A *concordance* between K_0 and K_1 is a smoothly embedded annulus $A \subseteq [0, 1] \times S^3$ such that

$$\partial A = -(\{0\} \times K_0) \cup (\{1\} \times K_1).$$
A concordance between K_0 and K_1 is a smoothly embedded annulus $A \subseteq [0, 1] \times S^3$ such that

$$\partial A = -(\{0\} \times K_0) \cup (\{1\} \times K_1).$$

Definition

A ribbon concordance from K_0 to K_1 is a concordance which has only index 0 and 1 critical points.
A \textit{concordance} between K_0 and K_1 is a smoothly embedded annulus $A \subseteq [0, 1] \times S^3$ such that

$$\partial A = -(\{0\} \times K_0) \cup (\{1\} \times K_1).$$

\textbf{Definition}

A \textit{ribbon concordance} from K_0 to K_1 is a concordance which has only index 0 and 1 critical points.

- Ribbon concordance is not symmetric.
A *concordance* between K_0 and K_1 is a smoothly embedded annulus $A \subseteq [0, 1] \times S^3$ such that

$$\partial A = -\{(0) \times K_0\} \cup \{(1) \times K_1\}.$$

Definition

A *ribbon concordance* from K_0 to K_1 is a concordance which has only index 0 and 1 critical points.

- Ribbon concordance is not symmetric.
- Gordon’s notation: $K_0 \leq K_1$.

A ribbon concordance

Figure: A ribbon concordance.
Gordon’s work

Theorem (Gordon 1981)

If C is a ribbon concordance, then $\pi_1(K_0) \rightarrow \pi_1(C)$ is an injection, and $\pi_1(K_1) \rightarrow \pi_1(C)$ is a surjection.
Gordon’s work

Theorem (Gordon 1981)

If C is a ribbon concordance, then $\pi_1(K_0) \to \pi_1(C)$ is an injection, and $\pi_1(K_1) \to \pi_1(C)$ is a surjection.

- $\pi_1(K_1) \to \pi_1(C)'$: the complement of C is obtained by attaching 2-handles and 3-handles.
Gordon’s work

Theorem (Gordon 1981)

If C *is a ribbon concordance, then* $\pi_1(K_0) \to \pi_1(C)$ *is an injection, and* $\pi_1(K_1) \to \pi_1(C)$ *is a surjection.*

- $\pi_1(K_1) \to \pi_1(C)$: the complement of C is obtained by attaching 2-handles and 3-handles.
- $\pi_1(K_0) \hookrightarrow \pi_1(C)$: uses much harder 3-manifold topology.
Gordon’s work

Theorem (Gordon 1981)

If $K_0 \leq K_1$, then $d(K_0) \leq d(K_1)$, where $d(K) = \deg \Delta_{K}(t)$.

If $K_0 \leq K_1$, $d(K_0) = d(K_1)$ and K_1 is transfinitely nilpotent, then $K_0 = K_1$.

Transfinite nilpotence: the lower central series becomes trivial at some ordinal.

Fibered knots are transfinitely nilpotent, since $\pi_1(K)$ is free.
Theorem (Gordon 1981)

If $K_0 \leq K_1$, then $d(K_0) \leq d(K_1)$, where $d(K) = \text{deg} \Delta_K(t)$.

Transfinite nilpotence: the lower central series becomes trivial at some ordinal.

Fibered knots are transfinitely nilpotent, since $\pi_1(K)$ is free.
Gordon’s work

Theorem (Gordon 1981)

- If $K_0 \leq K_1$, then $d(K_0) \leq d(K_1)$, where $d(K) = \deg \Delta_K(t)$.
- If $K_0 \leq K_1$, $d(K_0) = d(K_1)$ and K_1 transfinitely nilpotent, then $K_0 = K_1$.

Transfinite nilpotence: the lower central series becomes trivial at some ordinal. Fibered knots are transfinitely nilpotent, since $\pi_1(K)$ is free.
Theorem (Gordon 1981)

- If $K_0 \leq K_1$, then $d(K_0) \leq d(K_1)$, where $d(K) = \deg \Delta_K(t)$.
- If $K_0 \leq K_1$, $d(K_0) = d(K_1)$ and K_1 transfinitely nilpotent, then $K_0 = K_1$.

Transfinite nilpotence: the lower central series becomes trivial at some ordinal.
Gordon’s work

Theorem (Gordon 1981)

- If $K_0 \leq K_1$, then $d(K_0) \leq d(K_1)$, where $d(K) = \deg \Delta_K(t)$.
- If $K_0 \leq K_1$, $d(K_0) = d(K_1)$ and K_1 transfinitley nilpotent, then $K_0 = K_1$.

- Transfinite nilpotence: the lower central series becomes trivial at some ordinal.
- Fibered knots are transfinitley nilpotent, since $\pi_1(K)'$ is free.
Ribbon concordances and fiberedness

Theorem (Silver 1992, Kochloukova 2006): If $K_0 \leq K_1$ and K_1 is fibered, then K_0 is fibered.

