#### A mapping cone formula for Involutive Heegaard Floer homology

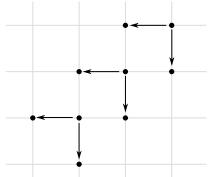
 $\label{eq:lambda} \mbox{Ian Zemke} \\ \mbox{joint w/ K. Hendricks, J. Hom and M. Stoffregen}$ 

September 17, 2020

■ If Y is a 3-manifold, and  $\mathfrak{s} \in \mathrm{Spin}^c(Y)$ , Ozsváth and Szabó construct three  $\mathbb{F}[U]$ -modules  $HF^-(Y,\mathfrak{s})$ ,  $HF^+(Y,\mathfrak{s})$  and  $HF^\infty(Y,\mathfrak{s})$ .

- If Y is a 3-manifold, and  $\mathfrak{s} \in \mathrm{Spin}^c(Y)$ , Ozsváth and Szabó construct three  $\mathbb{F}[U]$ -modules  $HF^-(Y,\mathfrak{s})$ ,  $HF^+(Y,\mathfrak{s})$  and  $HF^{\infty}(Y,\mathfrak{s})$ .
- If Y is a  $\mathbb{Z}HS^3$  and  $K \subseteq Y$ , Ozsváth and Szabó constructed a graded chain complex,  $CFK^{\infty}(Y,K)$ , which is filtered by  $\mathbb{Z} \oplus \mathbb{Z}$ .

- If Y is a 3-manifold, and  $\mathfrak{s} \in \mathrm{Spin}^c(Y)$ , Ozsváth and Szabó construct three  $\mathbb{F}[U]$ -modules  $HF^-(Y,\mathfrak{s})$ ,  $HF^+(Y,\mathfrak{s})$  and  $HF^{\infty}(Y,\mathfrak{s})$ .
- If Y is a  $\mathbb{Z}HS^3$  and  $K \subseteq Y$ , Ozsváth and Szabó constructed a graded chain complex,  $CFK^{\infty}(Y,K)$ , which is filtered by  $\mathbb{Z} \oplus \mathbb{Z}$ .



#### Theorem (Ozsváth–Szabó)

If K is a knot in Y, a  $\mathbb{Z}HS^3$ , then

$$HF^{-}(Y_n(K)) \cong H_* \left( \operatorname{Cone} \left( \mathbb{A} \xrightarrow{D_n} \mathbb{B} \right) \right),$$

where  $\mathbb{A}$  and  $\mathbb{B}$  are chain complexes obtained from subcomplexes of  $CFK^{\infty}(Y,K)$ , and  $D_n$  is a chain map.

#### Theorem (Ozsváth–Szabó)

If K is a knot in Y, a  $\mathbb{Z}HS^3$ , then

$$HF^{-}(Y_n(K)) \cong H_* \left( \operatorname{Cone} \left( \mathbb{A} \xrightarrow{D_n} \mathbb{B} \right) \right),$$

where  $\mathbb{A}$  and  $\mathbb{B}$  are chain complexes obtained from subcomplexes of  $CFK^{\infty}(Y,K)$ , and  $D_n$  is a chain map.

■ Bold  $\boldsymbol{HF}^-$  indicates coefficients in the power series  $\mathbb{F}[[U]]$ .



#### Theorem (Ozsváth–Szabó)

If K is a knot in Y, a  $\mathbb{Z}HS^3$ , then

$$HF^{-}(Y_n(K)) \cong H_* \left( \operatorname{Cone} \left( \mathbb{A} \xrightarrow{D_n} \mathbb{B} \right) \right),$$

where  $\mathbb{A}$  and  $\mathbb{B}$  are chain complexes obtained from subcomplexes of  $CFK^{\infty}(Y,K)$ , and  $D_n$  is a chain map.

