Math 54 Section 4: Quiz 1

Problem 1 (3 pts) For each of the following transformations $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, determine if f is linear or not linear. If not, give an example where linearity fails.
(a) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $f(x, y, z)=(x+y, y+z, z+x)$.
(b) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=|x|+y$.
(c) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by reflection across a line that does not go through $\mathbf{0}$. See the picture below.

Problem $2(1.9 \# 19)$ Verify that the transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by:

$$
T(\mathbf{v})=T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-5 x_{2}+4 x_{3}, x_{2}-6 x_{3}\right)
$$

is linear by finding a matrix that implements the map. Here $\mathbf{v}=\left(x_{1}, x_{2}, x_{3}\right)$. Is T onto and/or one-to-one?

Problem 3 (2.1 \# 11) Let:

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right] \quad D=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Compute $A D$ and $D A$. Find a 3×3 matrix B that is not the identity such that $A B=B A$.

Problem $4(2.1 \# 25)$ Suppose A is an $m \times n$ matrix and there exists $n \times m$ matrices C and D such that $C A=I_{n}$ and $A D=I_{m}$. Prove that $m=n$ and $C=D$. (Hint: Consider the product $C A D$).

Problem 5 Suppose that $A D=I_{m}$ (where A is $m \times n, D$ is $n \times m$ and I_{m} is the $m \times m$ identity matrix). Show that the linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $T(x)=A x$ is onto.