(Stallings 1965): The commutator subgroup $\pi_1(K)' \subseteq \pi_1(K)$ is free iff K is fibered.

(Neuwirth 1964): If G is a knot group and G' is finitely generated, then G' is free.

(Rapaport's conjecture 1975): If G is knot-like ($G/G' \cong \mathbb{Z}$ and G has deficiency 1) then G' finitely generated implies G' free.
Ribbon concordances and fiberedness

Theorem (Silver 1992, Kochloukova 2006)

\[K_0 \leq K_1 \text{ and } K_1 \text{ is fibered, then } K_0 \text{ is fibered.} \]
Ribbon concordances and fiberedness

Theorem (Silver 1992, Kochloukova 2006)

If $K_0 \leq K_1$ and K_1 is fibered, then K_0 is fibered.

- (Stallings 1965) The commutator subgroup $\pi_1(K)' \subseteq \pi_1(K)$ is free iff K is fibered.
Ribbon concordances and fiberedness

Theorem (Silver 1992, Kochloukova 2006)

If $K_0 \leq K_1$ and K_1 is fibered, then K_0 is fibered.

- (Stallings 1965) The commutator subgroup $\pi_1(K)' \subseteq \pi_1(K)$ is free iff K is fibered.
- (Neuwirth 1964) If G is a knot group and G' is finitely generated, then G' is free.
Ribbon concordances and fiberedness

Theorem (Silver 1992, Kochloukova 2006)

If \(K_0 \leq K_1 \) and \(K_1 \) is fibered, then \(K_0 \) is fibered.

- (Stallings 1965) The commutator subgroup \(\pi_1(K)' \subseteq \pi_1(K) \) is free iff \(K \) is fibered.
- (Neuwirth 1964) If \(G \) is a knot group and \(G' \) is finitely generated, then \(G' \) is free.
- (Rapaport’s conjecture 1975) If \(G \) is knot-like \((G/G' \cong \mathbb{Z} \) and \(G \) has deficiency 1) then \(G' \) finitely generated implies \(G' \) free.
Silvers argument, assuming Rapaport’s conjecture:

Ribbon concordances and fiberedness

Kochloukova proved Rapaport’s conjecture in 2006.
Silvers argument, assuming Rapaport’s conjecture:

- Suppose C is a ribbon concordance from K_0 to K_1. Write G, G_0 and G_1 for the groups.
Silvers argument, assuming Rapaport’s conjecture:

- Suppose C is a ribbon concordance from K_0 to K_1. Write G, G_0 and G_1 for the groups.
- G is knot-like.

Kochloukova proved Rapaport’s conjecture in 2006.
Ribbon concordances and fiberedness

Silvers argument, assuming Rapaport’s conjecture:

- Suppose C is a ribbon concordance from K_0 to K_1. Write G, G_0 and G_1 for the groups.
- G is knot-like.
- $G_0 \hookrightarrow G$ and $G_1 \rightarrow G$, by Gordon. Clearly, $G'_0 \hookrightarrow G'$ and $G'_1 \rightarrow G'$.

Kochloukova proved Rapaport’s conjecture in 2006.
Silvers argument, assuming Rapaport’s conjecture:

- Suppose C is a ribbon concordance from K_0 to K_1. Write G, G_0 and G_1 for the groups.
- G is knot-like.
- $G_0 \hookrightarrow G$ and $G_1 \twoheadrightarrow G$, by Gordon. Clearly, $G'_0 \hookrightarrow G'$ and $G'_1 \twoheadrightarrow G'$.
- If G'_1 is finitely generated, then G' is. Assuming Rapaport’s conjecture, G' is free. Hence, so is G'_0. Hence K_0 is fibered.

Kochloukova proved Rapaport’s conjecture in 2006.
Silvers argument, assuming Rapaport’s conjecture:

- Suppose C is a ribbon concordance from K_0 to K_1. Write G, G_0 and G_1 for the groups.
- G is knot-like.
- $G_0 \hookrightarrow G$ and $G_1 \twoheadrightarrow G$, by Gordon. Clearly, $G'_0 \hookrightarrow G'$ and $G'_1 \twoheadrightarrow G'$.
- If G'_1 is finitely generated, then G' is. Assuming Rapaport’s conjecture, G' is free. Hence, so is G'_0.
- Hence K_0 is fibered.
Silvers argument, assuming Rapaport’s conjecture:

- Suppose C is a ribbon concordance from K_0 to K_1. Write G, G_0 and G_1 for the groups.
- G is knot-like.
- $G_0 \hookrightarrow G$ and $G_1 \twoheadrightarrow G$, by Gordon. Clearly, $G_0' \hookrightarrow G'$ and $G_1' \twoheadrightarrow G'$.
- If G_1' is finitely generated, then G' is. Assuming Rapaport’s conjecture, G' is free. Hence, so is G_0'.
- Hence K_0 is fibered.

