Math 54 Section 4: Quiz 5

Problem 1 (1 pt each) True Or False? Justify your answer. Each question has a 1 line justification.
(a) If A is similar to B, then A^{2} is similar to B^{2}.
(b) A square matrix with characteristic polynomial $p(\lambda)=\lambda^{n}$ is the identity matrix.
(c) If $\|u-v\|^{2}>\|u\|^{2}-\|v\|^{2}$, then u and v are not orthogonal.
(d) There exists a vector $v \in \mathbb{R}^{n}$ and a line L such that $\left\|\operatorname{proj}_{L}(v)\right\|>\|v\|$.

Problem $2(2 \mathrm{pts})$ Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ be the map:

$$
T(\mathbf{p})=\left[\begin{array}{c}
\mathbf{p}(0) \\
\mathbf{p}(1) \\
\mathbf{p}(2)
\end{array}\right]
$$

Find the matrix for T relative to the basis $\left\{-1, t+1, t^{2}+t\right\}$ on \mathbb{P}_{2} and the standard basis for \mathbb{R}^{3}.

Problem 3 (2 pts) Determine if the following set is orthogonal.

$$
T(\mathbf{p})=\left[\begin{array}{c}
1 / \sqrt{10} \\
3 / \sqrt{20} \\
3 / \sqrt{20}
\end{array}\right] \quad\left[\begin{array}{c}
3 / \sqrt{10} \\
-1 / \sqrt{20} \\
-1 / \sqrt{20}
\end{array}\right] \quad\left[\begin{array}{c}
0 \\
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

Problem $4(2 \mathrm{pts})$ Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation that preserves length. That is, $\|T(v)\|=\|v\|$. Show that the dot product is also preserved, $T(u) \cdot T(v)=u \cdot v$.

Problem 5 (2 pts) Show that if square matrices U and V preserve length, then so does $U V$. Use this to show that if U perserves length, then any matrix gotten by permuting the rows and columns also preserves length. (Hint: use permutation matrices).

