is no longer considered as unknown. Finally, the nonnegativity of the density 
is ensured via a collocation method, that is requiring

ρ(Ri) =
∑
p,u,v

Bp,u,vU p
u,v(Ri) � 0, (51)

for Ri’s on a near uniform, refined grid on SO (3). While (51) does not prevent the den-
sity from becoming negative off the SO (3) grid, requiring the density to be non-negative 
entirely on SO (3) leads to an optimization problem that is much more costly to solve in 
practice. Note that we do not enforce positivity of ρ  by requiring it to be a sum-of-squares, 
as, e.g. already in the case of an in-plane uniform distribution on the sphere S2 ⊂ R3, not 
all nonnegative polynomials may be written as a sum-of-squares, see Motzkin’s example 
when P  =  6 [43].

N Sharon et alInverse Problems 36 (2020) 044003



19

4.2. Accommodating invariance to in-plane rotations

While molecules typically exhibit preferred orientations, there is no physical reason why mol-
ecules should have preferred in-plane orientations. In this section, we focus on the case of 
non-uniform rotational distributions invariant to in-plane rotations since these distributions 
better model real cryo-EM data sets.

For simplicity, we fix the image plane as perpendicular to the z-axis. We add the prior that 
the density for drawing R equals the density for drawing Rz(α), for all R ∈ SO (3) and all 
rotations z(α) of α ∈ R radians about the z-axis. This assumption reads

ρ(R) = ρ (Rz(α)) R ∈ SO (3), α ∈ R. (52)

Therefore,
∑
p,u,v

Bp,u,v U p
uv(R) =

∑
p,u,v

Bp,u,v U p
uv(Rz(α)) (53)

=
∑
p,u,v

Bp,u,v

(
U p(R)U p(z(α)

))
uv

. (54)

Here we used the group representation property of Up . Checking explicitly the action of z(α) 
on degree p  spherical harmonics,

U p(z(α)
)
= diag(e−ipα, e−i( p−1)α, . . . , eipα). (55)

So continuing the above,
∑
p,u,v

Bp,u,v U p
uv(R) =

∑
p,u,v

Bp,u,v U p
uv(R)e

ivα, R ∈ SO (3), α ∈ R. (56)

This is equivalent to Bp,u,v = 0 for v �= 0 where v ranges over −p,−p + 1, . . . , p. To sum, we 
have found that in-plane invariance is captured by:

dρ(R) =
∑
p,u

Bp,u,0 U p
u0(R) dR. (57)

For a sanity check, a distribution with in-plane invariance should sample a rotation with density 
only depending on which point maps to the north pole. Namely, ρ(R) should only depend on the 

last column of R, that is, R(:, 3) = R•3. Indeed, this holds as U p
u0(R) = (−1)u

√
4π

2l+1 Yu
p (R•3) 

[19, equation (9.44), P 342].
Restricting the expansion of ρ  as above, we easily see the first moment is independent of 

ϕ. It is now merely a linear combination of basis functions F�,s(κ). Likewise, for the second 
moment, angular dependency is only on the difference ϕ1 − ϕ2, meaning it is a linear combi-
nation of basis functions eim(ϕ1−ϕ2)F�1,s1(κ1)F�2,s2(κ2). Thus, in section 3.4, we have the fol-
lowing polynomial map, now with fewer B variables and fewer invariants than in section 3.3

m : {A�,m,s, Bp,u,0} �→ {ER[aR
0,t], ER[aR

q1,t1 aR
−q1,t2 ] }. (58)

4.3. Direct method—known totally non-uniform distribution

For the ‘easy’ case of a known, totally non-uniform distribution, we have implemented the 
provable algorithm in theorem 1. The method’s performance is illustrated by way of an exam-
ple. As the ground truth volume, we use EMD-0409, that is, the catalytic subunit of protein 
kinase A bound to ATP and IP20 [32], as presented at the online cryo-EM data-bank [38]. 
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The volumetric array’s original dimension is 128 voxels in each direction, which we downs-
ampled by a factor of three to 43. The volume was expanded using PSWFs with a band limit 
c chosen to be the Nyquist frequency and 3D truncation parameter (A.8) of δ = 0.99. Before 
downsampling, the full expansion consists of degree L  =  40; with downsampling and proper 
truncation, we aim to recover the terms up to degree L  =  7. For the known totally non-uniform 
distribution, we took P  =  14 (per theorem 1), and then formed a particular distribution using 
a sums-of-squares. Precisely, we formed a random linear combination of Wigner entries up to 
degree 7, multiplied this by its complex conjugate, invoked (26) and (32) to rewrite the result 
as a linear combination of Wigner entries up to degree 14, repeated for a second square, added, 
and finally normalized to satisfy (50). Then, with the distribution known as such, the volume 
contributes 1080 unknowns (without discounting for (45)). Providing the algorithm with m1 
and m2, our method took 0.24 seconds on a standard laptop, and recovered the unknowns A up 
to a relative error in L2 norm of 5.4 × 10−11. Visual results are in figure 2.

4.4. Setting up a least-squares formulation

For the cases where we lack a direct method, we formulate the problem in terms of minimiz-
ing a least-squares cost function. First, we define the unknowns of our optimization process 
to be the coefficients of the volume A  =  {Al,m,s} and distribution B = {Bp,u,v}. The explicit 
formulas (27) and (35) provide means to write the low-order moments (7) as functions of our 
unknown coefficients, that is m1 = m1(A, B) and m2 = m2(A, B).

In practice, given data images, one estimates the low-order statistics using the empirical 
moments m̃1 and m̃2 of (1), but now given in PSWFs coordinates

(m̃1)q,t =
1
n

n∑
j=1

a j
q,t and (m̃2)q1,t1,q2,t2 =

1
n

n∑
j=1

a j
q1,t1 a j

q2,t2 . (59)

The connection between the empirical moments and their analytical formulas as functions of 
our unknowns gives rise to a nonlinear least-squares

min
A,B

Q∑
q=−Q

T(q)∑
t=0

(
m1(A, B)q,t − (m̃1)q,t

)2

+ λ

Q∑
q1,q2=−Q

T(q)∑
t1,t2=0

(
m2(A, B)q1,t1,q2,t2 − (m̃2)q1,t1,q2,t2

)2
,

 

(60)

Figure 2. Two views of the reconstruction as provided by the algorithm of theorem 1 to 
the case of known, totally non-uniform distribution. The ground truth volume appears 
on the right of each pair (in gray), whereas the lower degree estimation resulting from 
the downsampled volume appears on the left (in yellow). Note that the estimation is 
visually identical to the truncated volume, and it thus illustrates the effect of truncation.
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where λ is a parameter chosen to balance the errors from both terms. In particular, two main 
considerations determine the value of λ. First is the number of elements in each summand. 
Namely, the second moment includes many more entries than the first moment. Therefore, 
without the effect of noise, λ is set to be the ratio between the number of entries in first 
moment and the second moment. The second factor to balance is the different convergence 
rates of the empirical moments, see also [1]. The nonlinear least-squares (60) may be adjusted 
to incorporate the constraints on {Al,m,s} and {Bp,u,v} that ensure φ is a real-valued volume and 
ρ  a probability density.