Kochloukova proved Rapaport’s conjecture in 2006.
If $K \subseteq S^3$, there is a bigraded group

$$\widehat{HFK}(K) = \bigoplus_{i,j \in \mathbb{Z}} \widehat{HFK}_i(K, j).$$
Knot Floer homology (Ozsváth and Szabó, Rasmussen)

If $K \subseteq S^3$, there is a bigraded group

$$\widehat{HFK}(K) = \bigoplus_{i,j \in \mathbb{Z}} \widehat{HFK}_i(K, j).$$

- Categorifies the Alexander polynomial.
If $K \subseteq S^3$, there is a bigraded group

$$\hat{HFK}(K) = \bigoplus_{i,j \in \mathbb{Z}} \hat{HFK}_i(K, j).$$

- Categorifies the Alexander polynomial.
- Detects the Seifert genus:

$$g_3(K) = \max\{j : \hat{HFK}(K, j) \neq \{0\}\}.$$
Another version, $CFK^\infty(K)$, which encodes more information.
Another version, $\text{CFK}^\infty(K)$, which encodes more information.

$\text{CFK}^\infty(K)$ is a graded, $\mathbb{Z} \oplus \mathbb{Z}$-filtered chain complex over $\mathbb{F}_2[U, U^{-1}]$.
Another version, $CFK^\infty(K)$, which encodes more information.

$CFK^\infty(K)$ is a graded, $\mathbb{Z} \oplus \mathbb{Z}$-filtered chain complex over $\mathbb{F}_2[U, U^{-1}]$.

$H_*(CFK^\infty(K)) \cong HF^\infty(S^3) \cong \mathbb{F}_2[U, U^{-1}]$.
Knot Floer homology as a TQFT

Juhász’s decorated link cobordism category
Juhász’s decorated link cobordism category

- Objects: 3-manifolds containing links with 2 types of basepoints.
Knot Floer homology as a TQFT

Juhász’s decorated link cobordism category

- Objects: 3-manifolds containing links with 2 types of basepoints.
- Morphisms: Oriented link cobordisms, decorated with a dividing set.
Knot Floer homology as a TQFT

Juhász’s decorated link cobordism category

- Objects: 3-manifolds containing links with 2 types of basepoints.
- Morphisms: Oriented link cobordisms, decorated with a dividing set.

Figure: A decorated link cobordism.
To a decorated link cobordism

\((W, \mathcal{F}): (Y_1, \mathbb{L}_1) \to (Y_2, \mathbb{L}_2)\),

Juhász associates a map

\[F_{W,\mathcal{F}}: \widehat{HFL}(Y_1, \mathbb{L}_1) \to \widehat{HFL}(Y_2, \mathbb{L}_2). \]
Concordances

To a concordance, there is a natural choice of dividing set (with minor ambiguity).

Figure: A decorated concordance.

Studied by Juhász and Marengon. They proved the map preserves the Maslov and Alexander gradings.
To a concordance, there is a natural choice of dividing set (with minor ambiguity).
To a concordance, there is a natural choice of dividing set (with minor ambiguity).

Figure: A decorated concordance.
To a concordance, there is a natural choice of dividing set (with minor ambiguity).

Figure: A decorated concordance.

Studied by Juhász and Marengon.
To a concordance, there is a natural choice of dividing set (with minor ambiguity).

Figure: A decorated concordance.

Studied by Juhász and Marengon.

They proved the map preserves the Maslov and Alexander gradings.
A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If \((W, \mathcal{F}): (Y_1, \mathbb{L}_1) \to (Y_2, \mathbb{L}_2)\) is a decorated link cobordism and \(s \in \text{Spin}^c(W)\), there is a functorial chain map

\[
F^\infty_{W, \mathcal{F}, s}: \text{CFL}^\infty(Y_1, \mathbb{L}_1, s|_{Y_1}) \to \text{CFL}^\infty(Y_2, \mathbb{L}_2, s|_{Y_2}).
\]
A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If \((W, \mathcal{F}): (Y_1, \mathbb{L}_1) \to (Y_2, \mathbb{L}_2)\) is a decorated link cobordism and \(s \in \text{Spin}^c(W)\), there is a functorial chain map

\[
F^\infty_{W, \mathcal{F}, s}: \text{CFL}^\infty(Y_1, \mathbb{L}_1, s|_{Y_1}) \to \text{CFL}^\infty(Y_2, \mathbb{L}_2, s|_{Y_2}).
\]

For a decorated concordance \(C\), we obtain a bigraded map

\[
F_C: \text{CFK}^\infty(K_0) \to \text{CFK}^\infty(K_1).
\]
A TQFT for the full knot Floer complex

Theorem (Z. 2017)

If \((W, \mathcal{F}): (Y_1, \mathbb{L}_1) \to (Y_2, \mathbb{L}_2)\) is a decorated link cobordism and \(s \in \text{Spin}^c(W)\), there is a functorial chain map

\[
F_{W, \mathcal{F}, s}^\infty: \text{CFL}^\infty(Y_1, \mathbb{L}_1, s|_{Y_1}) \to \text{CFL}^\infty(Y_2, \mathbb{L}_2, s|_{Y_2}).
\]

- For a decorated concordance \(C\), we obtain a bigraded map

\[
F_C: \text{CFK}^\infty(K_0) \to \text{CFK}^\infty(K_1).
\]

- Alishahi and Eftekharz independently gave a similar construction, in terms of a different cobordism category.
Suppose C is a ribbon concordance from K_0 to K_1. Then $F_C^\infty : \hat{HFK}(K_0) \to \hat{HFK}(K_1)$ is an injection.
Theorem (Z.)

