Math 54 Section 4: Quiz 4

Problem 1 True Or False?

(a) If a system $A x=b$ has more than one solution, then so does the system $A x=0$.
(b) If the equation $A x=0$ has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
(c) If the columns of an $m \times n$ matrix A are linearly independent, then the columns of A span \mathbb{R}^{n}.
(d) If $B C=B D$, then $C=D$.
(e) If A and B are $n \times n$ matrices, then $(A+B)(A-B)=A^{2}-B^{2}$.
(f) If A is invertible and $r \neq 0$, then $(r A)^{-1}=r A^{-1}$.
(g) $\operatorname{det}(A B-B A)=0$ for any A and B.
(h) Any onto linear transformation is invertible.
(i) Row operations on a matrix can change the nullspace.

Problem 2 Suppose that v_{1}, v_{2}, v_{3} are distinct points on a line L in \mathbb{R}^{3}. Here L does not necessarily pass through the origin. Show that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly dependent.

Problem 3 Suppose A is invertible. Explain why $A^{T} A$ is also invertible. Then show that $A^{-1}=\left(A^{T} A\right)^{-1} A^{T}$.

Problem 4 Suppose that $A^{n}=0$ for some $n>1$. Find an inverse for $I-A$.

Problem 5 Compute the following determinants.

$$
\left|\begin{array}{ccc}
-1 & 5 & 2 \\
5 & 6 & 3 \\
1 & 3 & 1
\end{array}\right| \quad\left|\begin{array}{lll}
9 & 5 & 2 \\
1 & 0 & 0 \\
4 & 4 & 1
\end{array}\right|
$$

Problem 6 Let A, B, C, D be $n \times n$ matrices with A invertible. Find matrices X and Y to produce the block factorization:

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
X & I
\end{array}\right]\left[\begin{array}{cc}
A & B \\
0 & Y
\end{array}\right]
$$

and use this to show that:

$$
\operatorname{det}\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right)
$$

Problem 7 Let V be a vector-space. We say that a subspace G is smaller than a subspace H of V if $G \subset H$, that is if G is a subspace of H. Let v_{1}, \ldots, v_{p} be vectors in a vector-space V. What is the smallest subspace containing v_{1}, \ldots, v_{p} ? Prove it.

Problem 8 The rank of a matrix A, denoted by $\operatorname{rank}(A)$, is the number of pivots of A after row reduction. Equivalently, the rank is the dimension of the range/image of the linear map T_{A} of A, and the rank is also the dimension of the column space of A.

Let A be an $m \times n$ matrix and let B be an $n \times p$ matrix, such that $A B=0$. Show that $\operatorname{rank}(A)+\operatorname{rank}(B) \leq n$.

