Bordered Floer homology via immersed curves in the punctured torus

Jonathan Hanselman
University of Texas, Austin

March 6, 2016

Outline

(1) Bordered Floer homology
(2) Loops and curves
(3) Pairing
(4) Applications

Heegaard Floer homology

Closed manifolds:

- To a closed, orientable 3-manifold Y we associate an abelian group $\widehat{H F}(Y)=H_{*}(\widehat{C F}(Y))$

Heegaard Floer homology

Closed manifolds:

- To a closed, orientable 3-manifold Y we associate an abelian group $\widehat{H F}(Y)=H_{*}(\widehat{C F}(Y))$
Manifolds with torus boundary:
- There is an algebra \mathcal{A} associated to the torus.
- To an orientable 3-manifold M with boundary $\partial M=T^{2}$ and a pair of parametrizing curves (α, β) for ∂M, we associate a differential module $\widehat{C F D}(M, \alpha, \beta)$ or an \mathcal{A}_{∞}-module $\widehat{\operatorname{CFA}}(M, \alpha, \beta)$ over \mathcal{A}.

The torus algebra \mathcal{A}

- \mathcal{A} is generated (over \mathbb{F}_{2}) by $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{12}, \rho_{23}, \rho_{123}$ and two idempotents, ι_{0} and ι_{1}.

The torus algebra \mathcal{A}

- \mathcal{A} is generated (over \mathbb{F}_{2}) by $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{12}, \rho_{23}, \rho_{123}$ and two idempotents, ι_{0} and ι_{1}.

- Multiplication is concatenation, e.g.

$$
\rho_{1} \rho_{2}=\rho_{12}, \quad \rho_{2} \rho_{1}=0, \quad \rho_{1} \iota_{1}=\rho_{1}, \quad \rho_{1} \iota_{0}=0
$$

The torus algebra \mathcal{A}

- \mathcal{A} is generated (over \mathbb{F}_{2}) by $\rho_{1}, \rho_{2}, \rho_{3}, \rho_{12}, \rho_{23}, \rho_{123}$ and two idempotents, ι_{0} and ι_{1}.

- Multiplication is concatenation, e.g.

$$
\rho_{1} \rho_{2}=\rho_{12}, \quad \rho_{2} \rho_{1}=0, \quad \rho_{1} \iota_{1}=\rho_{1}, \quad \rho_{1} \iota_{0}=0
$$

- $\iota_{0}+\iota_{1}=1 \in \mathcal{A}$. We also denote this by ρ_{\emptyset}.

\mathcal{A}-decorated graphs

An \mathcal{A} decorated graph is a directed graph with

- vertices labeled by ι_{0} or ι_{1} (we depict these labels using • and \circ, respectively)
- edges labeled by ρ_{I} for $I \in\{1,2,3,12,23,123, \emptyset\}$.

A-decorated graphs

An \mathcal{A} decorated graph is a directed graph with

- vertices labeled by ι_{0} or ι_{1} (we depict these labels using • and \circ, respectively)
- edges labeled by ρ_{I} for $I \in\{1,2,3,12,23,123, \emptyset\}$.

The module $\widehat{C F D}$ (or $\widehat{C F A}$) can be represented by an \mathcal{A}-decorated graph.

- vertices \leftrightarrow generators
(each generator has an associated idempotent)
- arrows encode the differential

\mathcal{A}-decorated graphs

An \mathcal{A} decorated graph is a directed graph with

- vertices labeled by ι_{0} or ι_{1} (we depict these labels using • and \circ, respectively)
- edges labeled by ρ_{I} for $I \in\{1,2,3,12,23,123, \emptyset\}$.

The module $\widehat{C F D}$ (or $\widehat{C F A}$) can be represented by an \mathcal{A}-decorated graph.

