Math 54 Section 4: Quiz 5

Problem 1 True or False?

- (a) If A is invertible and 1 is an eigenvalue for A, then 1 is also an eignevalue for A^{-1} .
- (b) Each eigenvalue of A is also an eigenvalue for A^2 .
- (c) Two eigenvectors corresponding to the same eigenvalue are always linearly independent.
- (d) Similar matrices always have the exact same eigenvalues
- (e) If a 5×5 matrix A has fewer than 5 distinct eigenvalues, then A is not diagonalizable.
- (f) There is a 2×2 matrix that has no eigenvectors in \mathbb{R}^2 .

Problem 2 Find the eigenvalues and eigenvectors of the matrix:

$$A = \left[\begin{array}{cc} 4 & 1 \\ 3 & 6 \end{array} \right]$$

Problem 3 Show that a non-invertible $n \times n$ matrix has zero as an eigenvalue.

Problem 4 Suppose that p(t) is a polynomial with real coefficients (not complex). Then for every complex root $\lambda \in \mathbb{C}$ such that $p(\lambda) = 0$, $p(\overline{\lambda}) = 0$ as well. Here $\overline{\lambda}$ is the complex conjugate of λ . Use this to show that every real $n \times n$ matrix A has a real eigenvalue when n is odd.

Problem 5 Suppose that A is diagonalizable. Let $p(t) = \det(tI - A) = \sum_{i=0}^{n} a_i t^i$ be the characteristic polynomial, given as a sum. Let p(A) be the matrix gotten by plugging t in for A, i.e.

$$p(A) = \sum_{i=0}^{n} a_i A^i$$

Show that p(A) is the zero matrix. (Warning: det(AI - A) = det(A - A) = 0 is not a proof!).