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Heegaard Floer homology

Closed manifolds:

To a closed, orientable 3-manifold Y we associate an abelian
group ĤF (Y ) = H∗(ĈF (Y ))

Manifolds with torus boundary:

There is an algebra A associated to the torus.

To an orientable 3-manifold M with boundary ∂M = T 2 and
a pair of parametrizing curves (α, β) for ∂M, we associate a

differential module ĈFD(M, α, β) or an A∞-module

ĈFA(M, α, β) over A.
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The torus algebra A

A is generated (over F2) by ρ1, ρ2, ρ3, ρ12, ρ23, ρ123 and two
idempotents, ι0 and ι1.

ρ1 ρ2 ρ3 ρ12 ρ23 ρ123 ι0 ι1

Multiplication is concatenation, e.g.

ρ1ρ2 = ρ12, ρ2ρ1 = 0, ρ1ι1 = ρ1, ρ1ι0 = 0

ι0 + ι1 = 1 ∈ A. We also denote this by ρ∅.
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A-decorated graphs

An A decorated graph is a directed graph with

vertices labeled by ι0 or ι1 (we depict these labels using • and ◦,
respectively)

edges labeled by ρI for I ∈ {1, 2, 3, 12, 23, 123, ∅}.

The module ĈFD (or ĈFA) can be represented by an A-decorated graph.

vertices ↔ generators

(each generator has an associated idempotent)

arrows encode the differential

We will think of the invariants ĈFD or ĈFA as A-decorated graphs
(up to appropriate equivalence)

We can always assume the graphs are reduced (i.e. no ρ∅ arrows).
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Examples

ĈFD(D2 × S1,m, `) ĈFD(D2 × S1, `,m)

• ρ12 ◦ ρ23

ĈFD(RHT, µ, λ) ĈFD(Fig8, µ, λ)

•◦

◦

• ◦

◦

•

ρ3

ρ23

ρ1

ρ2 ρ3

ρ1

ρ123
•◦•

◦

• ◦

◦

•

ρ3ρ2

ρ123

ρ1

ρ2 ρ3

ρ1

ρ123

• ρ12
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Loop type manifolds

At a given vertex of a reduced
A-decorated graph, we categorize
the incident edges: •

•

•

123

12

1

I•
•

•

•

12

2

3

II•
◦

◦

◦

1

23

2

I◦
◦

◦

◦

123

23

3

II◦

Definition

A loop is a connected valence two A-decorated graph s.t. at every
vertex, the two incident edges have types I• and II• or I◦ and II◦.

Definition

A 3-manifold M with torus boundary is loop type if, up to

homotopy equivalence, the graph representing ĈFD(M, α, β) is a
disjoint union of loops.

Note: Does not depend on the choice of parametrization (α, β)
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disjoint union of loops.

Note: Does not depend on the choice of parametrization (α, β)
Jonathan Hanselman Bordered Floer via immersed curves



Bordered Floer homology
Loops and curves

Pairing
Applications

Loop type manifolds

Remark: The loop type assumption appears to be quite mild

If M has more than one L-space filling, M is loop type

For K ⊂ S3, if CFK−(K ) admits a horizontally and vertically
simplified basis, S3 \ ν(K ) is loop type

We currently do not know of any examples which are not loop
type
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Combinatorial description of loops

An oriented loop admits a well defined grading. There are four
types of vertices:

•
I• II• •

II• I• ◦
I◦ II◦ ◦

II◦ I◦

+ − − +

Reversing the orientation flips all the signs.

Proposition

This agrees with the relative Z2 grading on ĈFA defined by
Petkova.

An oriented loop gives a cyclic word in {•+, •−, ◦+, ◦−}. In fact,
the converse is also true.
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We will replace ◦± with α±1 and •± with β±1. We have:

oriented loops ↔ cyclic words in α±1, β±1

↔ elements of F2 mod conjugation
↔ homotopy classes of oriented curves in T 2 \ pt

loops ↔ homotopy classes of curves in T 2 \ pt

•+◦+

◦+

•+ ◦−

◦−

•−

ρ3

ρ23

ρ1

ρ2 ρ3

ρ1

ρ123

�

βααβα−1β−1α−1

α

β
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Bordered invariants as curves

Given a loop type manifold M with parametrizing curves α

and β, ĈFD(M, α, β) is represented by a collection of loops.

These correspond to a collection of immersed curves in the
punctured torus.

We think of this as a collection γ(M, α, β) in ∂M \ {z},
where z is a fixed basepoint.

Theorem 1 (H-Rasmussen-Watson)

The curves γ(M) := γ(M, α, β) do not depend on the
parametrizing curves α and β.
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and β, ĈFD(M, α, β) is represented by a collection of loops.

These correspond to a collection of immersed curves in the
punctured torus.

We think of this as a collection γ(M, α, β) in ∂M \ {z},
where z is a fixed basepoint.

Theorem 1 (H-Rasmussen-Watson)

The curves γ(M) := γ(M, α, β) do not depend on the
parametrizing curves α and β.

Jonathan Hanselman Bordered Floer via immersed curves



Bordered Floer homology
Loops and curves

Pairing
Applications

Example: ĈFD(RHT, µ, λ)

µ

λ

µ

λ

Jonathan Hanselman Bordered Floer via immersed curves



Bordered Floer homology
Loops and curves

Pairing
Applications

Pairing: What happens when we glue?

Bordered Floer homology has a pairing theorem:

ĈFA(M1, α1, β1) � ĈFD(M2, α2, β2) ' ĈF (M1 ∪M2)

Suppose M1 and M2 are loop type manifolds. Then we have
collections of immersed curves γ1 ⊂ ∂M1 and γ2 ⊂ ∂M2.

Theorem 2 (H.-Rasmussen-Watson)

Let Y = M1 ∪h M2, where h : ∂M2 → ∂M1 is a diffeomorphism.
Then

ĤF (Y ) ∼= HF (γ1, h(γ2)),

Where right side denotes the intersection Floer homology of the
two sets of curves in the punctured torus ∂M1 \ {z}.
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ĤF (Y ) ∼= HF (γ1, h(γ2)),

Where right side denotes the intersection Floer homology of the
two sets of curves in the punctured torus ∂M1 \ {z}.

Jonathan Hanselman Bordered Floer via immersed curves



Bordered Floer homology
Loops and curves

Pairing
Applications

Example

Let Y be the 3-manifold obtained by splicing two RHT
complements, that is, by gluing them with a map taking µ1 to λ2
and λ1 to µ2.

µ1

λ1

γ1
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Application: L-space gluing

Question: If M1 and M2 are 3-manifolds with torus boundary,
when is Y = M1 ∪M2 an L-space?

Let LMi denote the set of L-space slopes on ∂Mi .

Theorem 3 (H.-Rasmussen-Watson)

If M1 and M2 are loop type and neither is the solid torus, then M1 ∪M2

is an L-space iff every slope on ∂M1 = ∂M2 is in either L◦M1
or L◦M2

If M1 and M2 are simple loop type, this was proved by H.-Watson
and Rasmussen-Rasmussen.

This was the key remaining step in confirming a conjecture of
Boyer-Gordon-Watson for graph manifolds.

Using curves, the proof is essentially an application of the Mean
Value Theorem.
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Other applications

If Y = M1 ∪M2 is a toroidal integer homology sphere and
both sides are loop type, Y is not an L-space.

Rank inequality for pinching

rk ĤF (M1 ∪M2) ≥ rk ĤF (M1 ∪ D2 × S1)

Connections to Seiberg-Witten theory?

Recovering HF+?
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Thank you!
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