Worksheet 9-11

Exercise 1 (2.1 # 25) Suppose A is an $m \times n$ matrix and there exists $n \times m$ matrices C and D such that $CA = I_n$ and $AD = I_m$. Prove that m = n and C = D. (Hint: Consider the product CAD).

Exercise 2 Suppose that $AD = I_m$ (where A is $m \times n$, D is $n \times m$ and I_m is the $m \times m$ identity matrix). Show that the linear map $T : \mathbb{R}^n \to \mathbb{R}^m$ given by T(x) = Ax is onto.

Exercise 3 (2.3 # 36) Suppose a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ has the property that $T(\mathbf{u}) = T(\mathbf{v})$ for some pair of distinct vectors \mathbf{u} and \mathbf{v} . Can T map \mathbb{R}^n onto \mathbb{R}^n ? Why or why not?

Exercise 4 (2.3 # 39) Let T be a linear transformation that maps \mathbb{R}^n onto \mathbb{R}^n . Show that T^{-1} exists and maps \mathbb{R}^n to \mathbb{R}^n . Do not refer to the matrix A of T in your argument! Is T^{-1} also one to one?

Exercise 5 (3.1 # 10) Compute the determinant by cofactor expansion. At each step, choose the row or column that minimizes computation.

Exericise 6 (3.1 # 37, sort of) If $c \in \mathbb{R}$ and $c \neq 0$, is true that det(cA) = cdet(A)? If so, prove it. If not, provide the correct formula and explain why it is correct.

Exercise 7 (3.2 # 16,17,18) Find the determinants of B, C and D using the determinant of A when A is defined as:

$$A = \left| \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right| = 7$$

and B, C and D are given by:

$$B = \left| \begin{array}{cccc} a+d & b+e & c+f \\ d & e & f \\ g & h & i \end{array} \right| \quad C = \left| \begin{array}{cccc} a & b & c \\ 3d & 3e & 3f \\ g & h & i \end{array} \right| \quad D = \left| \begin{array}{cccc} a & b & c \\ g & h & i \\ d & e & f \end{array} \right|$$