Worksheet 10-2

Exercise 1 (5.2 \# 4,7) Find the characteristic polynomial and the real eigenvalues of the matrices:

$$
\left[\begin{array}{ll}
8 & 2 \\
3 & 3
\end{array}\right] \quad\left[\begin{array}{cc}
5 & 3 \\
-4 & 4
\end{array}\right]
$$

Exercise $2(5.2 \# 24)$ Show that if A and B are similar, then $\operatorname{det}(A)=\operatorname{det}(B)$.
Exercise 3 (5.2 \# 27) Let:

$$
A=\left[\begin{array}{ccc}
.5 & .2 & .3 \\
.3 & .8 & .3 \\
.2 & 0 & .4
\end{array}\right] \quad v_{1}=\left[\begin{array}{l}
.3 \\
.6 \\
.1
\end{array}\right] \quad v_{2}=\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right] v_{3}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] w=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(a) Show that v_{1}, v_{2}, v_{3} are eigenvectors of A.
(b) Let x_{0} be any vector in \mathbb{R}^{3} with non-negative entries whose sum is 1 . Explain why thre are constants c_{1}, c_{2}, c_{3} such that $x_{0}=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$. Compute $w^{T} x_{0}$ and deduce that $c_{1}=1$.
(c) For $k=1,2, \ldots$ define $x_{k}=A^{k} x_{0}$ with x_{0} as in (b). Show that $x_{k} \rightarrow v_{1}$ as k increases.

Exercise 4 (Ch. 5 Supplements, \# 10) A matrix is diagonaliable if it is similar to a diagonal matrix. Show that if A is diagonalizable with all eigenvalues less than 1 in magnitude, then A^{k} tends to the 0 matrix as $k \rightarrow \infty$.

Exercise 5 True or False.
(a) If A and B are invertible $n \times n$ matrices, then $A B$ and $B A$ are similar.
(b) An $n \times n$ matrix with n linearly independent eigenvectors is invertible.
(c) Two eigenvectors corresponding to the same eigenvalues are always linearly dependent.
(d) Each eigenvector of an invertible matrix A is also an eigenvector of A^{-1}.

Exercise 6 Is every degree n polynomial $p(\lambda)$ in a variable λ the characteristic polynomial of some matrix? Prove or find a counter-example.

Exercise 7 Find an example of a matrix that isn't diagonalizable and prove that it is not diagonalizable.

