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Abstract

We consider a simple control problem in which the underlying dynam-
ics depend on a parameter a that is unknown and must be learned. We
study three variants of the control problem: Bayesian control, in which we
have a prior belief about a; bounded agnostic control, in which we have no
prior belief about a but we assume that a belongs to a bounded set; and
fully agnostic control, in which a is allowed to be an arbitrary real number
about which we have no prior belief. In the Bayesian variant, a control
strategy is optimal if it minimizes a certain expected cost. In the agnostic
variants, a control strategy is optimal if it minimizes a quantity called the
worst-case regret. For the Bayesian and bounded agnostic variants above,
we produce optimal control strategies. For the fully agnostic variant, we
produce almost optimal control strategies, i.e., for any ε > 0 we produce
a strategy that minimizes the worst-case regret to within a multiplicative
factor of (1 + ε).

The purpose of this note is to announce the results of our companion papers
[5, 6]. These papers explore a new flavor of adaptive control theory, which we
call “agnostic control”; see also [4, 7, 9, 10]. While our exposition here borrows
heavily from the introductions of [5, 6], we think the results benefit from a
unified presentation. Moreover, we give here a more detailed overview of the
results of [6] than is given in the introduction to that paper.

Many works in adaptive control theory attempt to control a system whose
underlying dynamics are initially unknown and must be learned from observa-
tion. The goal is then to bound Regret, a quantity defined by comparing our
expected cost with that incurred by an opponent who knows the underlying dy-
namics and plays optimally. Typically one tries to achieve a regret whose order
of magnitude is as small as possible after a long time. Adaptive control theory
has extensive practical applications; see, e.g., [2, 8, 11, 12] for some examples.

In some applications, we don’t have the luxury of waiting for a long time.
This is the case, e.g., for a pilot attempting to land an airplane following the
sudden loss of a wing, as in [3]. Our goal here is to achieve the absolute minimum
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possible regret over a fixed, finite time horizon. This objective poses formidable
mathematical challenges, even for simple model systems.

We will study a one-dimensional, linear model system whose dynamics de-
pend on a single unknown parameter a. When a is large positive, the system
is highly unstable. (There is no “stabilizing gain” for all a.) We will make
progressively weaker assumptions about the unknown parameter a—eventually,
we will assume that a may be any real number and we won’t assume that we
are given a Bayesian prior probability distribution for it.

We now give a precise statement of our problem.

The Model System

Our system consists of a particle moving in one dimension, influenced by our
control and buffeted by noise. The position of our particle at time t is denoted
by q(t) ∈ R. At each time t, we may specify a “control” u(t) ∈ R, determined
by history up to time t, i.e., by (q(s))s∈[0,t]. A “strategy” (aka “policy”) is a
rule for specifying u(t) in terms of (q(s))s∈[0,t] for each t. We write σ, σ′, σ∗, etc.
to denote strategies. The noise is provided by a standard Brownian motion
(W (t))t≥0.

The particle moves according to the stochastic ODE

dq(t) =
(
aq(t) + u(t)

)
dt+ dW (t), q(0) = q0, (1)

where a and q0 are real parameters. Due to the noise in (1), q(t) and u(t) are
random variables; these random variables depend on our strategy σ, and we
often write qσ(t), uσ(t) to make that dependence explicit.

Over a time horizon T > 0, we incur a Cost, given† by

Cost(σ, a) =

∫ T

0

{
(qσ(t))2 + (uσ(t))2

}
dt. (2)

This quantity is a random variable determined by a, q0, T and our strategy σ.
Here, the starting position q0 and time horizon T are fixed and known.

We would like to pick our strategy σ to keep our cost as low as possible.
We examine several variants of the above control problem, making successively
weaker assumptions regarding our knowledge of the parameter a. The first
variant is simply the classical case, in which a is a known real number. In the
second variant, we assume that the parameter a is unknown, but subject to a
given prior probability distribution supported on a bounded interval. In the
third variant, we assume that the parameter a belongs to a bounded interval,
but is otherwise unknown (in particular, we do not assume that we are given
a prior belief about a). In the fourth and final variant, we assume that a is
unknown and may be any real number (again, we do not assume that we are
given a prior belief about a). We refer to the third and fourth variants, in which
we are not given a prior belief about a, as agnostic control.