Suppose C is a ribbon concordance from K_0 to K_1.

Then

$$F_C: \widehat{HFK}(K_0) \to \widehat{HFK}(K_1)$$

is an injection.
Theorem (Z.)

Suppose \(C \) is a ribbon concordance from \(K_0 \) to \(K_1 \).

1. Then

\[
F_C : \hat{HFK}(K_0) \to \hat{HFK}(K_1)
\]

is an injection.

2. The map \(F_C^\infty \) admits a left inverse, i.e. a filtered graded map \(\Pi \) such that

\[
\Pi \circ F_C^\infty \simeq \text{id}_{CFK^\infty(K_0)}.
\]
Proof

Let $C: K_1 \rightarrow K_0$ denote the mirror of C. We claim $F_C \circ F_C = \text{id} \hat{\text{HFK}}(K_0)$. Each birth of C has a corresponding death in C. Each saddle of C has a corresponding saddle in C. The births and deaths determine 2-spheres in the complement of $[0, 1] \times K_0$. The saddles and their reverses determine tubes which connect the 2-spheres to the trivial concordance $[0, 1] \times K_0$. It suffices to show that tubing on 2-spheres does not change the cobordism maps.
Proof

- Let $\overline{C}: K_1 \to K_0$ denote the mirror of C.
Proof

- Let $\overline{C}: K_1 \to K_0$ denote the mirror of C.
- We claim
 \[F_{\overline{C}} \circ F_C = \text{id}_{\text{HFK}(K_0)} \cdot \]

Each birth of C has a corresponding death in C. Each saddle of C has a corresponding saddle in C. The births and deaths determine 2-spheres in the complement of $[0, 1] \times K_0$. The saddles and their reverses determine tubes which connect the 2-spheres to the trivial concordance $[0, 1] \times K_0$. It suffices to show that tubing on 2-spheres does not change the cobordism maps.
Proof

- Let $\overline{C}: K_1 \to K_0$ denote the mirror of C.
- We claim
 \[F_{\overline{C}} \circ F_C = \text{id}_{\widehat{HFK}(K_0)}. \]
- Each birth of C has a corresponding death in \overline{C}. Each saddle of C has a corresponding saddle in \overline{C}.
Proof

- Let $\overline{C}: K_1 \rightarrow K_0$ denote the mirror of C.
- We claim
 \[F_{\overline{C}} \circ F_C = \text{id}_{\widehat{\text{HFK}}(K_0)}. \]
- Each birth of C has a corresponding death in \overline{C}. Each saddle of C has a corresponding saddle in \overline{C}.
- The births and deaths determine 2-spheres in the complement of $[0, 1] \times K_0$.
Proof

- Let $\overline{C} : K_1 \rightarrow K_0$ denote the mirror of C.
- We claim
 \[F_{\overline{C}} \circ F_C = \text{id}_{\widehat{HFK}(K_0)} \cdot \]
- Each birth of C has a corresponding death in \overline{C}. Each saddle of C has a corresponding saddle in \overline{C}.
- The births and deaths determine 2-spheres in the complement of $[0, 1] \times K_0$.
- The saddles and their reverses determine tubes which connect the 2-spheres to the trivial concordance $[0, 1] \times K_0$.
Proof

- Let $\overline{C} : K_1 \to K_0$ denote the mirror of C.
- We claim
 \[F_{\overline{C}} \circ F_C = \text{id}_{\overline{\text{HFK}}(K_0)}. \]
- Each birth of C has a corresponding death in \overline{C}. Each saddle of C has a corresponding saddle in \overline{C}.
- The births and deaths determine 2-spheres in the complement of $[0, 1] \times K_0$.
- The saddles and their reverses determine tubes which connect the 2-spheres to the trivial concordance $[0, 1] \times K_0$.
- It suffices to show that tubing on 2-spheres does not change the cobordism maps.
Proof

Factor through a neighborhood of the spheres. A neighborhood of each 2-sphere $N(S)$ is $D_2 \times S^2$.

$\partial N(S) = S^1 \times S^2$. $C \cup C$ intersects $\partial N(S)$ in an unknot.

$C \cup C$ intersects $N(S)$ in a disk D.

$\hat{HFK}(S^1 \times S^2, U)$ has rank 1 in the important grading.

We can replace D with any disk D' in $N(S)$ such that $\partial D' = \partial D$.

Replace D with $D' = S \setminus D$ to obtain $[0, 1] \times K_0$.
Proof

- Factor through a neighborhood of the spheres.
Proof

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere $N(S)$ is $D^2 \times S^2$.
Proof

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere $N(S)$ is $D^2 \times S^2$.
- $\partial N(S) = S^1 \times S^2$.

\[\hat{HFK}(S^1 \times S^2, U) \text{ has rank 1 in the important grading.} \]

We can replace D with any disk D' in $N(S)$ such that $\partial D' = \partial D$.

