Worksheet 10-2

Exercise 1 (5.2 # 4,7) Find the characteristic polynomial and the real eigenvalues of the matrices:

8 2	5	3
3 3	4	4

Exercise 2 (5.2 # 24) Show that if A and B are similar, then det(A) = det(B).

Exercise 3 (5.2 \# 27) Let:

	.5	.2	.3		.3		1		[-1]		1	
A =	.3	.8	.3	$v_1 =$.6	$v_2 =$	-3	$v_3 =$	0	w =	1	
	.2	0	.4		.1		2		1		1	

- (a) Show that v_1, v_2, v_3 are eigenvectors of A.
- (b) Let x_0 be any vector in \mathbb{R}^3 with non-negative entries whose sum is 1. Explain why thre are constants c_1, c_2, c_3 such that $x_0 = c_1v_1 + c_2v_2 + c_3v_3$. Compute $w^T x_0$ and deduce that $c_1 = 1$.
- (c) For k = 1, 2, ... define $x_k = A^k x_0$ with x_0 as in (b). Show that $x_k \to v_1$ as k increases.

Exercise 4 (Ch. 5 Supplements, # 10) A matrix is diagonaliable if it is similar to a diagonal matrix. Show that if A is diagonalizable with all eigenvalues less than 1 in magnitude, then A^k tends to the 0 matrix as $k \to \infty$.

Exercise 5 True or False.

- (a) If A and B are invertible $n \times n$ matrices, then AB and BA are similar.
- (b) An $n \times n$ matrix with n linearly independent eigenvectors is invertible.
- (c) Two eigenvectors corresponding to the same eigenvalues are always linearly dependent.
- (d) Each eigenvector of an invertible matrix A is also an eigenvector of A^{-1} .

Exercise 6 Is every degree *n* polynomial $p(\lambda)$ in a variable λ the characteristic polynomial of some matrix? Prove or find a counter-example.

Exercise 7 Find an example of a matrix that isn't diagonalizable and prove that it is not diagonalizable.