We remark that it is interesting to consider pre-conditioners, or more intricate weighings, 
in the formation of the nonlinear least-squares cost (60). Such might alleviate high condition 
numbers observed in section 3, and potentially accelerate optimization algorithms. While we 
have not tested a pre-conditioner in optimization experiments yet, one possibility would be to 
consider the following normalized cost:

min
A,B

Q∑
q=−Q

T(q)∑
t=0

(
m1(A, B)q,t − (m̃1)q,t

)2 /
(m̃1)

2
q,t

+ λ

Q∑
q1,q2=−Q

T(q)∑
t1,t2=0

(
m2(A, B)q1,t1,q2,t2 − (m̃2)q1,t1,q2,t2

)2 /
(m̃2)

2
q1,t1,q2,t2 .

 

(61)

Effectively, (61) scales each polynomial in (A, B) given by m1 and m2 to take value 1.

4.5. Complexity analysis of inverting the moments via gradient-based optimization

Before moving forward to further numerical examples, we state the computational load of 
minimizing the least-squares cost function (60). It is worth noting that in many modern ab 
initio algorithms, like SGD [48] and EM [52], the runtime of each iteration is measured with 
respect to the size of the set of data images, which can be huge. In our approach, we only carry 
out one pass over the data to collect the low-order statistics. In here, we assume the empirical 
moments are already given, and so the complexity of each iteration is merely a function of the 
size of the moments or equivalently depends on the size and resolution of the data images, as 
reflected by their PSWF representations.

Many possible algorithms exist to minimize the least squares problem (60), for example 
direct gradient descent methods, such as trust-region [47], or alternating approaches, includ-
ing alternating stochastic gradient descent. Here, we present the complexity of evaluating 
the cost function and its gradient, regardless of the specific algorithm or implementation one 
wishes to exploit.

For simplicity, denote by S and T two bounds for the radial indices S(�) and T(q) of the 
3D and 2D PSWF expansions, respectively. Typically, it is sufficient to take S = S(0) and 
T = T(0), as radial degree decreases as overall degree (�) increases.

Starting from the first moment (27): with a fixed � we have to apply two matrix-vector 
products in a row which requires an order of O (S�+ TS) arithmetic operations. The variable � 
increases up to L, which sums up to a total of L · O (S�+ TS) = O (LS(L + T)). The gradient 
uses the precomputed remainder m1(A, B)− (m̃1) and is calculated by two terms with similar 
complexity as the above. Namely, the cost of both evaluation and gradient calculations is again 
O (LS(L + T)).

For the second moment, we follow (35): establishing Γq
� A� is done in O (TSL) and apply-

ing the product in O
(
TL2

)
. Overall, the evaluation is bounded by
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O
(
L2(TSL + TL2)

)
= O

(
TL3(S + L)

)
. (62)

The gradient is a bit more complicated, in short, there are two terms for the volume derivatives 
and one term for the distribution part, with the precomputed remainder m2(A, B)− (m̃2) we 
get an overall complexity of O

(
L2S(L2 + T2 + TL)

)
. In summary, the first moment requires 

third-order complexity with respect to the different parameters where the second moment 
requires a total power of five.

Finally, the parameters T, S, and L can be described by the PSWF representation: the length 
L of the 3D PSWF expansion and the bound on the radial indices S are related to the parameter 
c of sampling rate, and are bounded according to (A.11). Additional bound, now on the radial 
2D expansion T, uses the accuracy parameter ε of the 2D images and the above L as given in 
(A.28). For more details on those parameters, see appendix A.

4.6. Remark on using semidefinite programming (SDP) relaxation

Solving the nonlinear least-squares problem in equation (60) could suffer from slow conv-
ergence because the cost function is a polynomial of degree 6. We remark that in principle, it 
is possible to apply a semidefinite programming relaxation to facilitate the optimization. For 
convenience, let the second moments m2(A, B)q1,t1,q2,t2 be summarized as

m2(A, B)q1,t1,q2,t2 := Gq1,t1,q2,t2(AAT ⊗ B) (63)

where Gq1,t1,q2,t2(·) is a linear operator that captures the RHS of equation (34). If we define

Ā = AAT ,

the optimization problem can be written as

min
A,Ā,B

Ā=AAT

Q∑
q=−Q

T(q)∑
t=0

(
m1(A, B)q,t − (m̃1)q,t

)2

+λ

Q∑
q1,q2=−Q

T(q)∑
t1,t2=0

(
Gq1,t1,q2,t2(Ā ⊗ B)− (m̃2)q1,t1,q2,t2

)2
.

To deal with the non-convex constraint Ā = AAT, we propose the following relaxed constraint

Ā � AAT , (64)

which gives the following non-linear least squares problem

min
A,Ā,B

Ā�AAT

Q∑
q=−Q

T(q)∑
t=0

(
m1(A, B)q,t − (m̃1)q,t

)2

+ λ

Q∑
q1,q2=−Q

T(q)∑
t1,t2=0

(
Gq1,t1,q2,t2(Ā ⊗ B)− (m̃2)q1,t1,q2,t2

)2
.

 (65)
Comparing with (60), although (65) is still a non-convex problem, the degree of the polyno-
mial in the cost function of (65) is 4 (instead of 6). Furthermore, one can solve (65) efficiently 
by minimizing (A, Ā) and B in an alternating fashion. Therefore if at the optimum Ā ≈ AAT in 
spite of the relaxation (64), solving (65) can be advantageous.
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We remark on the special case when the density coefficient B is given. In this situation, one 
can consider an SDP relaxation

min
A,Ā,

Ā�AAT

Tr(Ā)

subject to
∣∣∣m1(A, B)q,t − (m̃1)q,t

∣∣∣ � εq,t, 0 � t � T(q), −Q � q � Q,
∣∣∣Gq1,t1,q2,t2(Ā ⊗ B)− (m̃2)q1,t1,q2,t2

∣∣∣ � εq1,t1,q2,t2 ,

0 � t1 � T(q1), 0 � t2 � T(q2), −Q � q1, q2 � Q.
 