†By rescaling, we can consider seemingly different cost functions of the form
∫ T
0 (q2+λu2)

for λ > 0.
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Variant I: Classical Control

We suppose first that the parameter a is known. We write ECost(σ, a;T, q0),
or sometimes ECost(σ, a), to denote the expected Cost incurred by executing
a given strategy σ. Our task is to pick σ to minimize ECost(σ, a;T, q0). As
shown in textbooks (e.g., [1]), there is an elementary formula for the optimal
strategy, denoted σopt(a), given by

u(t) = −κ(T − t, a)q(t),

where

κ(s, a) =
tanh(s

√
a2 + 1)√

a2 + 1− a tanh(s
√
a2 + 1)

.

We refer to σopt(a) as the optimal known-a strategy. It will be important later
to note that σopt(a) satisfies the inequality

|u(t)| ≤ Cmax{a, 1} · |q(t)| for an absolute constant C. (3)

Variant II: Bayesian Control

We now suppose that the parameter a is unknown, but is subject to a given
prior probability distribution dPrior(a) supported in an interval [−amax, amax].
Our goal is then to pick a strategy σ to minimize our expected cost, given by

ECost(σ, dPrior) =

∫ amax

−amax

ECost(σ, a) dPrior(a). (4)

Before presenting rigorous results, we provide a heuristic discussion.
First of all, since dPrior is supported in [−amax, amax], a glance at (3) sug-

gests that our optimal strategy σ will satisfy

|uσ(t)| ≤ Camax|qσ(t)|. (5)

In [6], we introduce the notion of a tame strategy σ, which satisfies the estimate

|uσ(t)| ≤ Cσ
TAME[|qσ(t)|+ 1] (for all t ∈ [0, T ]) (6)

with probability 1, for a constant Cσ
TAME called a tame constant for σ (note

that CTAME may depend on amax). Thus, we expect that the optimal strategy
for Bayesian control will be tame.

Next, we note a major simplification. In principle, a strategy σ is a one-
parameter family of functions on an infinite-dimensional space, because for each
t it specifies u(t) in terms of the path (q(s))s∈[0,t]. However, reasoning heuristi-
cally, one computes that the posterior probability distribution for the unknown
a, given a past history (q(s))s∈[0,t] is determined by the prior dPrior(a), together
with the two observable quantities

ζ1(t) =

∫ t

0

q(s)[dq(s)− u(s)ds] and ζ2(t) =

∫ t

0

(q(s))2 ds ≥ 0. (7)
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Therefore, it is natural to suppose that the optimal strategy σBayes(dPrior) takes
the form

u(t) = ũ(q(t), t, ζ1(t), ζ2(t)) (8)

for a function ũ on R× [0, T ]× R× [0,∞).
So, instead of looking for a one-parameter family of functions on an infinite-

dimensional space, we merely have to specify a function ũ of four variables.
It isn’t hard to apply heuristic reasoning to derive a PDE for the function

ũ in (8). To do so, we introduce the cost-to-go, S(q, t, ζ1, ζ2), defined as the
expected value of ∫ T

t

{(qσ(t))2 + (uσ(t))2} ds, (9)

conditioned on
q(t) = q, ζ1(t) = ζ1, ζ2(t) = ζ2, (10)

with our strategy σ picked to minimize (9). Clearly,

S(q, t, ζ1, ζ2)

= min
u

{(q2 + u2)dt+ E[S(q + dq, t+ dt, ζ1 + dζ1, ζ2 + dζ2)]}+ o(dt),
(11)

where (q, t, ζ1, ζ2) evolves to (q + dq, t + dt, ζ1 + dζ1, ζ2 + dζ2) if we apply the
control u at time t. Here, E[· · · ] denotes expected value conditioned on (10).

Moreover, the optimal control at time t (given (10)) is precisely the value of
u that minimizes the right-hand side of (11); we denote it ũ(t).