- vertices \leftrightarrow generators
(each generator has an associated idempotent)
- arrows encode the differential

We will think of the invariants $\widehat{C F D}$ or $\widehat{C F A}$ as \mathcal{A}-decorated graphs
(up to appropriate equivalence)
We can always assume the graphs are reduced (i.e. no ρ_{\emptyset} arrows).

Examples

$\widehat{C F D}\left(D^{2} \times S^{1}, \ell, m\right)$

$\widehat{C F D}(\mathrm{RHT}, \mu, \lambda)$

$\widehat{C F D}($ Fig8, $\mu, \lambda)$

Loop type manifolds

At a given vertex of a reduced \mathcal{A}-decorated graph, we categorize the incident edges:

$$
\begin{aligned}
& \bullet \xrightarrow{1} \quad \bullet \xrightarrow{3} \quad{ }^{2} \quad \circ \stackrel{3}{\leftarrow} \\
& \stackrel{12}{\longrightarrow} \quad \bullet \stackrel{2}{\rightleftarrows} \quad \circ \stackrel{33}{3}
\end{aligned}
$$

Loop type manifolds

At a given vertex of a reduced \mathcal{A}-decorated graph, we categorize the incident edges:

$$
\begin{aligned}
& \bullet \xrightarrow{1} \quad \bullet \xrightarrow{3} \quad \stackrel{2}{\rightarrow} \quad \circ \stackrel{3}{\leftarrow} \\
& \stackrel{12}{\longrightarrow} \quad \bullet \stackrel{\text { 2 }}{\leftarrow} \quad \stackrel{23}{\longrightarrow} \quad \stackrel{23}{\leftrightarrows}
\end{aligned}
$$

Definition

A loop is a connected valence two \mathcal{A}-decorated graph s.t. at every vertex, the two incident edges have types \mathbf{I}_{\bullet} and \mathbf{I}_{\bullet} or \mathbf{I}_{\circ} and \mathbf{I}_{\circ}.

Loop type manifolds

At a given vertex of a reduced \mathcal{A}-decorated graph, we categorize the incident edges:

$$
\begin{aligned}
& \bullet \xrightarrow{1} \quad \bullet \xrightarrow{3} \quad \stackrel{2}{\rightarrow} \quad \circ \stackrel{3}{\leftarrow} \\
& \bullet \xrightarrow{12} \cdot \stackrel{2}{\leftarrow} \stackrel{23}{\longrightarrow} \circ \stackrel{23}{4}
\end{aligned}
$$

Definition

A loop is a connected valence two \mathcal{A}-decorated graph s.t. at every vertex, the two incident edges have types $\mathbf{I}_{\text {. }}$ and $\mathbf{I I}_{\text {. or }} \mathbf{I}_{0}$ and $\mathbf{I I}_{\circ}$.

Definition

A 3-manifold M with torus boundary is loop type if, up to homotopy equivalence, the graph representing $\widehat{C F D}(M, \alpha, \beta)$ is a disjoint union of loops.

Loop type manifolds

At a given vertex of a reduced \mathcal{A}-decorated graph, we categorize the incident edges:

$$
\begin{aligned}
& \bullet \xrightarrow{1} \quad \bullet \xrightarrow{3} \quad \stackrel{2}{\rightarrow} \quad \circ \stackrel{3}{\leftarrow} \\
& \stackrel{12}{\longrightarrow} \quad \bullet \stackrel{2}{\leftarrow} \quad \circ \stackrel{23}{\longrightarrow}
\end{aligned}
$$

Definition

A loop is a connected valence two \mathcal{A}-decorated graph s.t. at every vertex, the two incident edges have types \mathbf{I}_{\bullet} and $\mathbf{I I}_{\bullet}$ or \mathbf{I}_{\circ} and $\mathbf{I I}_{\circ}$.

Definition

A 3-manifold M with torus boundary is loop type if, up to homotopy equivalence, the graph representing $\widehat{C F D}(M, \alpha, \beta)$ is a disjoint union of loops.