- Bold  $\boldsymbol{HF}^-$  indicates coefficients in the power series  $\mathbb{F}[[U]]$ .
- When  $Y = S^3$ , the map  $D_n$  is explicitly computable from just  $CFK^{\infty}(S^3, K)$ .

$$\mathbb{A} = \prod_{s \in \mathbb{Z}} \mathbf{A}_s$$
 and  $\mathbb{B} = \prod_{s \in \mathbb{Z}} \mathbf{B}_s$ ,

where  $A_s$  and  $B_s$  are subcomplexes of  $CFK^{\infty}(K)$ , completed over  $\mathbb{F}[[U]]$ .

$$\mathbb{A} = \prod_{s \in \mathbb{Z}} A_s$$
 and  $\mathbb{B} = \prod_{s \in \mathbb{Z}} B_s$ ,

where  $A_s$  and  $B_s$  are subcomplexes of  $CFK^{\infty}(K)$ , completed over  $\mathbb{F}[[U]]$ .

■  $B_s \simeq CF^-(Y)$  for all s. (Actually,  $B_s$  is independent of s).

$$\mathbb{A} = \prod_{s \in \mathbb{Z}} A_s$$
 and  $\mathbb{B} = \prod_{s \in \mathbb{Z}} B_s$ ,

where  $A_s$  and  $B_s$  are subcomplexes of  $CFK^{\infty}(K)$ , completed over  $\mathbb{F}[[U]]$ .

- $B_s \simeq CF^-(Y)$  for all s. (Actually,  $B_s$  is independent of s).
- $A_s$  is a subcomplex of  $B_s$  for all s.

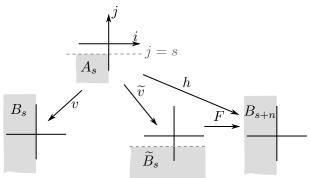
 $D_n = v + h.$ 

- $D_n = v + h.$
- v sends  $A_s$  to  $B_s$ , while h sends  $A_s$  to  $B_{s+n}$ .

- $D_n = v + h.$
- v sends  $A_s$  to  $B_s$ , while h sends  $A_s$  to  $B_{s+n}$ .
- v is the inclusion of  $A_s$  into  $B_s$ .

- $\blacksquare D_n = v + h.$
- v sends  $A_s$  to  $B_s$ , while h sends  $A_s$  to  $B_{s+n}$ .
- v is the inclusion of  $A_s$  into  $B_s$ .
- h is the inclusion of  $A_s$  into  $\widetilde{B}_s$ , composed with a homotopy equivalence  $F \colon \widetilde{B}_s \to B_s$ , where  $\widetilde{B}_s$  is as follows:

- $D_n = v + h.$
- v sends  $A_s$  to  $B_s$ , while h sends  $A_s$  to  $B_{s+n}$ .
- v is the inclusion of  $A_s$  into  $B_s$ .
- h is the inclusion of  $A_s$  into  $\widetilde{B}_s$ , composed with a homotopy equivalence  $F \colon \widetilde{B}_s \to B_s$ , where  $\widetilde{B}_s$  is as follows:



■ For knots in  $S^3$ , the homotopy type of the mapping cone is determined by just  $CFK^{\infty}(K)$ .

- For knots in  $S^3$ , the homotopy type of the mapping cone is determined by just  $CFK^{\infty}(K)$ .
- Indeed, the only ambiguity is the homotopy equivalence  $F : \widetilde{B}_s \to B_{s+n}$ , but  $\widetilde{B}_s$  and  $B_{s+n}$  are both homotopy equivalent to  $CF^-(S^3) \simeq \mathbb{F}[U]$ , so there is a unique homotopy equivalence, up to chain homotopy.

■ Suppose Y a 3-manifold,  $\mathfrak{s} \in \mathrm{Spin}^c(Y)$  and  $\overline{\mathfrak{s}} = \mathfrak{s}$ .

- Suppose Y a 3-manifold,  $\mathfrak{s} \in \mathrm{Spin}^c(Y)$  and  $\overline{\mathfrak{s}} = \mathfrak{s}$ .
- Hendricks and Manolescu study a homotopy involution

$$\iota \colon CF^-(Y,\mathfrak{s}) \to CF^-(Y,\mathfrak{s}).$$

- Suppose Y a 3-manifold,  $\mathfrak{s} \in \mathrm{Spin}^c(Y)$  and  $\overline{\mathfrak{s}} = \mathfrak{s}$ .
- Hendricks and Manolescu study a homotopy involution

$$\iota \colon CF^-(Y,\mathfrak{s}) \to CF^-(Y,\mathfrak{s}).$$

■ If  $\mathcal{H} = (\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$  is a Heegaard diagram, there is a canonical isomorphism

$$\eta \colon CF^{-}(\mathcal{H}, \mathfrak{s}) \to CF^{-}(\overline{\mathcal{H}}, \mathfrak{s})$$

where 
$$\overline{\mathcal{H}} = (\overline{\Sigma}, \boldsymbol{\beta}, \boldsymbol{\alpha})$$
.