Taylor-expanding the right-hand side of (11), and taking dt → 0, we arrive
at the Bellman equation

0 =∂tS + (ā(ζ1, ζ2)q + ũ)∂qS + ā(ζ1, ζ2)q
2∂ζ1S + q2∂ζ2S +

1

2
∂2
qS

+ q∂qζ1S +
1

2
q2∂2

ζ1S + (q2 + ũ2),

(12)

where ā(ζ1, ζ2) is the posterior expected value of a given (10); explicitly,

ā(ζ1, ζ2) =

∫ amax

−amax
a exp

(
− a2

2 ζ2 + aζ1
)
dPrior(a)∫ amax

−amax
exp

(
− a2

2 ζ2 + aζ1
)
dPrior(a)

. (13)

Moreover, the minimizer ũ for the right-hand side of (11) is given by

ũ(q, t, ζ1, ζ2) = −1

2
∂qS(q, t, ζ1, ζ2). (14)

Together with (12), we impose the obvious terminal condition

S|t=T = 0, (15)

and the natural requirement
S ≥ 0. (16)
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Our plan to solve for the optimal Bayesian control is thus to solve (12)–(16)
for S and ũ, and then set uσBayes(dPrior)(t) := ũ(q(t), t, ζ1(t), ζ2(t)).

We have produced numerical solutions to (12)–(16), but we don’t have rig-
orous proofs of existence or regularity. We proceed by imposing the following
assumption.

PDE Assumption. Equations (12)–(16) admit a solution S ∈ C2,1(R×[0, T ]×
R× [0,∞)), satisfying the estimates

|∂α
q,t,ζ1,ζ2S| ≤ K · [1 + |q|+ |ζ1|+ ζ2|]m0 a.e. for |α| ≤ 3, (17)

and
|ũ| ≤ CTAME · [1 + |q|] for all (q, t, ζ1, ζ2), (18)

for some K, m0, CTAME.

Assumption (18) asserts that our strategy σBayes(dPrior), given by (12)–(16),
is a tame strategy, as expected.

Our numerical simulations appear to confirm (17), (18). Accordingly, our
PDE Assumption seems safe.

We are ready to present our rigorous results on optimal Bayesian control;
these are proved in [6].

Theorem 1 (Optimal Bayesian Strategy). Fix a probability distribution dPrior,
supported on [−amax, amax], and suppose our PDE Assumption is satisfied. Let
σ = σBayes(dPrior) be the strategy obtained by solving (12)–(16). Then

(A) ECost(σ, dPrior) = S(q0, 0, 0, 0), with S as in (12)–(16).

(B) Let σ′ be any other strategy. Then

ECost(σ′, dPrior) ≥ ECost(σ, dPrior),

with equality only when we have

uσ′
(t) = uσ(t) for a.e. t and qσ

′
(t) = qσ(t) for all t,

with probability 1.

When the competing strategy σ′ is assumed to be tame, we can sharpen the
above uniqueness assertion (B) to a quantitative result.

Theorem 2 (Quantitative Uniqueness of the Optimal Bayesian Strategy). Let
dPrior and σ = σBayes(dPrior) be as in Theorem 1. Given ε > 0, and given a

constant Ĉ, there exists δ > 0 for which the following holds.
Let σ′ be a tame strategy with tame constant at most Ĉ. If

ECost(σ′, dPrior) ≤ ECost(σ, dPrior) + δ,

then the expected value of∫ T

0

{|qσ(t)− qσ
′
(t)|2 + |uσ(t)− uσ′

(t)|2} dt

is less than ε.
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Theorem 2 plays a crucial rôle in our analysis of agnostic control for bounded
a (see [6] for details).

We now discuss an issue arising in the proofs of our results on Bayesian
control: We need a rigorous definition of a strategy. Clearly, the phrase “a rule
for specifying u(t) in terms of past history” isn’t precise.

We want to allow u(t) to depend discontinuously on past history (q(s))s∈[0,t].
For instance, we should be allowed to set

u(t) =

{
−q(t) if |q(t)| > 1,

0 otherwise.

On the other hand, we had better make sure that we can produce solutions of
our stochastic ODE

dq = (aq + u)dt+ dW. (19)

Without the noise dW , we have a standard ODE, and the usual existence and
uniqueness theorems for ODE would require Lipschitz continuity of u.

