Worksheet 9-6

Exercise $1(1.8 \# 24)$ An affine transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has the form $T(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ with A and $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{m}$. Show that T is not a linear transformation when $\mathbf{b} \neq 0$.

Exericise $2(1.8 \# 28)$ Let \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}. It can be shown that the set P of all points in the parallelogram determined by \mathbf{u} and \mathbf{v} has the form $a \mathbf{u}+b \mathbf{v}$ for $0 \leq a \leq 1$ and $0 \leq b \leq 1$. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Explain why the image of a point in P under the transformation T lies in the parallelogram determined by $T(\mathbf{u})$ and $T(\mathbf{v})$.

Exercise 3 (1.9 \# 29-30) Describe the possible echelon forms of the standard matrix for a linear transformation T in the following situations: (a) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ is one-to-one and (b) $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ is onto.

Exericise $4(1.9 \# 35)$ If a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ maps \mathbb{R}^{n} onto \mathbb{R}^{m}, can you give a relation between m and n ? If T is one-to-one, what can you say about m and n ?

Exercise 5 (1.9 \# 36) Why is the question "Is the linear transformation T onto?" an existence question?

Exericise 6 (2.1 \# 7-8) If a matrix A is 5×3 and the product $A B$ is 5×7, what is the size of B ? How many rows does C have if $C D$ is a 5×4 matrix?

Exercise 7 (2.1 \# 24) Suppose A is a $3 \times n$ matrix whose columns span \mathbb{R}^{3}. Explain how to construct an $n \times 3$ matrix D such that $A D=I_{3}$.

Exericise 8 (2.1 \# 25) Suppose A is an $m \times n$ matrix and there exist $n \times m$ matrices C and D such that $C A=I_{n}$ and $A D=I_{m}$. Show that $m=n$ and $C=D$.

