Math 54 Section 4: Quiz 4

Problem 1 True Or False?

- (a) If a system Ax = b has more than one solution, then so does the system Ax = 0.
- (b) If the equation Ax = 0 has only the trivial solution, then A is row equivalent to the $n \times n$ identity matrix.
- (c) If the columns of an $m \times n$ matrix A are linearly independent, then the columns of A span \mathbb{R}^n .
- (d) If BC = BD, then C = D.
- (e) If A and B are $n \times n$ matrices, then $(A + B)(A B) = A^2 B^2$.
- (f) If A is invertible and $r \neq 0$, then $(rA)^{-1} = rA^{-1}$.
- (g) det(AB BA) = 0 for any A and B.
- (h) Any onto linear transformation is invertible.
- (i) Row operations on a matrix can change the nullspace.

Problem 2 Suppose that v_1, v_2, v_3 are distinct points on a line L in \mathbb{R}^3 . Here L does **not** necessarily pass through the origin. Show that $\{v_1, v_2, v_3\}$ is linearly dependent.

Problem 3 Suppose A is invertible. Explain why $A^T A$ is also invertible. Then show that $A^{-1} = (A^T A)^{-1} A^T$.

Problem 4 Suppose that $A^n = 0$ for some n > 1. Find an inverse for I - A.

Problem 5 Compute the following determinants.

-			9	5	2
5	6	3	1	0	0
1	3	1	4	4	1

Problem 6 Let A, B, C, D be $n \times n$ matrices with A invertible. Find matrices X and Y to produce the block factorization:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & 0 \\ X & I \end{bmatrix} \begin{bmatrix} A & B \\ 0 & Y \end{bmatrix}$$

and use this to show that:

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(A) \det(D - CA^{-1}B)$$

Problem 7 Let V be a vector-space. We say that a subspace G is smaller than a subspace H of V if $G \subset H$, that is if G is a subspace of H. Let v_1, \ldots, v_p be vectors in a vector-space V. What is the smallest subspace containing v_1, \ldots, v_p ? Prove it.

Problem 8 The rank of a matrix A, denoted by rank(A), is the number of pivots of A after row reduction. Equivalently, the rank is the dimension of the range/image of the linear map T_A of A, and the rank is also the dimension of the column space of A.

Let A be an $m \times n$ matrix and let B be an $n \times p$ matrix, such that AB = 0. Show that $\operatorname{rank}(A) + \operatorname{rank}(B) \leq n$.