Replace D with $D' = S^2 \setminus D$ to obtain $[0, 1] \times K_0$.

Proof

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere \(N(S) \) is \(D^2 \times S^2 \).
- \(\partial N(S) = S^1 \times S^2 \).
- \(\overline{C} \cup C \) intersects \(\partial N(S) \) in an unknot.
Proof

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere $N(S)$ is $D^2 \times S^2$.
- $\partial N(S) = S^1 \times S^2$.
- $\overline{C} \cup C$ intersects $\partial N(S)$ in an unknot.
- $\overline{C} \cup C$ intersects $N(S)$ in a disk D.
Proof

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere \(N(S) \) is \(D^2 \times S^2 \).
- \(\partial N(S) = S^1 \times S^2 \).
- \(\overline{C} \cup C \) intersects \(\partial N(S) \) in an unknot.
- \(\overline{C} \cup C \) intersects \(N(S) \) in a disk \(D \).
- \(\hat{HFK}(S^1 \times S^2, \mathbb{U}) \) has rank 1 in the important grading.
Proof

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere $N(S)$ is $D^2 \times S^2$.
- $\partial N(S) = S^1 \times S^2$.
- $\overline{C} \cup C$ intersects $\partial N(S)$ in an unknot.
- $\overline{C} \cup C$ intersects $N(S)$ in a disk D.
- $\widehat{\text{HFK}}(S^1 \times S^2, U)$ has rank 1 in the important grading.
- We can replace D with any disk D' in $N(S)$ such that $\partial D' = \partial D$.
Proof

- Factor through a neighborhood of the spheres.
- A neighborhood of each 2-sphere $N(S)$ is $D^2 \times S^2$.
- $\partial N(S) = S^1 \times S^2$.
- $C \cup \overline{C}$ intersects $\partial N(S)$ in an unknot.
- $\overline{C} \cup C$ intersects $N(S)$ in a disk D.
- $\widehat{HFK}(S^1 \times S^2, U)$ has rank 1 in the important grading.
- We can replace D with any disk D' in $N(S)$ such that $\partial D' = \partial D$.
- Replace D with $D' = S \setminus D$ to obtain $[0, 1] \times K_0$.
Corollary (Z.)

If there is a ribbon concordance from K_0 to K_1, then

$$g_3(K_0) \leq g_3(K_1).$$
Band sums

Definition

A knot L is a band sum of (unlinked) knots K_1, \ldots, K_n if it is obtained by attaching $n - 1$ (potentially complicated) bands to join K_1, \ldots, K_n together.
Band sums

Definition

A knot \(L \) is a band sum of (unlinked) knots \(K_1, \ldots, K_n \) if it is obtained by attaching \(n - 1 \) (potentially complicated) bands to join \(K_1, \ldots, K_n \) together.

Theorem (Gabai (1987) Scharlemann (1985))

If \(L \) is a band sum of \(K_1 \) and \(K_2 \), then

\[
g_3(L) \geq g_3(K_1) + g_3(K_2).
\]
Band sums

Definition

A knot \(L \) is a band sum of (unlinked) knots \(K_1, \ldots, K_n \) if it is obtained by attaching \(n - 1 \) (potentially complicated) bands to join \(K_1, \ldots, K_n \) together.

Theorem (Gabai (1987) Scharlemann (1985))

If \(L \) is a band sum of \(K_1 \) and \(K_2 \), then

\[
g_3(L) \geq g_3(K_1) + g_3(K_2).
\]

- Gabai’s proof used foliations, and Scharlemann’s was combinatorial.
Band sums

Definition

A knot L is a band sum of (unlinked) knots K_1, \ldots, K_n if it is obtained by attaching $n - 1$ (potentially complicated) bands to join K_1, \ldots, K_n together.

Theorem (Gabai (1987) Scharlemann (1985))

If L is a band sum of K_1 and K_2, then

$$g_3(L) \geq g_3(K_1) + g_3(K_2).$$

- Gabai’s proof used foliations, and Scharlemann’s was combinatorial.
- Neither proof extends for $n > 2$.
Miyazaki’s manipulation

Theorem (Miyazaki 1998)

If L is a band sum of K_1, \ldots, K_n, then

$$K_1 \# \cdots \# K_n \leq L.$$
Miyazaki’s manipulation

Theorem (Miyazaki 1998)

If L *is a band sum of* K_1, \ldots, K_n, *then*

$$K_1 \# \cdots \# K_n \leq L.$$

- Idea: pass a band of L through another strand by attaching a fission band.
Miyazaki’s manipulation

Theorem (Miyazaki 1998)

If \(L \) is a band sum of \(K_1, \ldots, K_n \), then

\[
K_1 \# \cdots \# K_n \leq L.
\]

- Idea: pass a band of \(L \) through another strand by attaching a fission band.
- Adds a meridian to the band.
Miyazaki’s manipulation

Theorem (Miyazaki 1998)

If L *is a band sum of* K_1, \ldots, K_n, *then*

$$K_1 \# \cdots \# K_n \leq L.$$

- Idea: pass a band of L through another strand by attaching a fission band.
- Adds a meridian to the band.

