Worksheet 10-11

Exercise 1 (6.2 # 5) Determine if the following two sets are orthogonal.

$\begin{bmatrix} 3\\-2\\1\\3 \end{bmatrix}$, [$\begin{array}{c}1\\3\\-3\\4\end{array}$,	$\begin{bmatrix} 3\\8\\7\\0 \end{bmatrix}$
$\left[\begin{array}{c}5\\-4\\0\\3\end{array}\right],$		$\begin{bmatrix} -4\\1\\-3\\8 \end{bmatrix}$,	$\begin{bmatrix} 3 \\ 3 \\ 5 \\ -1 \end{bmatrix}$

Exercise 2 (6.2 # 12) Compute the orthogonal projection of $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ onto the line through $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ and the origin.

Exercise 3 Prove that n non-zero vectors that form an orthogonal set (i.e. that are all pairwise orthohydonal) in \mathbb{R}^n are a basis.

Exercise 4 (6.2 # 33) Given $u \neq 0$ in \mathbb{R}^n , let $L = \operatorname{span}(u)$. Show that the map $x \mapsto \operatorname{proj}_L(x)$ (that is, orthogonal projection onto the line L) is a linear transformation.

Exercise Let L be a line in \mathbb{R}^n and $\operatorname{proj}_L : \mathbb{R}^n \to \mathbb{R}^n$ be projection onto $L \subset \mathbb{R}^n$. Let M be the matrix of this linear transformation, i.e $M = uu^T$ Show that there is an orthogonal matrix U such that:

	1	0	 0	
$UMU^T =$	0	0	 0	
	0	0	 0	

Exercise 6 (Challenge Problem 1) Show that, given a point $x \in \mathbb{R}^n$ and a line L in \mathbb{R}^n , the orthogonal projection $\operatorname{proj}_L(x)$ in L is the closest point in L to x, i.e. it is the point y in L such that |y - x| is the smallest.

Exercise 7 (Challenge Problem 2) Let V be a vector space, and let U and W be complementary subspaces in V. That means that U + W = V and that the dimensions of U and W are complementary.

- (a) Show that every vector $v \in V$ can be written uniquely as a combination v = u + w with $u \in U$ and $w \in W$.
- (b) Define projection $\pi_W : V \to W$ to W by the formula $\pi_W(v) = w$ where $v = u + w, u \in U$ and $w \in W$. By part (a), this is unique. Given a basis $\{u_1, \ldots, u_m\}$ of U and a basis $\{w_1, \ldots, w_m\}$ of W, describe how to write down a matrix for π_W .