(66)

The nuclear norm minimization strategy as in matrix completion [17] is used to promote 
Ā to be of rank-1. We test the SDP in (66) when given a fixed B0. We generate B0 for a non-
uniform distribution from a 6th degree nonnegative polynomial over the rotation group, i.e. 
letting P  =  6. We generate a volume with random coefficients A0 with L  =  3. Noise is added 
to the moments in the following manner:

(m̃1)q,t = m1(A0, B0)q,t + |m1(A0, B0)q,t| zq,t,

(m̃2)q1,t1,q2,t2 = Gq1,t1,q2,t2(A0A∗
0 ⊗ B0) + |Gq1,t1,q2,t2(A0A∗

0 ⊗ B0)| zq1,t1,q2,t2 .

Where

zq,t, zq1,t1,q2,t2 ∼ Uniform[−ε, ε],

and

0 � t � T(q), −Q � q � Q, 0 � t1 � T(q1), 0 � t2 � T(q2), −Q � q1, q2 � Q.

In this case, we set in (66),

εq,t = ε |m1(A0, B0)q,t| and εq1,t1,q2,t2 = ε |Gq1,t1,q2,t2(A0A∗
0 ⊗ B0)| .

The stability results in recovering A0 are shown in figure 3. We ran five simulations for every 
ε and average the relative error

RE =
‖Ā − A0A∗

0‖F

‖A0A∗
0‖F

.

Results show an exact recovery in the noiseless case and slowly increasing in relative error as 
ε grows.
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Figure 3. Stability of the SDP in (66) when fixing the density to be a non-uniform 
density.
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4.7. Volume from moments—non-uniform versus uniform

As a first numerical example, we present a recovery comparison between the cases of uniform 
and non-uniform distributions of rotations. In this example, we use as a ground truth a low 
degree approximation of a mixture of six Gaussians, given in a non-symmetric conformation. 
The approximation, which we ultimately use as our reference, is attained by discretizing the 
initial volume to 23 × 23 × 23 and truncating the PSWFs expansion to L  =  4. This expansion 
consists of 118 coefficients in total. The other PSWFs parameters that we use are a band limit 
c that corresponds to the Nyquist frequency and 3D truncation parameter (A.8) of δ = 0.99. 
The original volume and its approximation appear in figure 4.

We divide the example into two scenarios of different distributions, uniform and non-uni-
form. In each case, we start from the analytic moments (7), calculated with respect to 2D pre-
scribed accuracy (A.28) of ε = 10−3, and obtain an estimation based on minimizing the least 
squares cost function (60). The optimization is carried with a gradient-based method, specifi-
cally we use an implementation of the trust-region algorithm, see e.g. [47]. In the first case, 
we use as the distribution of rotations a quadratic expansion P  =  2 which is in-plane uniform. 
Based on the in-plane invariance, we present this distribution as a function on the sphere in 
figure 5. For the second case, we use a uniform distribution of rotations.

In both cases, we let the optimization reach numerical convergence, where the progress 
in minimization is minor. In this example, it is usually at about 100  −  150 iterations. In the 
case of non-uniform distribution, we observe that choosing a random initial guess can have 
an effect on the speed of convergence but has almost no influence on the resulted volume. In 
other words, we gain numerical evidence for uniqueness. The estimated volume, in this case, 
is depicted on the left side of figure 6.

On the other hand, in the case of a uniform distribution, while convergence was typically 
quicker than in the non-uniform case, the results vary between different initial guesses, indi-
cating the richness of the space of possible solutions. One such solution appears on the right 
side of figure 6. This behavior of the optimization solver agrees with our previous knowledge 
on the ill-posedness of Kam’s method and also with the Jacobian test which shows degree 
deficiency of the polynomial system defined by the first and second moment under the uni-
form distribution.

Figure 4. Ground truth volumes. (a) Mixture of Gaussians. (b) A low degree 
approximation using PSWF expansion with L  =  4.
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4.8. Comparing volumes using FSC

A commonly used cryo-EM resolution measure is the Fourier shell correlation (FSC) [29]. 
The FSC measures cross-correlation coefficient between two 3D volumes over each corre-
sponding shell. That is, given two volumes φ1 and φ2, the FSC in a shell κ is calculated using 
all voxels κ on this κth shell:

FSC(κ) =

∑
‖κ‖=κ φ1(κ)φ2(κ)√∑

‖κ‖=κ |φ1(κ)|2
∑

‖κ‖=κ |φ2(κ)|2
. (67)

Customary, the resolution is determined by a cutoff value. The threshold question is discussed 
in [64], where in our case since we wish to compare a reconstructed volume against its ground 
truth, we use the 0.5 threshold. Since we focus on ab initio modeling, we aim to estimate a 
low-resolution version of the molecule from the first two moments. Thus, we expect the cutoff 
to reach a value which ensures a good starting point for a refinement procedure.

Figure 5. The non-uniform distribution of viewing angles which we use for section 4.7. 
This distribution satisfies in-plane invariance and depicted as a function on the sphere.

Figure 6. Comparison of reconstructions for two cases of non-uniform and uniform 
distribution of rotations: ground truth volume, as also seen in figure 4(b), appears on the 
left of each pair (in gray), where the estimation is on the right (in yellow) (a) Recovery 
under non-uniform distribution. (b)Recovery under uniform distribution.
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4.9. Visual example and the effect of non-uniformity

We next introduce an example for the most realistic scenario of an unknown, in-plane uniform 
distribution, by inverting the moment map of a real-world structure through minimization of 
a least-squares cost function (60). In this example, we once again illustrate the feasibility of 
numerically approaching the solution, without any prior assumption on the volume.

The example is constructed as follows. As the ground truth volume, we once again use 
EMD-0409, the catalytic subunit of protein kinase A bound to ATP and IP20 [32], as presented 
at the online cryo-EM data-bank [38]. The map original dimension is 128 × 128 × 128 vox-
els. Since we aim to recover a low-resolution model, we reduce complexity and downsample 
it by a factor of three to 43. We firstly expand this volume using PSWFs with a band limit 
c chosen as the Nyquist frequency and 3D truncation parameter (A.8) of δ = 0.99. The full 
expansion consists of degree L  =  40, and after truncation to maximize conditioning, as done 
in section 3.3, we aim to recover the low degree counterpart up to degree L  =  6. The moments 
were calculated with respect to 2D prescribed accuracy (A.28) of ε = 10−3 and in the absence 
of noise. The volume contributes 657 unknowns to be optimized.