![Figure: Changing a crossing of a band with a strand.](image)
Miyazaki’s manipulation

Theorem (Miyazaki 1998)

If L is a band sum of K_1, \ldots, K_n, then

$$K_1 \# \cdots \# K_n \leq L.$$

- Idea: pass a band of L through another strand by attaching a fission band.
- Adds a meridian to the band.

Figure: Changing a crossing of a band with a strand.

- This process terminates at $K_1 \# \cdots \# K_n$ together with some unlinked unknots, which can be capped off.
Corollary (Z.)

If L is a band sum of K_1, \ldots, K_n then

$$g_3(L) \geq g_3(K_1) + \cdots + g_3(K_n).$$
Strongly homotopy-ribbon concordances

Definition

A strongly homotopy-ribbon concordance is one whose complement can be built using only 1-handles and 2-handles.
Strongly homotopy-ribbon concordances

Definition

A strongly homotopy-ribbon concordance is one whose complement can be built using only 1-handles and 2-handles.

\[
\{\text{ribbon concordances}\} \subseteq \{\text{strongly homotopy-ribbon concordances}\} \\
\subseteq \{\text{homotopy-ribbon concordances}\} \\
\subsetneq \{\text{concordances}\}
\]
Strongly homotopy-ribbon concordances and knot Floer homology

Theorem (Maggie Miller, Z.)

If C is a strongly homotopy-ribbon concordance from K_0 to K_1, then

$$F_C : \widehat{HFK}(K_0) \to \widehat{HFK}(K_1)$$

is an injection.
Theorem (Maggie Miller, Z.)

If C is a strongly homotopy-ribbon concordance from K_0 to K_1, then

$$F_C : \widehat{HFK}(K_0) \rightarrow \widehat{HFK}(K_1)$$

is an injection.

- The proof uses a similar doubling trick, and also relies on the fact that tubing in a 2-sphere does not change the cobordism map.
Khovanov homology and ribbon concordances

Theorem (Levine, Z.)

*If C is a ribbon concordance, then the induced map on Khovanov homology

\[Kh(C) : Kh(K_0) \rightarrow Kh(K_1) \]

is an injection.*
Khovanov homology and ribbon concordances

The proof follows from the previous description of the doubled concordance, as well as Bar-Natan’s “dotted cobordism maps”, and the tube cutting and sphere relations.
Khovanov homology and ribbon concordances

The proof follows from the previous description of the doubled concordance, as well as Bar-Natan’s “dotted cobordism maps”, and the tube cutting and sphere relations.

\[= 0 \quad \text{and} \quad = 1 \]

Figure: Bar-Natan’s local relations.
Sarkar considered the torsion order in Lee’s deformation of Khovanov homology, $Kh_{Lee}(K)$, which is a finitely generated module over $R[X]$ (where R is a field).
Sarkar considered the torsion order in Lee’s deformation of Khovanov homology, $Kh_{\text{Lee}}(K)$, which is a finitely generated module over $R[X]$ (where R is a field).

Definition

If M is a module over $R[X]$, define $\text{Ord}_X(M)$ to be the minimum n such that $X^n \cdot \text{Tor}(M) = \{0\}$.
Sarkar considered the torsion order in Lee’s deformation of Khovanov homology, $Kh_{Lee}(K)$, which is a finitely generated module over $R[X]$ (where R is a field).

Definition

If M is a module over $R[X]$, define $\text{Ord}_X(M)$ to be the minimum n such that $X^n \cdot \text{Tor}(M) = \{0\}$.

Theorem (Sarkar)

If K is a ribbon knot, and $2 \neq 0$ in R, then any ribbon disk for K must have at least $\text{Ord}_X(Kh_{Lee}(K))$ bands.
Unfortunately $\text{Ord}_X(Kh_{\text{Lee}}(K))$ is usually small.
Sarkar’s ribbon distance and Khovanov homology

- Unfortunately $\text{Ord}_X(Kh_{\text{Lee}}(K))$ is usually small.
- Only one example is known with $\text{Ord}_X(Kh(K)) > 2$ (Marengon-Manolescu 2018).
Sarkar’s ribbon distance and Khovanov homology

- Unfortunately $\text{Ord}_X(\text{Kh}_{\text{Lee}}(K))$ is usually small.
- Only one example is known with $\text{Ord}_X(\text{Kh}(K)) > 2$ (Marengon-Manolescu 2018).
- The proof uses a doubling trick, with a new twist.
There is an analogous version of knot Floer homology $HFK^{-}(K)$, which is a module over the polynomial ring $\mathbb{F}_2[v]$.

Inspired by Sarkar’s work, we proved:

Theorem (Juhász, Miller, Z.)

