
Math 54 Section 4: Quiz 4

Problem 1 True Or False?

(a) If a system Ax = b has more than one solution, then so does the system
Ax = 0. True. If Ax = Ay = b and x 6= y, then A(x− y) = 0.

(b) If the equation Ax = 0 has only the trivial solution, then A is row equivalent
to the n×n identity matrix. False. This is the same as being one-to-one, but
to be row equivalent to In, A must also be onto.

(c) If the columns of an m×n matrix A are linearly independent, then the columns
of A span Rn. False. You can have a set of linearly independent vectors that
do not form a basis (for instance if the number of vectors is smaller than n).

(d) If BC = BD, then C = D. False. B could be non-invertible.

(e) If A and B are n× n matrices, then (A+B)(A−B) = A2−B2. False. This
is only true if AB = BA.

(f) If A is invertible and r 6= 0, then (rA)−1 = rA−1. False. The real formula is
(rA)−1 = r−1A−1.

(g) det(AB−BA) = 0 for any A and B. False. There are 2×2 counter-examples
for A and B.

(h) Any onto linear transformation is invertible. Very False.

(i) Row operations on a matrix can change the nullspace. False.

Problem 2 Suppose that v1, v2, v3 are distinct points on a line L in R3. Here
L does not necessarily pass through the origin. Show that {v1, v2, v3} is linearly
dependent.

Solution 2 This is obviously true if L does go through the origin, since then
v1, v2, v3 are 3 vectors in a 1-dimensional vector-space L.

If L doesn’t, then the set of points in L is given by {ut + v|t ∈ R} where u and
v are non-zero vectors. In particular, every point on L is a linear combination of u
and v, and L lies inside of the plane H = span(u, v). H is 2-dimensional, so any 3
vectors in H are linearly dependent. Thus if v1, v2, v3 are 3 points in L, then they
are also in H and they must be linearly dependent.

1



Problem 3 Suppose A is invertible. Explain why ATA is also invertible. Then
show that A−1 = (ATA)−1AT .

Solution 3 The determinant det(ATA) = det(AT )det(A) = det(A)2 is not zero
since det(A) is not zero. Thus ATA is invertible. Furthermore:

((ATA)−1AT )A = (ATA)−1(ATA) = A−1(AT )−1ATA = I

So (ATA)−1AT must be the inverse of A, since multiplying it by A produces 1.

Problem 4 Suppose that An = 0 for some n > 1. Find an inverse for I − A.

Solution 4 Let B = 1 + A + · · ·+ An−1. Then we see that:

B(I−A) = (1+A+· · ·+An−1)(I−A) = 1+A+· · ·+An−1−A−A2−· · ·−An−1−An

We see on the right that every power of A cancels except for An and I. But since
An = 0, that means that BA = I. So B = A−1.

Problem 5 Compute the following determinants.∣∣∣∣∣∣
−1 5 2
5 6 3
1 3 1

∣∣∣∣∣∣
∣∣∣∣∣∣

9 5 2
1 0 0
4 4 1

∣∣∣∣∣∣
Solution 5 For the first matrix A, we have det(A) = −1(6 − 9) − 5(5 − 3) +
2(15 − 6) = 3 − 10 + 18 = 11. For the second matrix B, we have det(B) =
9(0− 0)− 5(1− 0) + 2(4) = 3.

Problem 6 Let A,B,C,D be n× n matrices with A invertible. Find matrices X
and Y to produce the block factorization:[

A B
C D

]
=

[
I 0
X I

] [
A B
0 Y

]
and use this to show that:

det

[
A B
C D

]
= det(A) det(D − CA−1B)
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Solution 6 Multiplying out the block matrices, we see that:[
A B
C D

]
=

[
A B
XA XB + Y

]
Therefore XA = C, so X = CA−1, and XB + Y = CA−1B + Y = D so Y =
D − CA−1B. Therefore we have:

det

[
A B
C D

]
= det

[
I 0

CZ−1 I

]
· det

[
A B
0 D − CA−1B

]
= detM · detN

Here we define:

M =

[
I 0

CZ−1 I

]
N =

[
A B
0 D − CA−1B

]
By subtracting multiples of the top n rows of M from the bottom rows of N , we can
turn M into the 2n× 2n identity. These operationes don’t change the determinant,
so detM = 1. Likewise, we can subtract the first n columns of N from the second
n columns of N to make N into the matrix:[

A 0
0 D − CA−1B

]
This doesn’t change the determinant and the resulting matrix has determinant detA·
det(D−CA−1B) due to the block structure. Thus detM ·detN = 1·det(A)·det(D−
CA−1B).

Problem 7 Let V be a vector-space. We say that a subspace G is smaller than a
subspace H of V if G ⊂ H, that is if G is a subspace of H. Let v1, . . . , vp be vectors
in a vector-space V . What is the smallest subspace containing v1, . . . , vp? Prove it.

Solution 7 The smallest subspace containing v1, . . . , vp is the span S = span(v1, . . . , vp).
We can prove that S is the smallest subspace containing v1, . . . , vp as so. Let H

be such a subspace. Then since H is closed under addition and scalar multiplication
(by definition) and since v1, . . . , vp are in H, we have that any linear combination
c1v1 + c2v2 + · · · + cpvp is in H also. In other words, every vector in the span S is
in H. Thus S ⊂ H, and S is smaller than any subspace H containing v1, . . . , vp.

Problem 8 The rank of a matrix A, denoted by rank(A), is the number of pivots
of A after row reduction. Equivalently, the rank is the dimension of the range/image
of the linear map TA of A, and the rank is also the dimension of the column space
of A.

Let A be an m × n matrix and let B be an n × p matrix, such that AB = 0.
Show that rank(A) + rank(B) ≤ n.
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Solution 8 The dimension null(A) = dim(Null(A)) of the null space of A and the
dimension rank(A) = dim(Im(A)) of the column space of A satisfy:

null(A) + rank(A) = n

This is true for A and B. Furthermore, if AB = 0, then the column space of A must
be a subspace of the nullspace of B. Thus means that rank(A) = dim(Im(A)) ≤
dim(Null(B)) = null(B). So:

n = null(A) + rank(A) ≥ rank(B) + rank(A)
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