As the ground truth distribution, we choose three different functions: uniform, highly non-
uniform and a non-uniform case in-between. The two non-uniform cases are cubic spheri-
cal harmonics expansions (P  =  3) and satisfy in-plane invariance and so we present them in 
figure 7 as functions on the sphere, together with a histogram to compare and illustrate their 
‘non-uniformness’. The non-uniform distributions add extra 15 unknowns which means that, 
in total, we optimize 672 unknowns in the cases of non-uniform distribution and only 657 
unknowns in the case of uniform distribution.

In the optimization process, we use the limit of the empirical moments (59) (n → ∞) as our 
input moments. As before, we use a trust-region algorithm, see e.g. [47], which is a gradient-
based method. To fix the initialization between the different cases, we start the search with the 
zero volume. In cases of non-uniform distribution, we provide a random non-uniform distri-
bution to start with. Our method is implemented in MATLAB R2017b, and we calculated the 
example on a laptop with a 2.9 GHz Intel Core i5 processor and 16 GB 2133 MHz memory.

The result we present next is obtained after 60 iterations of trust-region, each iteration 
usually uses up to 30 inner iterations to estimate the most accurate step size. The runtime of 
this example is about 55 min for each model, where at this point, our naive implementation 
does not support any parallelization which potentially can lead to a significant improvement 
in the total runtime. For example, the evaluation of the second moment and its associated 
gradient part are related to the leading complexity term as described in section  4.5. Their 

Figure 7. The two non-uniform distributions in use. (a) The less non-uniform 
distribution function on the sphere. (b) The more non-uniform distribution function on 
the sphere. (c)The probability of each value to appear in the distribution: a comparison 
to illustrate the different non-uniformity levels of the two distributions.
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implementation is based upon matrix product as seen in the form (35). This part can remark-
ably benefit from parallel execution. Note that evaluating the PSWF functions, as well as 
the product Clebsch–Gordan coefficients (which appears in the moments), are all calculated 
offline as a preprocessing step.

We present a comparison between the different FSC curves for the three cases. As implied 
by figure 8, the resolution increases (lower FSC cut) as the non-uniformity becomes more 
significant. Specifically, with the uniform distribution we obtain merely 39.1 Å, where for the 
two other non-uniform cases we get 22.5 Å and 19.0 Å as the non-uniformity increases in the 
examples of figure 8.

Figure 8. The FSC curves of the three test cases. The dashed curve (in black) is of the 
uniform distribution, the dot line (blue) is of the less radical non-uniform case, and the 
solid curve (red) is of the most non-uniform distribution case. As customary, we use the 
conventional FSC cutoff value of 0.5.

Figure 9. The estimations which were obtained by inverting the moments via 
optimization. The ground truth volume appears on the left (in gray), where the models 
are on the right (in yellow), ordered as associated with the different distributions, from 
uniform on the left to the most non-uniform on the right.
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A visual demonstration of the output of the optimization is presented in figure 9, where we 
plot side by side the ground truth and three models, from the uniform to the most non-uniform 
one.

4.10.Recovery from noisy images

We conclude this section with an example of recovering a volume from its noisy projection 
images. The volume is a mixture of six Gaussians, synthetically designed to have no spatial 
symmetry. The volume’s size is 15 × 15 × 15 and its full PSWF expansion is of length L  =  13, 
with band limit c chosen as the Nyquist frequency and 3D truncation parameter (A.8) of 
δ = 0.99. We use an in-plane uniform distribution of rotations, very localized on a 45 degree 
cone, represented with an expansion length of P  =  3. The distribution function is shown on 
figure 10 and can model a realistic scenario of highly anisotropic viewing directions (see, e.g. 
[4]). Using the distribution, we generated projection images to obtain 200 000 observations. 
These images were then contaminated with noise. The SNR of an image Ij  with the noise term 
εj is SNRj = ‖Ij − εj‖2

/ ‖εj‖2, using the Frobenius norm. The noise was chosen to achieve 
an average SNR value of 1/3. Three examples of clean images and their noisy versions are 
depicted in figure 11. As seen in figure 11, the projections are hardly noticed in the noisy 
images for the naked eye.

We expand the noisy images using a 2D PSWF basis, as appears in (14). Then, the coef-
ficients and their double-products are averaged to estimate the first and second moments as in 
(59). The reconstruction uses the empirical moments to estimate the volume and distribution. 
For the volume, our gradient-based least-squares algorithm targets its full expansion, which 
consists of 192 unknowns. The unknown distribution includes 8 unknowns spherical harmon-
ics coefficients. We reached the result we present next very quickly, starting from a random 
initial guess. It took about 15 iterations of trust-region; each iteration could use up to 30 inner 
iterations to estimate the most accurate step size. The runtime of this example is less than 
10 min.

A visual demonstration of the estimated volume is provided in figure 12. We present the 
estimation, side by side, to the original volume. As seen in the various pictures, the reconstruc-
tion, while not perfect, captures most features and the general shape of the structure. This 
encouraging result indicates that inverting the moments is possible also from noisy moments 
and that the mapping has some robustness to small perturbations.

Figure 10. The distribution function on the sphere.
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5. Discussion and conclusion

The method of moments offers an attractive approach for modeling volumes in cryo-EM. 
This statistical method completely bypasses the estimation of viewing directions by treating 
them directly as nuisance parameters. The assumption of a non-uniform distribution of view-
ing angles enables in many cases volume estimation using only the first and second moments 
of the data. This phenomenon opens the door for fast, single-pass reconstruction algorithms, 
based on inverting the map from the volume and distribution to the low-order statistics of the 
projection images.