Note: Does not depend on the choice of parametrization (α, β)

Loop type manifolds

Remark: The loop type assumption appears to be quite mild

Loop type manifolds

Remark: The loop type assumption appears to be quite mild

- If M has more than one L-space filling, M is loop type

Loop type manifolds

Remark: The loop type assumption appears to be quite mild

- If M has more than one L-space filling, M is loop type
- For $K \subset S^{3}$, if $C F K^{-}(K)$ admits a horizontally and vertically simplified basis, $S^{3} \backslash \nu(K)$ is loop type

Loop type manifolds

Remark: The loop type assumption appears to be quite mild

- If M has more than one L-space filling, M is loop type
- For $K \subset S^{3}$, if $C F K^{-}(K)$ admits a horizontally and vertically simplified basis, $S^{3} \backslash \nu(K)$ is loop type
- We currently do not know of any examples which are not loop type

Combinatorial description of loops

An oriented loop admits a well defined grading. There are four types of vertices:

$$
\underline{I_{\bullet}} \bullet \underline{I_{\bullet}} \quad \underline{I_{\bullet}} \bullet I_{\bullet} \quad \underline{I_{\circ}} \circ \underline{I_{\circ}}
$$

Combinatorial description of loops

An oriented loop admits a well defined grading. There are four types of vertices:

Combinatorial description of loops

An oriented loop admits a well defined grading. There are four types of vertices:

Reversing the orientation flips all the signs.

Combinatorial description of loops

An oriented loop admits a well defined grading. There are four types of vertices:

Reversing the orientation flips all the signs.
Proposition
This agrees with the relative \mathbb{Z}_{2} grading on $\widehat{C F A}$ defined by Petkova.

Combinatorial description of loops

An oriented loop admits a well defined grading. There are four types of vertices:

Reversing the orientation flips all the signs.

Proposition

This agrees with the relative \mathbb{Z}_{2} grading on $\widehat{C F A}$ defined by Petkova.

An oriented loop gives a cyclic word in $\left\{\bullet^{+}, \bullet^{-}, \circ^{+}, \circ^{-}\right\}$. In fact, the converse is also true.

We will replace $\circ^{ \pm}$with $\alpha^{ \pm 1}$ and $\bullet^{ \pm}$with $\beta^{ \pm 1}$. We have: oriented loops \leftrightarrow cyclic words in $\alpha^{ \pm 1}, \beta^{ \pm 1}$

We will replace $\circ^{ \pm}$with $\alpha^{ \pm 1}$ and $\bullet^{ \pm}$with $\beta^{ \pm 1}$. We have: oriented loops \leftrightarrow cyclic words in $\alpha^{ \pm 1}, \beta^{ \pm 1}$ \leftrightarrow elements of F_{2} mod conjugation

We will replace $\circ^{ \pm}$with $\alpha^{ \pm 1}$ and $\bullet^{ \pm}$with $\beta^{ \pm 1}$. We have: oriented loops \leftrightarrow cyclic words in $\alpha^{ \pm 1}, \beta^{ \pm 1}$
\leftrightarrow elements of F_{2} mod conjugation
\leftrightarrow homotopy classes of oriented curves in $T^{2} \backslash p t$

We will replace $\circ^{ \pm}$with $\alpha^{ \pm 1}$ and $\bullet^{ \pm}$with $\beta^{ \pm 1}$. We have: oriented loops \leftrightarrow cyclic words in $\alpha^{ \pm 1}, \beta^{ \pm 1}$
\leftrightarrow elements of F_{2} mod conjugation
\leftrightarrow homotopy classes of oriented curves in $T^{2} \backslash p t$
loops $\quad \leftrightarrow$ homotopy classes of curves in $T^{2} \backslash p t$

