Worksheet 9-13

Exercise $1(4.3 \# 4,6,8)$ Determine whether the following sets are bases for \mathbb{R}^{3}. For sets that are not bases, determine which are linearly independent and which span \mathbb{R}^{3}.
(a) $\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ 2\end{array}\right],\left[\begin{array}{c}-8 \\ 5 \\ 4\end{array}\right]$
(a) $\left[\begin{array}{c}1 \\ -2 \\ -4\end{array}\right],\left[\begin{array}{c}-4 \\ 3 \\ 6\end{array}\right]$
(a) $\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]$.

Exercise 2 (4.3 \# 12) Find a basis for the set of vectors in \mathbb{R}^{2} on the line $y=-3 x$.

Exercise 3 (4.3 \# 22) True or False?
(a) A linearly indpenedent set in a subspace H is a basis for H.
(b) If a finite set S of nonzero vectors spans a vector space V, then some subset of S is a basis for V.
(c) A basis is a linearly independent set that is as large as possible.
(d) If B is an echelon form matrix A, then the pivot columns of B form a bssi for $\operatorname{Col} A$.

Exercise $4(4.3 \# 26)$ In the vector space of all real-valued functions, find a basis for the subspace spanned by $\{\sin (t), \sin (2 t), \sin (t) \cos (t)\}$.

Exercise 5 (4.4 \# 3) Find the vector x determined by the given coordinate vector $[\mathbf{x}]_{B}$ and the given basis B.

$$
B=\left\{\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right],\left[\begin{array}{c}
5 \\
0 \\
-2
\end{array}\right],\left[\begin{array}{c}
4 \\
-3 \\
0
\end{array}\right]\right\} \quad[\mathbf{x}]_{B}=\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]
$$

Exercise 6 (4.4 \# 10) Find the change-of-coordinates matrix from B to the standard basis of \mathbb{R}^{n}.

$$
B=\left\{\left[\begin{array}{l}
3 \\
0 \\
6
\end{array}\right],\left[\begin{array}{c}
2 \\
2 \\
-4
\end{array}\right],\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]\right\}
$$

Exercise $7(4.4 \# 23 / 24)$ Let V be a vector-space, $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis and $\mathbf{x} \mapsto[\mathbf{x}]_{B}$ be the coordinate mapping. Show that the coordinate mapping is one-to-one and onto.

Exercise $8(4.4 \# 28,29,30)$ Use coordinate vectors to test the linear independence of the sets of polynomials. Explain your work.
(a) $1-2 t^{2}-t^{3}, t+2 t^{3}, 1+t-2 t^{2}$
(b) $(1-t)^{2}, t-2 t^{2}+t^{3},(1-t)^{3}$
(c) $(2-t)^{3},(3-t)^{2}, 1+6 t-5 t^{2}+t^{3}$