We proceed as follows.
At first we fix a partition

0 = t0 < t1 < · · · < tN = T (20)

of the time interval [0, T ]. We restrict ourselves to strategies σ in which the
control u(t) is constant in each interval [tν , tν+1), and in which, for each ν, u(tν)

is determined by (q(tγ))γ≤ν , together with “coin flips” ξ⃗ = (ξ1, ξ2, . . . ) ∈ {0, 1}N.
We assume that u(tν) is a Borel measurable function of (q(t1), . . . , q(tν), ξ⃗), and
that for all ν we have

|u(tν)| ≤ CTAME[|q(tν)|+ 1].

We call such a strategy a tame strategy associated to the partiton (20) with tame
constant CTAME. For such strategies, it is easy to define the solutions qσ(t),
uσ(t) of our stochastic ODE (19).

Most of our work lies in controlling and optimizing tame strategies associated
to a sufficiently fine partition (20). In particular, we prove approximate versions
of Theorems 1 and 2 in the setting of such tame strategies.

We then define a tame strategy (not associated to any partition) by consid-
ering a sequence π1, π2, . . . of ever-finer partitions of [0, T ]. To each partition
πn we associate a tame strategy σn with a tame constant CTAME independent of
n. If the resulting qσn(t) and uσn(t) tend to limits, in an appropriate sense, as
n → ∞, then we declare those limits q(t), u(t) to arise from a tame strategy σ.

Finally, we drop the restriction to tame strategies and consider general
strategies. To do so, we consider a sequence (σn)n=1,2,... of tame strategies,
not assumed to have a tame constant independent of n. If the relevant qσn(t)
and uσn(t) converge, in a suitable sense, as n → ∞, then we say that the limits
q(t) and u(t) arise from a strategy σ.

It isn’t hard to pass from tame strategies associated to partitions of [0, T ] to
general tame strategies, and then to pass from such tame strategies to general
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strategies. The work in proving Theorems 1 and 2 lies in our close study of tame
strategies associated to fine partitions. We refer the reader to [6] for details.

Variant III: Agnostic Control for Bounded a

We now suppose that our parameter a is confined to a bounded interval [−amax, amax]
but is otherwise unknown. In particular, we don’t assume that we are given a
Bayesian prior probability distribution dPrior(a). Consequently, we cannot de-
fine a notion of expected cost by formula (4).

Instead, our goal will be to minimize worst-case regret, defined by comparing
the performance of our strategy with that of the optimal known-a strategy
σopt(a). We will introduce several variants of the notion of regret.

Let us fix a starting position q0, a time horizon T , and an interval [−amax, amax]
guaranteed to contain the unknown a. To a given strategy σ, we associate the
following functions on [−amax, amax]:

• Additive Regret, defined as

AR(σ, a) = ECost(σ, a)−ECost(σopt(a), a) ≥ 0.

• Multiplicative Regret (aka “competitive ratio”), defined as

MR(σ, a) =
ECost(σ, a)

ECost(σopt(a), a)
≥ 1.

• Hybrid Regret, defined in terms of a parameter γ > 0 by setting

HRγ(σ, a) =
ECost(σ, a)

ECost(σopt(a), a) + γ
.

Writing Regret(σ, a) to denote any one of the above three functions on
[−amax, amax], we define the worst-case regret

Regret∗(σ) = sup
{
Regret(σ, a) : a ∈ [−amax, amax]

}
.

We seek a strategy σ that minimizes worst-case regret.
The above notions are useful in different regimes. If we expect to pay a

large cost, then we care more about multiplicative regret then about additive
regret. (If we have to pay 109 dollars, we are unimpressed by a savings of
105 dollars.) Similarly, if our expected cost is small, then we care more about
additive regret then about multiplicative regret. (If we pay only 10−5 dollars,
we don’t care that we might instead pay 10−9 dollars.) If we fix γ to be a
cost we are willing to neglect, then hybrid regret HRγ(σ, a) provides meaningful
information regardless of the order of magnitude of the expected cost.