This paper extended Zvi Kam’s original method of moments for cryo-EM to the setting of 
a non-uniform distribution of viewing directions. We formulated the reconstruction problem 
using appropriate discretizations for the images, the volume, and the distribution. Then, we 
derived moment formulas using properties of the spherical harmonic functions and Wigner 
matrix entries. Computational algebra was employed to analyze the resulting large-scale sys-
tem of polynomial equations. The analysis shows the seeming complication of an unknown, 
non-uniform distribution renders 3D reconstruction easier than in the uniform case, as now 
only first and second moments are required to determine a low-resolution expansion of the 
molecule, up to finitely many solutions. Intermediate cases were treated; remarkably, when the 
distribution is known and totally non-uniform over SO (3), there is an efficient, provable algo-
rithm to invert the first and second moments non-linearly. Additionally, our work addressed 
several numerical and computational aspects of the method of moments. An implementation 
of a trust-region method was presented and used to illustrate the advantages of our approach 
over Kam’s classical approach by numerical experiments involving synthetic volumes.

We regard our work as a definite, albeit initial step toward developing the method of 
moments for ab initio modeling from experimental datasets. Firstly, even in the synthetic cases 
considered here, further work on the optimization side is warranted. Variations on our nonlin-
ear cost function that incorporate a pre-conditioner, e.g. (61), could be considered. Secondly, 
other techniques for large-scale nonlinear least squares optimization should be tried, such as 
Levenberg–Marquardt [40] or Variable Projection [18], where in the latter one can exploit the 
linearity in the moments with respect to the distribution, by eliminating out the distribution. 

Figure 11. Three projection images: in upper row as clean and noisy images. The 
resulted SNR is about 1/3.
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Thirdly, to get our method working on images, further effects, such as the CTF and imperfect 
centering of picked particles, should be incorporated into the moment formulas. Fourthly, 
accurate covariance estimation in high dimensions requires eigenvalue shrinkage [22], the 
theory for which may call for a modification in the non-uniform setting.

To simplify our exposition, we have stuck to the asymmetric and homogeneous cases here, 
although both of these can be relaxed in the method of moments. Specifically, as already noted 
in Kam’s original paper [33], point symmetries of molecules are reflected in the vanishing 
of certain expansion coefficients, see also [63]. Therefore, MoM can be reformulated using 
fewer coefficients for symmetric molecules. This fact, alongside with further improvement 
of the representation of the distribution, may pave the way for recovery under practical cases 
of very restricted viewing angles, as reported in literature [4, 26, 44, 59]. At the same time, 
heterogeneity, at least if it is finite and discrete, can be expressed using a mixture of volumes 
and a corresponding mixture of moments, see [5, 14]. In future work, computational algebra 
should be applied to these cases to check whether the first and second moments remain suf-
ficient for unique recovery.

To conclude, we raise one further possibility, in some sense at odds with the message of 
this paper. In the non-uniform case, we have determined that the first and second moments 
are sufficient information-theoretically for volume recovery. Nonetheless, the resulting optim-
ization landscape is potentially challenging, due to non-convexity or ill-conditioning. Thus, 
despite the increased statistical cost of estimating the third moment, it seems worthwhile to 
ask what can be gained computationally by reprising the third moment in MoM (or at least, 
using a carefully chosen slice of the third moment). Specifically, we would like to answer this 
question: can the third moment facilitate more efficient modeling at higher resolution? 

Figure 12. Reconstruction from moments of noisy images: an illustration taken from 
four different viewing angles. The estimation appears in yellow (left volume on the top 
left corner picture) and the original volume is in gray.
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Appendix A. Prolate spheroidal wave functions

Here we describe key properties of the PSWFs, and propose a method for setting the expan-
sion parameters L, S(�), Q, and T(q). We begin with the three-dimensional PSWFs, where we 
describe important properties established in the literature [34, 53, 57], and outline our choice 
for setting L and S(�), accordingly. Then, we proceed with a short analogous description for 
the two-dimensional PSWFs (summarizing results of [57]), and derive a method for choosing 
Q and T(q) by directly exploiting the fact that the images to be expanded are tomographic 
projections of a bandlimited and localized volume function (employing our previous represen-
tation for the volume function).

A.1. Volume function representation with three-dimensional PSWFs

Let Φ : R3 → R be a square integrable (volume) function on R3, representing the true under-
lying electric potential of the molecule, and denote by Φ̂ its three-dimensional Fourier trans-
form. It is common practice to assume that Φ(x) is bandlimited (i.e. Φ̂ is restricted to a ball) 
while being localized in space. Functions satisfying this property are naturally represented by 
three-dimensional PSWFs, as detailed next.

We say that the function Φ(x) as c-bandlimited if Φ̂(ω) vanishes outside a ball of radius c. 
That is, Φ is c-bandlimited if

Φ(x) =
(

1
2π

)3 ∫

cB
Φ̂(ω)eıωxdω, x ∈ R3, (A.1)

where B is the unit ball. Among all c-bandlimited functions, the three-dimensional PSWFs on 
B [57] are the most energy concentrated in B, while constituting an orthonormal system over 
L2(B). Namely, they satisfy

Ψi =argminψ‖ψ‖L2(R3)

subject to ‖ψ‖L2(B) = 1, 〈ψ,Ψj〉L2(B) = 0, ∀j < i,
 (A.2)

for i = 1, 2, . . ., i.e. Ψ1 is the most energy concentrated c-bandlimited function, Ψ2 is the most 
energy concentrated c-bandlimited function orthogonal to Ψ1, and so on. Three-dimensional 
PSWFs can be obtained as the solutions to the integral equation

αΨ(x) =
∫

B
Ψ(ω)eıcωxdω, x ∈ B, (A.3)
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where we denote the solutions (the PSWFs with bandlimit c) as Ψc
�,m,s(x) and their corre-

sponding eigenvalues as αc
�,m,s, where the enumeration over i in (A.2) is replaced with an enu-

meration over the triplet �, m, s described below, and the eigenvalues appear in non-increasing 
ordering with respect to the original enumerate i. Ψc

�,m,s(x) and αc
�,m,s together form the eigen-

functions and eigenvalues of (A.3), with m ∈ Z, � ∈ N ∪ {0}, and s ∈ N. Furthermore, the 
functions Ψc

�,m,s(x) are orthogonal on both B and R3 using the standard L2 inner products on 
B and R3, respectively, and are dense in both the class of L2(B) functions and in the class of 
c-bandlimited functions on R3. In spherical coordinates, the functions Ψc

�,m,s(x) agree with the 
form in the right-hand side of (8), and can be expressed as

Ψc
�,m,s(r, θ,ϕ) = Fc

�,s(r)Y
m
� (θ,ϕ), (A.4)

where Ym
� (θ,ϕ) are the spherical harmonics (see (9)). Numerical evaluation of the three-

dimensional PSWFs (in particular of the radial part Fc
�,s) was considered in [39].

