Worksheet 10-23

Exericise 1 (7.2 \# 6) Find the matrix of the quadratic form. Assume x is in \mathbb{R}^{3}.

$$
\begin{gathered}
5 x_{1}^{2}+7 x_{2}^{2}-6 x_{1} x_{2}+4 x_{1} x_{3}-2 x_{2} x_{3} \\
4 x_{1} x_{2}+6 x_{1} x_{3}-8 x_{2} x_{3}
\end{gathered}
$$

Exercise 2 (7.2 \# 12) Classify the quadratic form. Then make a change of variables, $x=P y$, that transforms the quadratic form into one with no cross product term. Write the new quadratic form. Construct P using the methods of Section 7.1.

$$
-5 x_{1}^{2}+4 x_{1} x_{2}-2 x_{2}^{2}
$$

Exercise $3(7.2 \# 26)$ Show that if an $n \times n$ matrix A is positive definite, then there exists a positive definite matrix B such that $A=B^{T} B$. There is a hint in the book but try not to look.

Exercise 4 (7.2 \# 28) Let A be an $n \times n$ symmetric invertible matrix. Show that if the quadratic form $x^{T} A x$ is positive definite, then so is the quadratic form $x^{T} A^{-1} x$.

Exercise 5 Let $B: V \times V \rightarrow \mathbb{R}$ be a bilinear form. Given a subspace $U \subset V$, we denote by U^{B} the " B-perpendicular" to U, i.e.

$$
U^{B}=\{v \in V \mid B(u, v)=0\}
$$

Find a bilinear form B such that there exists a vector v with $v \in \operatorname{span}(v)^{B}$. Show that there exists such a v if and only if B is neither positive definite nor negative definite.