If K is a ribbon knot, then any ribbon disk for K must have at least $\text{Ord}_v(HFK^{-}(K))$ bands.
There is an analogous version of knot Floer homology $HFK^-(K)$, which is a module over the polynomial ring $\mathbb{F}_2[v]$. Inspired by Sarkar’s work, we proved:

Theorem (Juhász, Miller, Z.)

If K is a ribbon knot, then any ribbon disk for K must have at least $\text{Ord}_v(HFK^-(K))$ bands.
Definition

If $K \subseteq S^3$, then the bridge number $\text{br}(K)$ is the smallest number of local maxima in any diagram of K.

Corollary (Miller, Juhász, Z.)

If $K \subseteq S^3$, then $\text{Ord}_v(HFK^- (K)) \leq \text{br}(K) - 1$.

There is a fusion disk of $K \# K$ with $\text{br}(K) - 1$ saddles.

$\text{Ord}_v(K \# K) = \text{Ord}_v(K)$, by the connected sum formula, and duality.
Definition

If $K \subseteq S^3$, then the bridge number $\text{br}(K)$ is the smallest number of local maxima in any diagram of K.

Corollary (Miller, Juhász, Z.)

If $K \subseteq S^3$ then

$$\text{Ord}_v(HFK^-(K)) \leq \text{br}(K) - 1.$$
Definition

If $K \subseteq S^3$, then the bridge number $\text{br}(K)$ is the smallest number of local maxima in any diagram of K.

Corollary (Miller, Juhász, Z.)

If $K \subseteq S^3$ then

\[\text{Ord}_v(HFK^-(K)) \leq \text{br}(K) - 1. \]

- There is a fusion disk of $K \# \overline{K}$ with $\text{br}(K) - 1$ saddles.
Definition

If $K \subseteq S^3$, then the bridge number $\text{br}(K)$ is the smallest number of local maxima in any diagram of K.

Corollary (Miller, Juhász, Z.)

If $K \subseteq S^3$ then

$$\text{Ord}_v(HFK^-(K)) \leq \text{br}(K) - 1.$$

- There is a fusion disk of $K \# \overline{K}$ with $\text{br}(K) - 1$ saddles.
- $\text{Ord}_v(K \# \overline{K}) = \text{Ord}_v(K)$, by the connected sum formula, and duality.
Knot Floer homology, torsion, and the bridge index

\[\text{br}(T_{p,q}) = \min(p, q) \text{ if } p, q \text{ coprime (Schubert 1954)}. \]
Knot Floer homology, torsion, and the bridge index

- $\text{br}(T_{p,q}) = \min(p, q)$ if p, q coprime (Schubert 1954).
- $\text{Ord}_v(\text{HFK}^{-}(K)) = \min(p, q) - 1$, so the bound is sharp.
Corollary (Juhász, Miller, Z.)

If J is concordant to $T_{p,q}$, then

$$\text{br}(J) \geq \text{br}(T_{p,q}).$$
Corollary (Juhász, Miller, Z.)

If J is concordant to $T_{p,q}$, then

$$\text{br}(J) \geq \text{br}(T_{p,q}).$$

- The proof uses the concordance invariant $N(K)$ constructed by Dai-Hom-Stoffregen-Truong.
Corollary (Juhász, Miller, Z.)

If J is concordant to $T_{p,q}$, then

$$\text{br}(J) \geq \text{br}(T_{p,q}).$$

- The proof uses the concordance invariant $N(K)$ constructed by Dai-Hom-Stoffregen-Truong.
- $N(K) \leq \text{Ord}_v(K)$, by work of DHST.
Corollary (Juhász, Miller, Z.)

If J is concordant to $T_{p,q}$, then

$$\text{br}(J) \geq \text{br}(T_{p,q}).$$

- The proof uses the concordance invariant $N(K)$ constructed by Dai-Hom-Stoffregen-Truong.
- $N(K) \leq \text{Ord}_v(K)$, by work of DHST.
- $N(T_{p,q}) = \min(p, q) - 1$, by work of DHST.
More generally:

Theorem (Juhász, Miller, Z.)

If there is a knot cobordism from K_0 to K_1 with M local maxima, then

$$\text{Ord}_v\{HFK^-(K_0)\} \leq \max\{\text{Ord}_v(HFK^-(K_1)), M\} + 2g(S).$$
More generally:

Theorem (Juhász, Miller, Z.)

If there is a knot cobordism from K_0 to K_1 with M local maxima, then

$$\text{Ord}_v\{HFK^-(K_0)\} \leq \max\{\text{Ord}_v(HFK^-(K_1)), M\} + 2g(S).$$

Example: if there is a ribbon concordance from K_0 to K_1 with b bands, then

$$\text{Ord}_v(HFK^-(K_0)) \leq \text{Ord}_v(HFK^-(K_1)) \leq \max\{\text{Ord}_v(HFK^-(K_0)), b\}.$$
More generally:

Theorem (Juhász, Miller, Z.)