From the properties of the three-dimensional PSWFs mentioned above, any volume func-
tion Φ(x) ∈ L2(R3) can expanded in B as

Φ(x) =
∞∑
�=0

�∑
m=−�

∞∑
s=1

Ã�,m,sΨ
c
�,m,s(x), x ∈ B, Ã�,m,s =

∫

B
Φ(x)Ψc

�,m,s(x)dx,

 (A.5)

where (·) denotes complex conjugation. Next, we consider the truncation of the expansion in 
(A.5), where it is convenient to bound the resulting truncation error in terms of the assumed 
spatial localization of Φ(x). Towards this end, we say that the function Φ(x) is ε-concentrated 
if

√∫

x/∈B
|Φ(x)|2dx � ε. (A.6)

Additionally, we define the normalized eigenvalues

λc
�,m,s =

( c
2π

)3
|α�,m,s|2 , (A.7)

where we mention that 0 � λc
�,m,s � 1, λc

�,m,s = λc
�,0,s for all triplets (�, m, s), and λc

�,m,s −→
s→∞

0 
for every �. Now, we propose to set S(�) according to

S(�) = max
s∈N

{
s : λc

�,0,s � δ
}

, (A.8)

where δ ∈ (0, 1) is some constant, and set L to be the largest � for which S(�) is defined (i.e. 
such that the set 

{
s : λc

�,0,s � δ
}
 is non-empty). Correspondingly, the volume function result-

ing from the truncating the expansion in (A.5), according to the chosen S(�) and L, is

φ(x) =
L∑

�=0

�∑
m=−�

S(�)∑
s=1

Ã�,m,sΨ
c
�,m,s(x). (A.9)

The following proposition bounds the error of approximating Φ(x) by φ(x).

Proposition A.1. Let Φ(x) be c-bandlimited with a unit L2 (B) norm and assume it is 
ε-concentrated. Then,

‖Φ− φ‖L2(B) � ε

√
δ

1 − δ
. (A.10)
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The proof follows immediately from theorem 5 in [34] and from our choices of S(�) and 
L. It is evident that the approximation error in the right-hand side of (A.10) can be made 
arbitrarily small by taking δ sufficiently small. Furthermore, in the case that Φ(x) is localized 
in space, i.e. ε � 1, we can take δ to be large, possibly even close to 1, and still get approx-
imation errors sufficiently small for our purposes.

A.1.1. Length of the expansion. Clearly, the number of basis functions taking part in the 

expansion (A.9), which is given explicitly by 
∑L

�=0
∑�

m=−� S(�), depends on the number of 
normalized eigenvalues λc

�,m,s exceeding δ. In this respect, the normalized eigenvalues λc
�,m,s 

are known to admit the following three distinct regions of behavior (when sorted in descend-
ing order). The first is called the ‘flat region’, where λc

�,m,s take values very close to 1, the 
second is called the ‘transitional region’, where λc

�,m,s shift rapidly from values close to 1 to 
values close to 0, and the third is called the ‘decay region’, where λc

�,m,s are very close to 0 and 
exhibit a super-exponential decay rate. As for the number of basis functions chosen according 
to (A.8), the following holds [53]:

L∑
�=0

�∑
m=−�

S(�) =
∣∣{(�, m, s) : λc

�,m,s � δ
}∣∣

=
c3

4.5π
+

c2

2π2 log (c) log (
1 − δ

δ
) + o(c2 log (c)),

 

(A.11)

where the first, second, and third terms on the right-hand side of (A.11) correspond to the 
number of normalized eigenvalues λc

�,m,s exceeding δ from the flat region, the transitional 
region, and the decay region of the eigenvalues, respectively. Clearly, the asymptotically dom-
inant term is O(c3), which corresponds to the number of terms in the expansion chosen from 
the flat region. Additionally, we need an extra O(c2 log (c)) terms if we take δ to be small 
(note that the second term in the right hand-side of (A.11) is negative for δ > 0.5, meaning 
that asymptotically we need less than c3/4.5π terms for values of δ close to 1). The remaining 
o(c2 log (c)) terms from the decay region are negligible compared to the leading asymptotic 
terms.

A.1.2. Fourier domain representation. Up to this point, we have shown that three-dimensional 
PSWFs are naturally adapted for expanding a volume function Φ(x) which is bandlimited and 
localized in space, where we provided an appropriate error bound (A.10). However, note that 
in (8) we actually expand the Fourier transform of the molecular potential. We now connect 
our previous expansion of Φ(x) with the expansion of its Fourier transform, and show that 
in fact (and uniquely for PSWFs) the two coincide, in the sense that expanding a function in 
three-dimensional PSWFs is equivalent to expanding its Fourier transform in three-dimen-
sional PSWFs (after an appropriate scaling and dilation). Let Ψ̂�,m,s denote the three-dimen-
sional Fourier transform of Ψ�,m,s, then by (A.3) it is easy to verify that

Ψ̂�,m,s(ω) =
(2π)3

c3α�,m,s
Ψ�,m,s(

ω

c
) · 1cB(ω), (A.12)

where 1cB(ω) is the indicator function on cB. It is evident that the Fourier transform of each 
three-dimensional PSWF is equal to itself up to a constant factor, a dilation by c, and a restric-
tion to a ball of radius c. Consequently, by taking the Fourier transform of (A.9) we have
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φ̂(ω) =

L∑
�=0

�∑
m=−�

S�∑
s=0

A�,m,sΨ
c
�,m,s(

ω

c
)/c3/2, ω ∈ cB, (A.13)

where

A�,m,s =
8π3

c3/2α�,m,s
Ã�,m,s. (A.14)

We conclude this part as follows. Given a bandlimit c (typically chosen as the Nyquist fre-
quency corresponding to the projection images’ resolution), we take the radial part F�,m,s(k) 
of (8) as Fc

�,m,s(k/c)/c3/2 · 1c(k), where 1c(k) is the indicator function on [0, c], and Fc
�,m,s(r) 

is the radial part of the three-dimensional PSWFs on B (the factor 1/c3/2 ensures that F�,m,s(k) 
are orthonormal over [0,∞) w.r.t the measure k2dk). Then, setting S(�) according to (A.8) for 
a given parameter δ allows for the controlled approximation error (A.10).