- Suppose Y a 3-manifold,  $\mathfrak{s} \in \mathrm{Spin}^c(Y)$  and  $\overline{\mathfrak{s}} = \mathfrak{s}$ .
- Hendricks and Manolescu study a homotopy involution

$$\iota \colon CF^-(Y,\mathfrak{s}) \to CF^-(Y,\mathfrak{s}).$$

• If  $\mathcal{H} = (\Sigma, \boldsymbol{\alpha}, \boldsymbol{\beta})$  is a Heegaard diagram, there is a canonical isomorphism

$$\eta \colon CF^{-}(\mathcal{H}, \mathfrak{s}) \to CF^{-}(\overline{\mathcal{H}}, \mathfrak{s})$$

where  $\overline{\mathcal{H}} = (\overline{\Sigma}, \boldsymbol{\beta}, \boldsymbol{\alpha})$ .

 $\iota := \eta \circ \Psi_{\mathcal{H} \to \overline{\mathcal{H}}}$ , where  $\Psi_{\mathcal{H} \to \overline{\mathcal{H}}}$  is the map from naturality.



■ Hendricks and Manolescu define

$$CFI^{-}(Y, \mathfrak{s}) := \operatorname{Cone}\left(CF^{-}(Y, \mathfrak{s}) \xrightarrow{Q(\operatorname{id} + \iota)} Q \cdot CF^{-}(Y, \mathfrak{s})\right).$$

Hendricks and Manolescu define

$$CFI^{-}(Y, \mathfrak{s}) := \operatorname{Cone}\left(CF^{-}(Y, \mathfrak{s}) \xrightarrow{Q(\operatorname{id} + \iota)} Q \cdot CF^{-}(Y, \mathfrak{s})\right).$$

■ Module over  $\mathbb{F}[U,Q]/Q^2$ .

Hendricks and Manolescu define

$$CFI^{-}(Y, \mathfrak{s}) := \operatorname{Cone}\left(CF^{-}(Y, \mathfrak{s}) \xrightarrow{Q(\operatorname{id} + \iota)} Q \cdot CF^{-}(Y, \mathfrak{s})\right).$$

- Module over  $\mathbb{F}[U,Q]/Q^2$ .
- Applications to the homology cobordism group.

■ Hendricks and Manolescu define

$$CFI^{-}(Y, \mathfrak{s}) := \operatorname{Cone}\left(CF^{-}(Y, \mathfrak{s}) \xrightarrow{Q(\operatorname{id} + \iota)} Q \cdot CF^{-}(Y, \mathfrak{s})\right).$$

- Module over  $\mathbb{F}[U,Q]/Q^2$ .
- Applications to the homology cobordism group.
- E.g.  $\exists \mathbb{Z}^{\infty}$  summand of  $\Theta^3_{\mathbb{Z}}$  (Dai, Hom, Stoffregen, Truong).

#### Computing involutive Heegaard Floer homology

#### Question

How can we compute  $HFI^{-}(Y)$ ?

### Computing involutive Heegaard Floer homology

#### Question

How can we compute  $HFI^{-}(Y)$ ?

For example, is there an analog of the mapping cone formula?

#### Previous results

#### Previous results

Hendricks and Manolescu also defined a knot involution

$$\iota_K \colon \mathit{CFK}^\infty(K) \to \mathit{CFK}^\infty(K).$$

#### Previous results

Hendricks and Manolescu also defined a knot involution  $\iota_K \colon CFK^{\infty}(K) \to CFK^{\infty}(K)$ .

#### Theorem (Hendricks–Manolescu)

If n is large, and  $K \subseteq Y$  is a knot in a  $\mathbb{Z}HS^3$ , Y, then

$$(\mathit{CF}^-(Y_n(K),[0]),\iota) \simeq (A_0,\iota_K),$$

where  $\simeq$  denotes homotopy equivalence of  $\iota$ -complexes.