We will replace $\circ^{ \pm}$with $\alpha^{ \pm 1}$ and $\bullet^{ \pm}$with $\beta^{ \pm 1}$. We have: oriented loops \leftrightarrow cyclic words in $\alpha^{ \pm 1}, \beta^{ \pm 1}$
\leftrightarrow elements of F_{2} mod conjugation
\leftrightarrow homotopy classes of oriented curves in $T^{2} \backslash p t$
loops $\quad \leftrightarrow$ homotopy classes of curves in $T^{2} \backslash p t$

$$
\beta \alpha \alpha \beta \alpha^{-1} \beta^{-1} \alpha^{-1}
$$

Bordered invariants as curves

- Given a loop type manifold M with parametrizing curves α and $\beta, \widehat{C F D}(M, \alpha, \beta)$ is represented by a collection of loops.
- These correspond to a collection of immersed curves in the punctured torus.
- We think of this as a collection $\gamma(M, \alpha, \beta)$ in $\partial M \backslash\{z\}$, where z is a fixed basepoint.

Bordered invariants as curves

- Given a loop type manifold M with parametrizing curves α and $\beta, \widehat{C F D}(M, \alpha, \beta)$ is represented by a collection of loops.
- These correspond to a collection of immersed curves in the punctured torus.
- We think of this as a collection $\gamma(M, \alpha, \beta)$ in $\partial M \backslash\{z\}$, where z is a fixed basepoint.

Theorem 1 (H-Rasmussen-Watson)

The curves $\gamma(M):=\gamma(M, \alpha, \beta)$ do not depend on the parametrizing curves α and β.

Example: $\widehat{C F D}(\mathrm{RHT}, \mu, \lambda)$

Pairing: What happens when we glue?

Bordered Floer homology has a pairing theorem:

$$
\widehat{C F A}\left(M_{1}, \alpha_{1}, \beta_{1}\right) \boxtimes \widehat{C F D}\left(M_{2}, \alpha_{2}, \beta_{2}\right) \simeq \widehat{C F}\left(M_{1} \cup M_{2}\right)
$$

Suppose M_{1} and M_{2} are loop type manifolds. Then we have collections of immersed curves $\gamma_{1} \subset \partial M_{1}$ and $\gamma_{2} \subset \partial M_{2}$.

Pairing: What happens when we glue?

Bordered Floer homology has a pairing theorem:

$$
\widehat{C F A}\left(M_{1}, \alpha_{1}, \beta_{1}\right) \boxtimes \widehat{C F D}\left(M_{2}, \alpha_{2}, \beta_{2}\right) \simeq \widehat{C F}\left(M_{1} \cup M_{2}\right)
$$

Suppose M_{1} and M_{2} are loop type manifolds. Then we have collections of immersed curves $\gamma_{1} \subset \partial M_{1}$ and $\gamma_{2} \subset \partial M_{2}$.

Theorem 2 (H.-Rasmussen-Watson)

Let $Y=M_{1} \cup_{h} M_{2}$, where $h: \partial M_{2} \rightarrow \partial M_{1}$ is a diffeomorphism.
Then

$$
\widehat{H F}(Y) \cong H F\left(\gamma_{1}, h\left(\gamma_{2}\right)\right)
$$

Where right side denotes the intersection Floer homology of the two sets of curves in the punctured torus $\partial M_{1} \backslash\{z\}$.

Example

Let Y be the 3-manifold obtained by splicing two RHT complements, that is, by gluing them with a map taking μ_{1} to λ_{2} and λ_{1} to μ_{2}.

Example

Let Y be the 3-manifold obtained by splicing two RHT complements, that is, by gluing them with a map taking μ_{1} to λ_{2} and λ_{1} to μ_{2}.

Application: L-space gluing

Question: If M_{1} and M_{2} are 3-manifolds with torus boundary, when is $Y=M_{1} \cup M_{2}$ an L-space?

Application: L-space gluing

Question: If M_{1} and M_{2} are 3-manifolds with torus boundary, when is $Y=M_{1} \cup M_{2}$ an L-space?