So far, we have defined three flavors of worst-case regret, and posed the
problem of minimizing that regret. The solution to our agnostic control problem
is given by the following result, proved in [6].
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Theorem 3. Fix [−amax, amax], q0, T (and γ if we use hybrid regret). Sup-
pose our PDE Assumption is satsified. Then there exist a probability measure
dPrior(a), a finite subset E ⊂ [−amax, amax], and a strategy σ, for which the
following hold.

(I) σ is the optimal Bayesian strategy for the prior probability distribution
dPrior.

(II) dPrior is supported in the finite set E.

(III) E is precisely the set of points at which the function a 7→ Regret(σ, a)
achieves its maximum on the interval [−amax, amax].

(IV) Regret∗(σ) ≤ Regret∗(σ′) for any other strategy σ′.

So, for optimal agnostic control, we should pretend to believe that the un-
known a is confined to a finite set E and governed by the probability distribu-
tion dPrior, even though in fact we know nothing about a except that it lies in
[−amax, amax].

It is easy to see that conditions (I), (II), (III) in Theorem 3 imply condition
(IV) (we give the argument later in this Section). The hard part of Theorem 3
is the assertion that there exist dPrior, E, σ satisfying (I), (II), (III); we now
give an overview of how this is done.

We first prove an analogous result for the setting in which the unknown a
is confined to a finite subset A ⊂ [−amax, amax]. Once that’s done, we take a
sequence of fine nets, e.g.,

An = [−amax, amax] ∩ 2−nZ, n = 1, 2, 3, . . .

and deduce Theorem 3 by applying our result to the An and passing to the
limit.

We sketch the ideas for finite A.
First of all, because we allow strategies to depend on coinflips, it’s easy

to define intermediate or “mixed” strategies between two given strategies σ0

and σ1. Given a number θ ∈ [0, 1], we play strategy σ1 with probability θ, and
we play instead strategy σ0 with probability 1− θ. We write σθ to denote that
mixed strategy. Clearly, we have

ECost(σθ, a) = θECost(σ1, a) + (1− θ)ECost(σ0, a) for any a ∈ R.

Now let A ⊂ [−amax, amax] be finite. We associate to any given strategy σ
its cost vector, defined as

−−−−→
ECost(σ) = (ECost(σ, a))a∈A ∈ RA.

Thanks to our discussion of intermediate strategies, the set of all cost vectors
of arbitrary strategies is a convex set K ⊂ RA.
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For ε > 0, we call a strategy σ0 ε-efficient if there is no competing strategy
σ′ such that

ECost(σ′, a) < ECost(σ0, a)− ε for all a ∈ A.

A simple convexity argument shows that any ε-efficient strategy σ0 is within ε
of optimal for some Bayesian prior probability distribution (p(a))a∈A on A. To
see this, we form the convex set K−, consisting of all vectors (va)a∈A ∈ RA such
that

va < ECost(σ0, a)− ε for all a ∈ A.

Since σ0 is ε-efficient, the convex sets K and K− are disjoint, hence there is
a nonzero linear functional λ on RA such that λ(v−) ≤ λ(v) for all v− ∈ K−,
v ∈ K. From the functional λ we can easily read off a probability distribution
(p(a))a∈A on A such that∑

a∈A

p(a)ECost(σ0, a) ≤
∑
a∈A

p(a)ECost(σ′, a) + ε

for every competing strategy σ′.
Thus, as claimed, any ε-efficient strategy is within ε of best possible for

Bayesian control for some prior probability distribution on A. Now we are
ready for the analogue of Theorem 3 for finite A. The result is as follows.

Lemma 1 (Agnostic Control Lemma). Let A ⊂ [−amax, amax] be finite, and let
ε > 0 be given. Then there exist a subset A0 ⊂ A, a probability measure µ on
A0, and a strategy σ with the following properties.

• σ is the optimal Bayesian strategy for the prior µ.

• Regret(σ, a) ≤ Regret(σ, a0) + ε for all a ∈ A and a0 ∈ A0.

In particular,

|Regret(σ, a0)−Regret(σ, a′0)| ≤ ε for a0, a
′
0 ∈ A.