If there is a knot cobordism from K_0 to K_1 with M local maxima, then

$$\text{Ord}_v\{HFK^-(K_0)\} \leq \max\{\text{Ord}_v(HFK^-(K_1)), M\} + 2g(S).$$

Example: if there is a ribbon concordance from K_0 to K_1 with b bands, then

$$\text{Ord}_v(HFK^-(K_0)) \leq \text{Ord}_v(HFK^-(K_1)) \leq \max\{\text{Ord}_v(HFK^-(K_0)), b\}.$$
Outline of the proof of the fusion number bound

Adding a tube to the unshaded subregion of a decorated surface induces multiplication by v.
Outline of the proof of the fusion number bound

Adding a tube to the unshaded subregion of a decorated surface induces multiplication by v.

Figure: Adding a tube is multiplication by v.
Consider a ribbon disk D for K, with b bands and $b + 1$ maxima.
Outline of the proof of the fusion number bound

- Consider a ribbon disk D for K, with b bands and $b + 1$ maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.

$D^\circ \cup D^\circ$ is a concordance from K to itself.
Tube the maxima of D° to the minima of D° with b tubes.
Upon inspection, we arrive at a copy of $K \times [0,1]$ with b tubes added.

So $v_b \cdot F D^\circ \cup D^\circ = v_b \cdot F K \times [0,1]$.
Noting that $F D^\circ \cup D^\circ$ annihilates Tor $v_b(HFK - v_b(K))$, the proof is complete.
Outline of the proof of the fusion number bound

- Consider a ribbon disk D for K, with b bands and $b + 1$ maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.
- $\overline{D}^\circ \cup D^\circ$ is a concordance from K to itself.
Consider a ribbon disk D for K, with b bands and $b + 1$ maxima.

Write D° for the induced cobordism from K to U with b bands and b maxima.

$\overline{D}^\circ \cup D^\circ$ is a concordance from K to itself.

Tube the maxima of D° to the minima of \overline{D}° with b tubes.
Outline of the proof of the fusion number bound

- Consider a ribbon disk D for K, with b bands and $b + 1$ maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.
- $\overline{D}^\circ \cup D^\circ$ is a concordance from K to itself.
- Tube the maxima of D° to the minima of \overline{D}° with b tubes.
- Upon inspection, we arrive at a copy of $K \times [0, 1]$ with b tubes added.
Outline of the proof of the fusion number bound

- Consider a ribbon disk D for K, with b bands and $b + 1$ maxima.
- Write D° for the induced cobordism from K to U with b bands and b maxima.
- $D^\circ \cup D^\circ$ is a concordance from K to itself.
- Tube the maxima of D° to the minima of \overline{D}° with b tubes.
- Upon inspection, we arrive at a copy of $K \times [0, 1]$ with b tubes added.
- So

$$v^b \cdot F_{\overline{D}^\circ \cup D^\circ} = v^b \cdot F_{K \times [0, 1]}.$$
Consider a ribbon disk D for K, with b bands and $b + 1$ maxima.

Write D° for the induced cobordism from K to U with b bands and b maxima.

$\overline{D}^\circ \cup D^\circ$ is a concordance from K to itself.

Tube the maxima of D° to the minima of \overline{D}° with b tubes.

Upon inspection, we arrive at a copy of $K \times [0, 1]$ with b tubes added.

So

$$v^b \cdot F_{\overline{D}^\circ \cup D^\circ} = v^b \cdot F_{K \times [0, 1]}.$$

Noting that $F_{\overline{D}^\circ \circ D^\circ}$ annihilates $\text{Tor}_v(HFK^-_v(K))$, the proof is complete.
Gordon’s conjecture

Conjecture (Gordon 1981)

If \(K_0 \leq K_1 \) and \(K_1 \leq K_0 \), then \(K_0 = K_1 \).
Gordon’s conjecture

Conjecture (Gordon 1981)

If $K_0 \leq K_1$ and $K_1 \leq K_0$, then $K_0 = K_1$.

Theorem (Z., Levine-Z.)

If $K_0 \leq K_1$ and $K_1 \leq K_0$, then

$$\widehat{HFK}(K_0) \cong \widehat{HFK}(K_1) \quad \text{and} \quad \text{Kh}(K_0) \cong \text{Kh}(K_1),$$

as bigraded groups.
To look for counterexamples to Gordon’s conjecture, one could look for knots which have isomorphic \widehat{HFK} and Kh.

Gordon’s conjecture

- To look for counterexamples to Gordon’s conjecture, one could look for knots which have isomorphic \widehat{HFK} and Kh.

The Kanenobu knots are such a family (see Hedden-Watson). There are additional families of generalized Kanenobu knots (see Lobb).
Gordon’s conjecture

- To look for counterexamples to Gordon’s conjecture, one could look for knots which have isomorphic \widehat{HFK} and Kh.
- The Kanenobu knots are such a family (see Hedden-Watson).
To look for counterexamples to Gordon’s conjecture, one could look for knots which have isomorphic \widehat{HFK} and Kh.

The Kanenobu knots are such a family (see Hedden-Watson).

There are additional families of generalized Kanenobu knots (see Lobb).