Let $\mathcal{L}_{M_{i}}$ denote the set of L-space slopes on ∂M_{i}.

Theorem 3 (H.-Rasmussen-Watson)

If M_{1} and M_{2} are loop type and neither is the solid torus, then $M_{1} \cup M_{2}$ is an L-space iff every slope on $\partial M_{1}=\partial M_{2}$ is in either $\mathcal{L}_{M_{1}}^{\circ}$ or $\mathcal{L}_{M_{2}}^{\circ}$

- If M_{1} and M_{2} are simple loop type, this was proved by H.-Watson and Rasmussen-Rasmussen.

Application: L-space gluing

Question: If M_{1} and M_{2} are 3-manifolds with torus boundary, when is $Y=M_{1} \cup M_{2}$ an L-space?

Let $\mathcal{L}_{M_{i}}$ denote the set of L-space slopes on ∂M_{i}.

Theorem 3 (H.-Rasmussen-Watson)

If M_{1} and M_{2} are loop type and neither is the solid torus, then $M_{1} \cup M_{2}$ is an L-space iff every slope on $\partial M_{1}=\partial M_{2}$ is in either $\mathcal{L}_{M_{1}}^{\circ}$ or $\mathcal{L}_{M_{2}}^{\circ}$

- If M_{1} and M_{2} are simple loop type, this was proved by H.-Watson and Rasmussen-Rasmussen.
- This was the key remaining step in confirming a conjecture of Boyer-Gordon-Watson for graph manifolds.

Application: L-space gluing

Question: If M_{1} and M_{2} are 3-manifolds with torus boundary, when is $Y=M_{1} \cup M_{2}$ an L-space?

Let $\mathcal{L}_{M_{i}}$ denote the set of L-space slopes on ∂M_{i}.

Theorem 3 (H.-Rasmussen-Watson)

If M_{1} and M_{2} are loop type and neither is the solid torus, then $M_{1} \cup M_{2}$ is an L-space iff every slope on $\partial M_{1}=\partial M_{2}$ is in either $\mathcal{L}_{M_{1}}^{\circ}$ or $\mathcal{L}_{M_{2}}^{\circ}$

- If M_{1} and M_{2} are simple loop type, this was proved by H.-Watson and Rasmussen-Rasmussen.
- This was the key remaining step in confirming a conjecture of Boyer-Gordon-Watson for graph manifolds.
- Using curves, the proof is essentially an application of the Mean Value Theorem.

Other applications

- If $Y=M_{1} \cup M_{2}$ is a toroidal integer homology sphere and both sides are loop type, Y is not an L-space.

Other applications

- If $Y=M_{1} \cup M_{2}$ is a toroidal integer homology sphere and both sides are loop type, Y is not an L-space.
- Rank inequality for pinching

$$
\operatorname{rk} \widehat{H F}\left(M_{1} \cup M_{2}\right) \geq \operatorname{rk} \widehat{H F}\left(M_{1} \cup D^{2} \times S^{1}\right)
$$

Other applications

- If $Y=M_{1} \cup M_{2}$ is a toroidal integer homology sphere and both sides are loop type, Y is not an L-space.
- Rank inequality for pinching

$$
\operatorname{rk} \widehat{H F}\left(M_{1} \cup M_{2}\right) \geq \operatorname{rk} \widehat{H F}\left(M_{1} \cup D^{2} \times S^{1}\right)
$$

- Connections to Seiberg-Witten theory?

Other applications

- If $Y=M_{1} \cup M_{2}$ is a toroidal integer homology sphere and both sides are loop type, Y is not an L-space.
- Rank inequality for pinching

$$
\operatorname{rk} \widehat{H F}\left(M_{1} \cup M_{2}\right) \geq \operatorname{rk} \widehat{H F}\left(M_{1} \cup D^{2} \times S^{1}\right)
$$

- Connections to Seiberg-Witten theory?
- Recovering $H F^{+}$?

Thank you!

