Lecture 19: Type D structures, (bordered) Heegaard Floer homology

Monday, April 12, 2021 11:33 PM

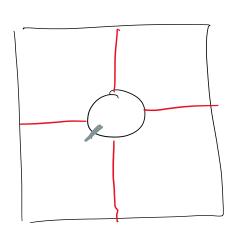
20011
(multide number)
$$\leftrightarrow$$
 (as how a productic relations)
(It is intervent)
(as is not ever if a productic relations)
(as is not ever if a production is intervent)
(as is is intervent in a product in the intervention is intervent in the intervent is intervent is intervent in the intervent is intervent in the intervent is inte

Twisted Cpx as type D structure A twisted cpx is a collection of objects E1,..., En with collection of morphisms (Sis)ici

•
$$\mathcal{S}'(x_i) = \sum_{j=i+1}^{n} \mathcal{S}_{ij} \otimes x_j$$

• $\mathcal{O} = \sum_{k} \mathcal{M}^{k}(\mathcal{S}_{j}, \dots, \mathcal{S}) = \mathcal{M}(\mathcal{S}_{ij}, \mathcal{S})$
 $\Rightarrow \sum_{k} \mathcal{M}(\mathcal{S}_{kj}, \mathcal{S}_{ik}) = \mathcal{O} \quad \text{for all } i, j$
 $\Rightarrow \sum_{k} \mathcal{M}(\mathcal{S}_{kj}, \mathcal{S}_{ik}) = \mathcal{O} \quad \text{for all } i, j$

Since 5' only takes X; to linear comb. of X; with join this type D structure is bounded.


We consider type D structures up to homotopy equivalence. Any type D str. over A is equivalent to a bounded onl

vere Yi, Zi have some idenpotent as Xi

$$V = 11, Un fla
grows g must be descended by a processing diseran-
$$H = \left(\sum_{i=1}^{n} \alpha_{i} B \right)$$
where α_{i} is the of g there is degeneration
and there g is been g to be building the
BS are abbrevial circles for building the
BS are abbrevial circles and
The bry $T_{a} = \alpha_{a} + \sigma + \alpha_{b}$ and
The bry $T_{a} = \alpha_{a} + \sigma + \alpha_{b}$ and
The bry $T_{a} = \alpha_{a} + \sigma + \alpha_{b}$ and
The bry $T_{a} = \alpha_{a} + \sigma + \alpha_{b}$ and
 $The breve for an symplet circle and
Symple the an symplet $2 + \alpha_{b}$ the
Reading af $T_{a} = \pi + \sigma + The$
we also for a broopend $2 + 2 + (\alpha_{a} + 2)$,
breve to the construction distribution
 $Ta breve to the construction distribution of the
 $The formula is a symplet (2)$.
Stander with $cons yr - 1 (2)$.
Stander with $cons yr - 1 (2)$.
 $The form to the construction of the
 $The formula is a symplet (2)$.
 $The form to the construction of the form T .
Shares more with a stand the theorem T .
Shares more with a stand to the theorem T .
 $The form to the construction of the form T .
 $The form to the construction of the form T .
 $The form to the construction of the form T .
 $The form to the construction of the form T .
 $The form to the form the construction of the form T .
 $The form to the form the construction of the form T .
 $The form to the form the construction of the form T .
 $The form to the form the construction of the form T .
 $The form to the form the construction of the form T .
 $The form to the form the construction of the form T .
 $The form to the form the construction of the form T .
 $The form to the form the construction of the form T .
 $The form to the form T is the form the construction of the form T .
 $The form to the form T is the form the construction of the form T .
 $T$$$$$$$$$$$$$$$$$$$$$

where $o \in \{t, -, \land\}$ Note: Spini((Y) is an affine copy of H2(Y)

There have been mony applications of these invariants.

