Lecture 3: Lagrangian Floer homology Tuesday, February 9, 2021 12:53 AM (M²ⁿ, w) Symplectic manifold Closed, non-degenerate 2-form A Lagrangian submanifold is L'CMan such that $\omega|_{L} = O$ Example zero section in cotangent budle of N Example any curve in Surface with w= whomp Def A diffeomorphism $(M, \omega) \longrightarrow (M', \omega')$ is a symplectomorphism if ftw = W Given smooth Function H on M, define vector field X_{H} s.f. $\omega(X_{H}, \cdot) = dH$ The time-1 flow of XH is a Hemiltonian diffeonorphism Example M= S'xR, w= dordx tranglation in R direction is a symplectomorphism, but not itemoltanian. Lo and L, are Lo and L, are blems/hon han Li Same area defension Li Man Def to almost complex structure J on (M, w) .5 $J \in End(TM)$ s.t. $J^2 = -1$ I is compatible with ω if $\omega(-, 5-)$ is a metric Ref amen (M,J) and (E, 5) grandlard almost cpr str Riemann surface a map U! Z M is J-holomorph."C if duoj = Jodu $() \quad \overline{J_{J}} u = \frac{1}{2} \left(du + J \cdot du \cdot v \right) = 0$ In local coordinates stit on E) (=) d_tu = Jd₅u (lanchy-Riemann equations) Def The energy of a map u: (E, i) -> (M, J) a mass occurated is $E(u) := \int_{\Sigma} |du|^2$ $Exercise = E(n) = \int_{\Sigma} u^* \omega + \int_{\Sigma} |\overline{\partial}_{J}u|^2$ T depends only on hemology class of u In particular, J-holomorphic curves minimite E(u) in their homology class. Aside: Marse honology If Missmooth finite divid manifold and f: M -> R is Morse (cr.t. pts nondegenerate) we define $CM^*(f)$ generated by Cr.:f(f)and 5 comments gradient flow lines of Vf between $(r:t:ral parts, is. map <math>Y: R \rightarrow M$ with • v = v f • $s \rightarrow -\infty$ $\gamma(s) = \rho$ $\int_{S \to +\infty}^{\infty} \chi(S) = 2$ $HM^{*}(f) = H^{*}(CM^{*}(f), 5)$ is invariant of M

(actually agrees with singular homology)

Manify spectrum. Correctionalogy is rear transformer
in the (window) petropological address for the first of

$$g(x_0, t_0) = g(x_0, t_0) = g$$

$$(f_{k}(u, k)) = generality [g_{k}(u)]$$

$$(f_{k}(u, k)) = generality [g_{k}(u)]$$

$$(f_{k}(u)) = generality [g_{k}(u)]$$

$$(f_$$