Worksheet 10-25

Exercise 0 Make sure you know what the following terms mean. Give two examples of a basis on \mathbb{R}^3 and write down what each of these things is in those bases. Please check your understanding with a neighbor!

- basis
- coordinate vector of v in the basis B
- coordinate mapping
- change of basis matrix

Exericise 1 Let $B = \{b_1, \ldots, b_n\}$ be a basis for \mathbb{R}^n . Consider the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ given by $x \mapsto [x]_B$, which takes x to its coordinate vector in the basis B. Find the matrix of this transformation with respect to the standard basis on both sides on \mathbb{R}^n .

Exercise 2 Let V be a vector-space and $B = \{b_1, \ldots, b_n\}$ be a basis. Show that the coordinate mapping $T_B : V \to \mathbb{R}^n$ is one-to-one and onto.

Exercise 3 Find the eigenvalues and eigenvectors of the following matrices. Write down an eigenbasis for both. Find the change of basis matrix from the eigenbasis of A to the eigenbasis of B. Use this to write down the matrix for A in the eigenbasis of B.

Γ	3	1	1	4	0	-1]
	0	5	0	0	4	-1
L -	-2	0	7	1	0	2

Exercise 4 Do every true-false question on p. 390 (Ch. 6 Supplementary Exercises).