Worksheet 9-11

Exercise 1 (2.1 \# 25) Suppose A is an $m \times n$ matrix and there exists $n \times m$ matrices C and D such that $C A=I_{n}$ and $A D=I_{m}$. Prove that $m=n$ and $C=D$. (Hint: Consider the product $C A D$).

Exercise 2 Suppose that $A D=I_{m}$ (where A is $m \times n, D$ is $n \times m$ and I_{m} is the $m \times m$ identity matrix). Show that the linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $T(x)=A x$ is onto.

Exercise 3 (2.3\#36) Suppose a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has the property that $T(\mathbf{u})=T(\mathbf{v})$ for some pair of distinct vectors \mathbf{u} and \mathbf{v}. Can T map \mathbb{R}^{n} onto \mathbb{R}^{n} ? Why or why not?

Exercise $4(2.3 \# 39)$ Let T be a linear transformation that maps \mathbb{R}^{n} onto \mathbb{R}^{n}. Show that T^{-1} exists and maps \mathbb{R}^{n} to \mathbb{R}^{n}. Do not refer to the matrix A of T in your argument! Is T^{-1} also one to one?

Exercise 5 (3.1 \# 10) Compute the determinant by cofactor expansion. At each step, choose the row or column that minimizes computation.

$$
\left|\begin{array}{cccc}
1 & -2 & 5 & 2 \\
0 & 0 & 3 & 0 \\
2 & -6 & -2 & 5 \\
5 & 0 & 4 & 4
\end{array}\right|
$$

Exericise 6 (3.1 \# 37, sort of) If $c \in \mathbb{R}$ and $c \neq 0$, is true that $\operatorname{det}(c A)=$ $c \operatorname{det}(A)$? If so, prove it. If not, provide the correct formula and explain why it is correct.

Exercise $7(3.2 \# 16,17,18)$ Find the determinants of B, C and D using the determinant of A when A is defined as:

$$
A=\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right|=7
$$

and B, C and D are given by:

$$
B=\left|\begin{array}{ccc}
a+d & b+e & c+f \\
d & e & f \\
g & h & i
\end{array}\right| \quad C=\left|\begin{array}{ccc}
a & b & c \\
3 d & 3 e & 3 f \\
g & h & i
\end{array}\right| \quad D=\left|\begin{array}{ccc}
a & b & c \\
g & h & i \\
d & e & f
\end{array}\right|
$$

