Worksheet 10-4

Exercise $1(5.3 \# 8,12,14)$ Diagonalize the following matrices:

$$
\left[\begin{array}{ll}
3 & 2 \\
0 & 3
\end{array}\right] \quad\left[\begin{array}{lll}
3 & 1 & 1 \\
1 & 3 & 1 \\
1 & 1 & 3
\end{array}\right] \quad\left[\begin{array}{ccc}
2 & 0 & -2 \\
1 & 3 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

Exercise $2(5.3 \# 25) \quad A$ is a 4×4 matrix with trhee eigenvalues. One eigenspace is one-dimensional and one of the other eigenspaces is two-dimensional. Is it possible that A is not diagonalizable? Prove that it is diagonalizable or give an example where it isn't.

Exercise $3(5.3 \# 27)$ Show that if A is diagonalizable and invertible, then so is A^{-1}.

Exercise 4 Show that any diagonalizable matrix such that $A^{k}=0$ for some $k>0$ is the 0 matrix. Use this to find an example of a non-diagonalizable matrix.

Exercise 5 (5 Supplements, \# 5) If $p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$, define $p(A)$ to be the matrix formed by replacing each power of x in $p(x)$ with the corresponding power of A (with $A^{0}=I$). Show that if λ is an eigenvalue of A, then one eigenvalue of $p(A)$ is $p(\lambda)$.

Exercise 6 Show that if $A=A^{T}$ then any eigenvectors u and v such that $A u=\lambda u$, $A v=\mu v$ and $\lambda \neq \mu$ will be perpendicular: i.e. $u \cdot v=u^{T} v=0$.