The proof of the Agnostic Control Lemma proceeds by induction on #A,
the number of elements of A. (So it is essential that the Lemma deals only with
finite A.)

In the base case #A = 1, we have A = {a0} for some a0. We take A0 = A,
µ = point mass at a0, σ = optimal known-a strategy for a = a0. The conclu-
sions of the Lemma are obvious.

For the induction step, we fix k ≥ 2 and suppose our Lemma holds whenever
#A < k. We then prove the Lemma for #A = k.

Thus, let #A = k, and let ε > 0. We define suitable small positive numbers

ε4 ≪ ε3 ≪ · · · ≪ ε0 = ε.

For A′ ⊂ [−amax, amax] finite, we define

Regretmax(σ,A
′) = max{Regret(σ, a) : a ∈ A′}
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for any strategy σ.
Let σ̂ be a strategy for which Regretmax(σ̂, A) is within ε4 of least possible.

Then σ̂ is ε3-efficient. Indeed, if any competing strategy σ′ satisfied

ECost(σ′, a) < ECost(σ̂, a)− ε3 for all a ∈ A,

then Regretmax(σ
′, A) would be smaller than Regretmax(σ̂, A) by more than

ε4, contradicting the defining property of σ̂. Since ε3-efficient strategies are
within ε3 of best possible for some Bayesian prior, there exists a probability
distriubtion µ on A such that

ECost(σ̂, µ) ≤ ECost(σ′, µ) + ε3 (21)

for any competing strategy σ′.
In particular, let σ be the optimal Bayesian strategy for the prior µ. Then

(21) gives
ECost(σ̂, µ) ≤ ECost(σ, µ) + ε3.

Theorem 2∗ therefore implies that

|ECost(σ̂, a)−ECost(σ, a)| ≤ ε3 for all a ∈ A,

and therefore

|Regretmax(σ̂, A)−Regretmax(σ,A)| ≤ ε2.

Together with the defining property of σ̂, this shows that

Regretmax(σ,A) ≤ Regretmax(σ
′, A) + 2ε2. (22)

for any competing strategy σ′.
It may happen that

Regret(σ, a) ≥ Regretmax(σ,A)− ε1 for all a ∈ A. (23)

In that case, we have

Regretmax(σ,A)− ε4 ≤ Regret(σ, a) ≤ Regretmax(σ,A) for all a ∈ A,

so the conclusions of our lemma hold for the above µ, σ with A0 = A. Hence,
we may assume that (23) is false.

We set

A0 = {a ∈ A : Regret(σ,A) ≥ Regretmax(σ, a)− ε1}.

Since (23) is false, we have #A0 < #A = k, hence, by our induction hypothesis,
Lemma 1 applies to A0.

Thus, there exist a subset A00 ⊂ A0, a probability measure µ0 on A00, and
a strategy σ0, such that

∗Theorem 2 applies only to tame strategies. In this article, we oversimplify by ignoring
that issue. See [6] for a correct discussion.
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• σ0 is the optimal Bayesian strategy for the prior µ0, and

• Regret(σ0, a) ≤ Regret(σ0, a0) + ε4 for all a ∈ A0, a0 ∈ A00.

We then show that the conclusions of Lemma 1 hold, with A00, µ0, σ0 in place
of A0, µ, σ. This completes our induction on #A, proving Lemma 1.

Once we have established Lemma 1, we can easily pass from the finite sets
An = [−amax, amax] ∩ 2−nZ to the full interval [−amax, amax] by a weak com-
pactness argument. This proves conclusions (I), (II), (III) of Theorem 3 except
for the finiteness of the set E on which the function

[−amax, amax] ∋ a 7→ Regret(σ, a)

takes its maximum.
To see that E is finite, we examine the function

F : R ∋ a 7→ Regret(σ, a).

We prove that F is real-analytic and grows exponentially fast as a → +∞.
Consequently, F |[−amax,amax] is a nonconstant real-analytic function, which can
therefore achieve its maximum at only finitely many points. Thus, (I), (II), and
(III) hold with E finite.

