Worksheet 10-16

Exericise 1 (6.7 \# 3-7) Let \mathbb{P}_{2} be the inner product space of polynomials of degree ≤ 2 with inner product:

$$
\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)
$$

Compute $\langle p, q\rangle,\|p\|$ and $\|q\|$ when $p=4+t, q(t)=5-4 t^{2}$. Compute the orthogonal projection of p onto the subspace spanned by q.

Exercise $2(6.7 \# \mathbf{1 5}, 17)$ Use the inner product axioms in the beginning of 6.7 to verify that $\langle u, c v\rangle=c\langle u, v\rangle$ for all scalars c, and that $\langle u, v\rangle=\frac{1}{4}\|u+v\|^{2}-\frac{1}{4}\|u-v\|^{2}$.

Exercise $3(6.7 \# 22,24)$ Let $V=C[0,1]$ be the space of continuous functions on $[0,1]$ with inner product:

$$
\langle u, v\rangle=\int_{[0,1]} u(t) v(t) d t
$$

Compute $\langle f, g\rangle,\|f\|$ and $\|g\|$ where $f=1=3 t^{2}$ and $g(t)=t-t^{3}$.
Exercise 4 Let $\phi: U \rightarrow V$ be an invertible linear transformation from a vector space U to an inner product space V with inner product $\langle\cdot, \cdot\rangle$. Show that the pairing $\phi^{*}\langle\cdot, \cdot\rangle$ of vectors in U defined as:

$$
\phi^{*}\langle u, v\rangle:=\langle\phi(u), \phi(v)\rangle
$$

is an inner product on U.

Exercise 5 A linear transformation $\phi: U \rightarrow V$ between inner product spaces $\left(U,\langle\cdot, \cdot\rangle_{U}\right)$ and $\left(V,\langle\cdot, \cdot\rangle_{V}\right)$ is called an isometry if:

$$
\langle\phi u, \phi v\rangle_{V}=\langle u, v\rangle_{U}
$$

That is, the inner product of u and v are the same before you apply ϕ. Another way of writing this is $\phi^{*}\langle\cdot, \cdot\rangle_{V}=\langle\cdot, \cdot\rangle_{U}$. Show that the matrix A of an isometry $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with respect to the standard basis is an orthogonal matrix, i.e. $A^{T} A=I$.

Exercise 6 Let $V=C(\mathbb{R} / \mathbb{Z})$ be the space of continuous functions on the real line that are periodic with period 2π, i.e. $f(x)=f(x+2 \pi)$ for all $x \in \mathbb{R} . C(\mathbb{R} / \mathbb{Z})$ is an inner space with inner product:

$$
\langle u, v\rangle=\int_{[0,2 \pi]} u(t) v(t) d t
$$

Show that the set $\left\{e_{k}\right\}$ of vectors $e_{k}=\cos (k t)$ and $k \in \mathbb{N}$ is an orthogonal set.

