Worksheet 10-4

Exercise 1 (5.3 # 8, 12, 14) Diagonalize the following matrices:

[2 0]	3	1	1	$\boxed{2}$	0	-2]
$\begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$	1	3	1	1	3	2
	1	1	3	0	0	3

Exercise 2 (5.3 # 25) *A* is a 4×4 matrix with trhee eigenvalues. One eigenspace is one-dimensional and one of the other eigenspaces is two-dimensional. Is it possible that *A* is not diagonalizable? Prove that it is diagonalizable or give an example where it isn't.

Exercise 3 (5.3 # 27) Show that if A is diagonalizable and invertible, then so is A^{-1} .

Exercise 4 Show that any diagonalizable matrix such that $A^k = 0$ for some k > 0 is the 0 matrix. Use this to find an example of a non-diagonalizable matrix.

Exercise 5 (5 Supplements, # 5) If $p(x) = c_0 + c_1x + \cdots + c_nx^n$, define p(A) to be the matrix formed by replacing each power of x in p(x) with the corresponding power of A (with $A^0 = I$). Show that if λ is an eigenvalue of A, then one eigenvalue of p(A) is $p(\lambda)$.

Exercise 6 Show that if $A = A^T$ then any eigenvectors u and v such that $Au = \lambda u$, $Av = \mu v$ and $\lambda \neq \mu$ will be perpendicular: i.e. $u \cdot v = u^T v = 0$.