It remains only to deduce conclusion (IV) from (I), (II), (III). Let dPrior, σ,
E be as in (I), (II), (III) of Theorem 3. Since σ is the optimal Bayesian strategy
for dPrior (by (I)), and since dPrior is supported on the finite set E (by (II)),
we have for any other strategy σ′ that

ECost(σ, a0) ≤ ECost(σ′, a0) for some a0 ∈ E.

In particular, we have

Regret(σ, a0) ≤ Regret(σ′, a0) for some a0 ∈ E.

Combining this with (III), we see that for any a ∈ [−amax, amax] we have

Regret(σ, a) ≤ Regret(σ′, a0).

Therefore (I), (II), (III) of Theorem 3 easily imply (IV).
This concludes our discussion of agnostic control for bounded a; for details,

see [6]. Finally, we pass to the most general case.

Variant IV: Fully Agnostic Control

Finally, we make no assumption whatever regarding the unknown a. Our a may
be any real number, and we are not given a Bayesian prior distribution for it.
If a is large positive, then the system is highly unstable. Our goal is again to
minimize worst-case regret, defined as in the previous section, except now the
supremum is taken over all a ∈ R. We confine ourselves to hybrid regret.
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We now denote the hybrid regret of a strategy σ by HRγ(σ, a; q0, T ), to make
explicit the rôle of the starting position q0 and time horizon T . Thus, for fixed
γ, q0, T , we are trying to minimize

HR∗
γ(σ; q0, T ) = sup

a∈R
HRγ(σ; a, q0, T ).

We remark that this sup may be infinite.
We strengthen our PDE Assumption by assuming also that the constant

CTAME in (18) grows at most as a power of amax when amax ≫ 1, i.e., we
assume that (12)–(17) hold and that there exists an integer n0 for which

|ũ| ≤ C0 · [1 + an0
max] · [1 + |q|] for all (q, t, ζ1, ζ2) (24)

(recall that amax > 0). This seems plausible; we have argued that most likely
CTAME = O(amax) (see (5)).

The main result of our paper [5] is that, with negligible increase in regret,
we can reduce matters to agnostic control for bounded a. Specifically, we prove
the following Theorem.

Theorem 4. Fix a time horizon T , a nonzero starting position q0, and constants
C0, n0 (to be used in the estimate (24)). Then given ε > 0 there exists amax > 0
for which the following holds.

Let σ be a strategy for the starting position q0 and time horizon T + ε.
Suppose σ satisfies estimate (24) for amax and the given C0, n0.

Then there exists a strategy σ∗ for the starting position q0 and time horizon
T , satisfying the following estimates.

(A) For a ∈ [−amax, amax] we have

ECost(σ∗, a;T, q0)

≤ ε+ (1 + ε) · sup
{
ECost(σ, a′;T + ε, q0) : |a′ − a| ≤ ε|a|

}
.

(B) For a /∈ [−amax, amax] we have

ECost(σ∗, a;T, q0) ≤ ε+ (1 + ε) ·ECost(σopt(a), a;T, q0).

So, if a ∈ [−amax, amax], then σ∗ performs almost as well as σ; and if a /∈
[−amax, amax], then σ∗ performs almost as well as the optimal known-a strategy
σopt(a).

Using Theorem 4, we construct strategies σ that come arbitrarily close
to minimizing worst-case hybrid regret. Assume that we are given constants
γ, T, q0, C0,m0 as in Theorem 4. We let ε > 0 be given and we take amax to be
a large enough positive real number (depending on ε as well as the constants
above).

We let σ0 be the optimal agnostic control strategy for worst-case hybrid
regret with starting position q0 and time horizon T + ε, and with a confined to
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the interval [−(1 + ε)amax, (1 + ε)amax]. (Of course, this is Variant III above).
We assume (24) holds for σ0.

Applying Theorem 4 to σ0, we obtain a strategy σAg for time horizon T so
that:

• For a ∈ [−amax, amax], the strategy σAg performs only slightly worse than
the worst-case performance of the strategy σ0 on the slightly larger interval
[−(1 + ε)amax, (1 + ε)amax].

• For a /∈ [−amax, amax], the strategy σAg performs only slightly worse than
the optimal known-a strategy σopt(a).

