Worksheet 9-13

Exericise 1 (3.2\#33) Let A and B be square matrices. Show that $\operatorname{det}(A B)=$ $\operatorname{det}(B A)$.

Exercise 2 (3.2 \# 35) Let U be a square matrix where $U^{T} U=I$. Show that $\operatorname{det}(U)= \pm 1$.

Exercise 3 (3.2\#36) Suppose that A is a square matrix such that $\operatorname{det}\left(A^{4}\right)=0$. Explain why A can't be invertible.

Exercise $4(3.3 \# 21) \quad$ Find the area of the parallelogram with vertices $(-1,0)(0,5)$, $(1,-4),(2,1)$.

Exercise 5 (Chapter 3 Supplements \# 1a-e) True or False.
(a) If A is a 2×2 matrix with 0 determinant, then one column of A is a multiple of the other.
(b) If two rows of a 3×3 matrix A are the same, then $\operatorname{det}(A)=0$.
(c) If A is a 3×3 matrix, then $\operatorname{det}(5 A)=5 \operatorname{det}(A)$.
(d) If A and B are $n \times n$ matrices with $\operatorname{det}(A)=2$ and $\operatorname{det}(B)=3$, then $\operatorname{det}(A+$ $B)=5$.
(e) If A is $n \times n$ and $\operatorname{det}(A)=2$ then $\operatorname{det}\left(A^{3}\right)=6$.

Exercise 6 (Chapter 3 Supplements, \#15) Let A, B, C and D be $n \times n$ and I be $n \times n$ matrices (with I the identity). Use the definition or properties of the determinant to justify the following formulas.
(a) $\operatorname{det}\left[\begin{array}{cc}A & 0 \\ 0 & I\end{array}\right]=\operatorname{det}(A)$
(b) $\operatorname{det}\left[\begin{array}{cc}I & 0 \\ C & D\end{array}\right]=\operatorname{det}(D)$
(c) $\operatorname{det}\left[\begin{array}{ll}A & 0 \\ C & D\end{array}\right]=\operatorname{det}(A) \operatorname{det}(D)=\operatorname{det}\left[\begin{array}{cc}A & B \\ 0 & D\end{array}\right]$

Exercise 7 Does there exist a pair of matrices A and B where $A B-B A=I$?