A.2. Projection image representation with two-dimensional PSWFs

In the sequel, we are interested in providing a suitable representation for the projection images 
of the rotated copies of φ(x). By the Fourier slice theorem, the two-dimensional Fourier trans-
forms of such projections are equal to slices from the three-dimensional Fourier transform of 
φ(x) (i.e. of φ̂(ω)). Therefore, if φ(x) is c-bandlimted, then the projection images are band-
limited to a disk of radius c. Additionally, we expect the projection images to be localized in 
the unit disk if φ(x) is sufficiently localized in the unit ball. For such projection images, two-
dimensional PSWFs are expected to provide a natural representation (see [36]).

We briefly summarize properties of the two-dimensional PSWFs which are used in our 
context. In essence, the properties of the two-dimensional PSWFs are analogous to those 
of the three-dimensional PSWFs when replacing the unit ball B with the unit disk D. Let 
P : R2 → R be a square integrable function on R2, representing a tomographic projection 
of φ. We say that P(x) as c-bandlimited if its two-dimensional Fourier transform, denoted by 
P̂(ω), vanishes outside a disk of radius c. That is, P is c-bandlimited if

P(x) =
(

1
2π

)2 ∫

cD
P̂(ω)eıωxdω, x ∈ R2. (A.15)

Among all c-bandlimited functions, the two-dimensional PSWFs on D are the most energy 
concentrated in D, that is, they satisfy (A.2) when replacing B with D, while constituting an 
orthonormal system over L2(D). The two-dimensional PSWFs were derived and analyzed in 
[57], and were shown to be the solutions to the integral equation

βψ(x) =
∫

D
ψ(ω)eıcωxdω, x ∈ D. (A.16)

We denote the PSWFs with bandlimit c as ψc
q,t(x), and their corresponding eigenvalues as βc

q,t, 
which together form the eigenfunctions and eigenvalues of (A.16), with q ∈ Z, and t ∈ N. 
Furthermore, the functions ψc

q,t(x) are orthogonal on both D and R2 using the standard L2 
inner products on D and R2, respectively, and are dense in both the class of L2(D) functions 
and in the class of c-bandlimited functions on R2. In polar coordinates, the functions ψc

q,t(x) 
agree with the form in the right-hand side of (14), and can be expressed as
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ψc
q,t(r,ϕ) =

1√
2π

f c
q,t(r)e

ıqϕ, (A.17)

where the eigenfunctions ψc
q,t(x) are normalized to have an L2(D) norm of 1. Numerical evalu-

ation of the two-dimensional PSWFs was considered in [54].
From the properties of the two-dimensional PSWFs mentioned above, any function 

P(x) ∈ L2(R2) can be expanded in D as

P(x) =
∞∑

q=−∞

∞∑
t=0

ãq,tψ
c
q,t(x), x ∈ D, ãq,t =

∫

D
P(x)ψc

q,t(x)dx. (A.18)

Now, considering the truncated expansion

I(x) :=
Q∑

q=−Q

T(q)∑
t=0

ãq,tψ
c
q,t(x), (A.19)

we are interested in controlling the error

‖P − I‖2
L2

D
=

Q∑
q=−Q

∑
t>T(q)

|ãq,t|2 +
∑
|q|>Q

∞∑
t=0

|ãq,t|2 . (A.20)

From (A.16), the Fourier transform of ψm,k can be expressed as

ψ̂m,k(ω) =
4π2

c2βm,k
ψm,k(

ω

c
) · 1cD(ω), (A.21)

where 1cD(ω) is the indicator function on cD, which is analogous to the relation between the 

three-dimensional PSWFs Ψc
�,m,s and their Fourier transforms Ψ̂c

�,m,s in (A.12). Continuing, 
taking the Fourier transform of (A.19) gives

Î(ω) =
Q∑

q=−Q

T(q)∑
t=0

aq,tψ
c
q,t(

ω

c
)
√

2π/c, ω ∈ cD (A.22)

where

aq,t =
(2π)3/2

cβq,t
ãq,t. (A.23)

We will now relate 2D basis representation error to that of the 3D basis functions. Comparing 
the 2D expansion (A.22) with the relation between 2D and 3D coefficients (19), while employ-
ing (A.23) and (A.14) we have

ãq,t =
cβq,t

(2π)3/2 aq,t =
L∑

�=|q|

S(�)∑
s=1

�∑
m=−�

Ã�,m,s U�
m,q(R) η

q,t
�,s,

 (A.24)
for |q| � L, where ãq,t = 0 for |q| > L, and

ηq,t
�,s =

cβq,t

(2π)3/2

8π3

c3/2α�,m,s
γq,t
�,s =

(2π)3/2βq,t√
cα�,m,s

γq,t
�,s, (A.25)
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where γq,t
�,s  is from (20). Using the Cauchy–Schwarz inequality, we can write

|ãq,t| �
L∑

�=|q|

S(�)∑
s=1

�∑
m=−�

|Ã�,m,s U�
m,q(R) η

q,t
�,s|

�




L∑
�=|q|

S(�)∑
s=1

�∑
m=−�

∣∣∣Ã�,m,s

∣∣∣
2




1/2 


L∑
�=|q|

S(�)∑
s=1

�∑
m=−�

∣∣U�
m,q(R) η

q,t
�,s

∣∣2



1/2

� ‖φ‖L2(B) ·




L∑
�=|q|

S(�)∑
s=1

|ηq,t
�,s|

2




1/2

,

 

(A.26)

where we also used the fact that U�(R) is a unitary matrix. Finally, taking Q  =  L and assuming 
w.l.o.g that ‖φ‖L2(B) = 1, we obtain from (A.20) and (A.26) that

‖P − I‖2
L2

D
�

L∑
q=−L

∑
t>T(q)

L∑
�=|q|

S(�)∑
s=1

|ηq,t
�,s|

2. (A.27)

Given a prescribed accuracy ε, for every −L � q � L we choose T(q) to be the smallest inte-
ger such that

∑
t>T(q)

L∑
�=|q|

S(�)∑
s=1

|ηq,t
�,s|

2 �
ε

2L + 1
, (A.28)

which results in

‖P − I‖2
L2

D
� ε, (A.29)

where ηq,t
�,s are computed by evaluating γq,t

�,s  of (20) via numerical integration (using Gauss–
Legendre quadratures). Note that the right-hand side of (A.28) is determined by the decay rate 
of ηq,t

�,s in t, which is dominated by the decay rate of the the eigenvalues of the two-dimensional 
PSWFs βq,t. Those are known to admit a rapid decay in the form of a super-exponential decay 
rate following a certain transitional region (see [13, 53]). Hence, if T(q) is sufficiently large 
then (A.28) can be satisfied for an arbitrarily small ε with a marginal increase in the number 
of required terms. Last, we mention that when provided with images sampled on a Cartesian 
grid, the coefficients ãq,t  can be approximated accurately from the images by fast algorithms 
[36, 37].