From this, it’s easy to deduce that the worst-case hybrid regret of the strategy
σAg (for fully agnostic control, i.e., with a ∈ R) is at most O(ε) percent worse
than that of σ0 (for agnostic control with a confined to [−(1 + ε)amax, (1 +
ε)amax]). The worst-case hybrid regret of the optimal strategy σ0 on the inter-
val [−(1 + ε)amax, (1 + ε)amax] is, of course, bounded above by the worst-case
hybrid regret of any strategy σ for fully agnostic control (i.e., with a ∈ R).
Consequently, we have

HR∗
γ(σAg; q0, T ) ≤ (1 + Cε) ·HR∗

γ(σ; q0, T + ε)

for any competing strategy σ.
Thus, building on our solution for the control problem in Variant III, we

have produced an almost optimal strategy for fully agnostic control. For a
more detailed overview of the proof of Theorem 4, we refer the reader to the
introduction of [5].

A Future Direction

In [6], we discuss several unsolved problems suggested by our work in [5, 6].
Here, we discuss one of those unsolved problems in more detail. Specifically, we
speculate briefly on a particular model problem in which we don’t know a priori
what our control does.

Consider a particle governed by the stochastic ODE

dq(t) = au(t)dt+ dW (t), q(0) = 0. (25)

As usual, q(t) denotes position, u(t) is our control, W (t) is Brownian motion,
and we incur a cost ∫ T

0

{(q(t))2 + (u(t))2} dt.

We would like to understand optimal agnostic control for this system, i.e., we’d
like to find strategies that minimize worst-case regret. In analogy with our work
on the system (1), we first attempt to understand optimal Bayesian control.

In the simplest case of Bayesian control, suppose we know a priori that
a = 1 or a = −1, each with probability 1/2.
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We write ECost(σ) to denote the expected cost incurred by executing a
strategy σ, and we set

ECost∗ = inf{ECost(σ) : All strategies σ}. (26)

For this simple problem, we make the following conjectures.

• The infimum in (26) is not achieved by any strategy σ, because there is a
regime in which we would like to set u(t) = ±∞, in order to gain instant
information about a.

• A nearly optimal strategy will determine u(t) as a function of position
q(t), time t, and p(t) = posterior probability that a = +1, given history
up to time t. Thus, u(t) = ũ(q(t), t, p(t)) for a function ũ(q, t, p) on the
“state space” Ω = R× [0, T ]× [0, 1].

• The state space Ω is partitioned into two regimes Ω0 and Ω1. In Ω0, we
would like to set ũ = ±∞, so we set ũ = U , a large positive number.†

In Ω1, we take ũ to be a solution of a relevant Bellman equation. A free
boundary condition determines how we partition Ω into Ω0 and Ω1.

• As U → ∞, such strategies approach optimality. Perhaps one should
define strategies in a way that allows u = ±∞. If so, this had better be
done carefully.

We emphasize that the above are speculations—we have no rigorous results
on optimal agnostic control for the system (25). We remark, however, that in
[4] the first-named author has found a strategy that achieves bounded multi-
plicative regret for a more general system than (25).‡

Clearly, there is much to be done before we can claim to understand agnostic
control theory.
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‡In fact, the results of [4] assume that the starting position q0 satisfies |q0| ≥ 1. After an

easy modification, however, the strategy defined in that paper for the system (25) achieves
bounded regret for arbitrary q0 ∈ R.

14



[5] Jacob Carruth, Maximilian F. Eggl, Charles Fefferman, and Clarence W.
Rowley. Controlling unknown linear dynamics with almost optimal regret.
arXiv:2309.10142 (preprint), 2023.

[6] Jacob Carruth, Maximilian F. Eggl, Charles Fefferman, and Clarence W.
Rowley. Optimal agnostic control of unknown linear dynamics in a bounded
parameter range. arXiv:2309.10138 (preprint), 2023.

[7] Jacob Carruth, Maximilian F. Eggl, Charles Fefferman, Clarence W.
Rowley, and Melanie Weber. Controlling unknown linear dynamics
with bounded multiplicative regret. Revista Matemática Iberoamericana,
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