Math 54 Section 4: Quiz 7

Problem 1 (2 pt each) True Or False? Justify your answer. Each question has a 1 line justification.
(a) If a square matrix has orthogonal columns then it also has orthogonal rows.
(b) If x is orthogonal to both u and v, then it is orthogonal to $u-v$.
(c) If $\left\{v_{1}, \ldots, v_{k}\right\}$ is an set of orthonormal vectors then so is $\left\{c_{1} v_{1}, \ldots, c_{k} v_{k}\right\}$ for scalars c_{i}.

Problem $2(4 \mathrm{pts})$ FInd the least squared solution of $A x=b$.

$$
A=\left[\begin{array}{cc}
-1 & 2 \\
2 & -3 \\
-1 & 3
\end{array}\right] \quad b=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]
$$

Problem 3 (4 pts) Let A be an $m \times n$ matrix. Show that $\operatorname{Col}(A)^{\perp}=\operatorname{Null}\left(A^{T}\right)$.

Problem 4 (4 pts) Let V be an inner product space with inner product $\langle\cdot, \cdot\rangle$. Let $\operatorname{proj}_{W}: V \rightarrow V$ be orthogonal projection to a subspace $W \subset V$. What are the eigenvalues of $\operatorname{proj}_{W}(2 \mathrm{pts})$? Prove it (2 pts).

Problem 5 (4 pts) Let A be a symmetric matrix, i.e. where $A=A^{T}$. Let u and v be eigenvectors with real eigenvalues λ and μ, such that $\lambda \neq \mu$. Show that u and v are orthogonal.

