Worksheet 9-6

Exercise 1 (1.8 # 24) An affine transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ has the form $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$ with A and $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. Show that T is not a linear transformation when $\mathbf{b} \neq 0$.

Exercise 2 (1.8 # 28) Let **u** and **v** be vectors in \mathbb{R}^n . It can be shown that the set P of all points in the parallelogram determined by **u** and **v** has the form $a\mathbf{u} + b\mathbf{v}$ for $0 \le a \le 1$ and $0 \le b \le 1$. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Explain why the image of a point in P under the transformation T lies in the parallelogram determined by $T(\mathbf{u})$ and $T(\mathbf{v})$.

Exercise 3 (1.9 # 29-30) Describe the possible echelon forms of the standard matrix for a linear transformation T in the following situations: (a) $T : \mathbb{R}^3 \to \mathbb{R}^4$ is one-to-one and (b) $T : \mathbb{R}^4 \to \mathbb{R}^3$ is onto.

Exercise 4 (1.9 # 35) If a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ maps \mathbb{R}^n onto \mathbb{R}^m , can you give a relation between m and n? If T is one-to-one, what can you say about m and n?

Exercise 5 (1.9 \# 36) Why is the question "Is the linear transformation T onto?" an existence question?

Exericise 6 (2.1 # 7-8) If a matrix A is 5×3 and the product AB is 5×7 , what is the size of B? How many rows does C have if CD is a 5×4 matrix?

Exercise 7 (2.1 # 24) Suppose A is a $3 \times n$ matrix whose columns span \mathbb{R}^3 . Explain how to construct an $n \times 3$ matrix D such that $AD = I_3$.

Exericise 8 (2.1 # 25) Suppose A is an $m \times n$ matrix and there exist $n \times m$ matrices C and D such that $CA = I_n$ and $AD = I_m$. Show that m = n and C = D.