Appendix B. Linearizing polynomial maps with the Jacobian matrix

In this section, we describe the linearization technique from computational algebraic geom-
etry we used to obtain the uniqueness results in tables 1–3 from section 3. The first paper to 
apply algebraic geometry techniques to cryo-EM was [5]. Nevertheless, similar Jacobian tests 
have been used in other applications such as for testing rigidity in sensor network localization, 
see e.g. [27] and testing whether a matrix can be completed into a low-rank matrix [55].

To state the method, we fix CN = CN′ ⊕ CN′′
, let π′ and π′′ be projection onto the factors, 

and consider a polynomial map F = (F1, . . . , FM) : CN → CM (that is, each coordinate func-
tion Fi = Fi(x1, . . . , xM) is a polynomial on CN ). While F is generally a nonlinear map, its first 
derivative at q ∈ CN  is a linear map represented by the Jacobian matrix

N Sharon et alInverse Problems 36 (2020) 044003



37

dF :=
(

∂Fj

∂xi

)
i=1,...,M
j=1,...,N

. (B.1)

In addition, we define the fiber in q ∈ CN  by

Fq := {q̃ ∈ CN | F(q̃) = F(q)} ⊂ CN ,

and the projected fiber by

π′(Fq) ⊂ CN′
.

For q′ ∈ CN′
 and q′′ ∈ CN′′

, define the specialized fiber by
(

F|CN′⊕q′′

)
q′
= {q̃′ ∈ CN′

| F(q̃′ ⊕ q′′) = F(q′ ⊕ q′′)} ⊂ CN′
.

Because F is described by polynomials, there is a tight relationship between the dimension 
of fibers of F (as algebraic varieties) and the dimension of the kernels of dF  (as linear spaces). 
This is summarized by the Jacobian tests below. Somewhat remarkably, the linear algebra 
tests are done at a single point in the domain of F, but imply algebraic geometric statements 
for almost all points in the domain of F. In the next theorem, we divide the Jacobian test into 
three main cases, as described in table B1.

Theorem B.1. Suppose it is known that, generically, the fiber, projected fiber and spe-
cialized fiber have dimensions � d1, d2, d3, respectively (if we have no such knowledge, then 
d1 = d2 = d3 = 0). Choose particular points q0 ∈ CN , q′

0 ∈ CN′
 and q′′

0 ∈ CN′′
.

 –  Vanilla Jacobian test: if rank dF(q0) = N − d1, then generic fibers have dimension ex-
actly d1.

 –  Projected Jacobian test: if dim π′(ker dF(q0)) = d2, then generic projected fibers have 
dimension exactly d2.

 –  Specialized Jacobian test: if rank d
(

F|CN′⊕ q′′0

)
(q′0) = N′ − d3, then generic specialized 

fibers have dimension exactly d3.

Several technical remarks are in order. Firstly, in theorem B.1, the fiber, projected fiber 
and specialized fiber are affine algebraic varieties and hence a dimension is defined for each 
of their irreducible components according to [20]. The meaning of the theorem is that each 
component has dimension exactly d1, d2, d3, respectively. Crucially, affine algebraic varieties 
have finitely many components. Thus the theorem implies ‘finitely many solutions’ up to 
symmetries, if the symmetries give d1, d2, d3-dimensional ambiguities, respectively. Secondly, 

Table B1. Vanilla, projected and specialized Jacobian tests: these show that a system of 
polynomial equations generically has only finitely solutions. Notation: F : CN → CM  is 
a polynomial map, CN = CN′ ⊕ CN′′

 where π′, π′′ are orthogonal projections onto the 
factors, and d1, d2, d3 are the dimension bounds in theorem B.1.

polynomial  
map

arbitrary  
choices linearization rank check

vanilla CN F−→ CM q ∈ CN
CN dF(q)−→ CM rank(dF(q)) = N − d1

projected CN′ ⊕ CN′′
= CN F−→ CM q ∈ CN

CN′ ⊂ CN dF(q)−→ CM dim (π′(ker dF(q))) = d2

specialized CN′ ⊕ CN′′
= CN F−→ CM q′ ∈ CN′

q′′ ∈ CN′′

CN′ ⊕ q′′ dF(q′⊕q′′)−→ CM rank d
(

F|CN′⊕ q′′

)
(q′) = N′ − d3

N Sharon et alInverse Problems 36 (2020) 044003



38

‘generic’ in theorem B.1 is with respect to the Zariski topology. Concretely, there exists some 
polynomial G on CN  such that for all q ∈ CN  with G(q) �= 0 the implications in the theorem 
hold. In particular, any property that holds generically holds on a Lebesgue full measure sub-
set of points. Thirdly, the Jacobian ranks in theorem B.1 take on generic values, as each minor 
of the relevant matrix is a polynomial in q, q′, q′′.

Theorem B.1 states rigorous conclusions if the Jacobian rank tests are passed. On the other 
hand, if the tests fail for q0, q′0, q′′0 , and q0, q′0, q′′0  were drawn randomly from any continuous 
distribution on FN , then by genericity of the Jacobian ranks, with probability 1, the generic 
fibers, projected fibers, or specialized fibers of F have dimension strictly more than d1, d2, or 
d3,

We applied the specialized test in section 3.2 with d1  =  0, the vanilla and projected tests 
in section 3.3 with d1 = d2 = 3 and the vanilla test in section 3.4 with d1  =  3. The settings 
of 3 reflect the fact, in the latter two subsections, that the fibers are SO(3)-sets and we are 
interested in solutions modulo global rotation. The bounds may be seen as instances of the 
orbit-stabilizer theorem, see [5, proposition 4.11]. When the Jacobian rank tests were passed, 
this meant that, generically, there are only finitely many solutions up to global ambiguities.

In practice, we ran the Jacobian tests in floating-point arithmetic and used SVD for robust 
rank estimation. Namely, we looked at multiplicative gaps between consecutive singular val-
ues, and regarded any gap exceeding a predefined threshold (106) as evidence that all lower 
singular values should be regarded as zero. While these computations fall short of a fully rig-
orous mathematical proof due to the possibility of rounding errors in floating-point arithmetic, 
it was typically evident which singular values ought to be counted as zero or non-zero.
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