## Previous results

Hendricks and Manolescu also defined a knot involution

$$\iota_K \colon \mathit{CFK}^\infty(K) \to \mathit{CFK}^\infty(K).$$

#### Theorem (Hendricks–Manolescu)

If n is large, and  $K \subseteq Y$  is a knot in a  $\mathbb{Z}HS^3$ , Y, then

$$(CF^{-}(Y_n(K), [0]), \iota) \simeq (A_0, \iota_K),$$

where  $\simeq$  denotes homotopy equivalence of  $\iota$ -complexes. Hence

$$HFI^{-}(Y_n(K), [0]) \cong H_*(\operatorname{Cone}(A_0 \xrightarrow{Q(\operatorname{id} + \iota_K)} Q \cdot A_0)).$$



## Previous results

Hendricks and Manolescu also defined a knot involution

$$\iota_K \colon \mathit{CFK}^\infty(K) \to \mathit{CFK}^\infty(K).$$

#### Theorem (Hendricks–Manolescu)

If n is large, and  $K \subseteq Y$  is a knot in a  $\mathbb{Z}HS^3$ , Y, then

$$(CF^{-}(Y_n(K), [0]), \iota) \simeq (A_0, \iota_K),$$

where  $\simeq$  denotes homotopy equivalence of  $\iota$ -complexes. Hence

$$HFI^{-}(Y_n(K), [0]) \cong H_*(\operatorname{Cone}(A_0 \xrightarrow{Q(\operatorname{id} + \iota_K)} Q \cdot A_0)).$$

Here, [0] denotes the Spin<sup>c</sup> structure identified with 0 under  $\operatorname{Spin}^{c}(Y_{n}(K)) \cong \mathbb{Z}_{n}$ .

# Computing involutive Heegaard Floer homology

#### Theorem (Hendricks-Lipshitz)

Using bordered Floer homology,  $\widehat{HFI}(Y)$  may be computed combinatorially.

# Computing involutive Heegaard Floer homology

#### Theorem (Hendricks-Lipshitz)

Using bordered Floer homology,  $\widehat{HFI}(Y)$  may be computed combinatorially.

If  $K \subseteq Y$  is a framed knot there is an exact sequence

$$\cdots \widehat{\mathit{HFI}}(Y) \to \widehat{\mathit{HFI}}(Y_0) \to \widehat{\mathit{HFI}}(Y_1) \to \widehat{\mathit{HFI}}(Y) \cdots$$

#### Theorem (Dai-Manolescu)

Involutive Heegaard Floer homology is computable for three manifolds obtained by plumbing along almost rational graphs. (This includes all Seifert fibered homology 3-spheres).

### Theorem (Hendricks-Manolescu-Z.)

If  $Y_1$  and  $Y_2$  are homology spheres, then under the equivalence  $CF^-(Y_1 \# Y_2) \simeq CF^-(Y_1) \otimes CF^-(Y_2)$ , the involution  $\iota_{Y_1 \# Y_2}$  is equivalent to  $\iota_{Y_1} \otimes \iota_{Y_2}$ .

#### Theorem (Hendricks-Manolescu-Z.)

If  $Y_1$  and  $Y_2$  are homology spheres, then under the equivalence  $CF^-(Y_1 \# Y_2) \simeq CF^-(Y_1) \otimes CF^-(Y_2)$ , the involution  $\iota_{Y_1 \# Y_2}$  is equivalent to  $\iota_{Y_1} \otimes \iota_{Y_2}$ .

### Theorem (Z.)

Given  $(CFK^{\infty}(K_1), \iota_{K_1})$  and  $(CFK^{\infty}(K_2), \iota_{K_2})$ , there is a formula for  $(CFK^{\infty}(K_1 \# K_2), \iota_{K_1 \# K_2})$ .

## Theorem (In prep. Hendricks–Hom–Stoffregen–Z.)

If K is a framed knot in Y, then there is an exact sequence

$$\cdots \mathbf{HFI}^-(Y) \to \mathbf{HFI}^-(Y_0) \to \mathbf{HFI}^-(Y_1) \to \mathbf{HFI}^-(Y) \cdots.$$

### Theorem (In prep. Hendricks–Hom–Stoffregen–Z.)

If K is a framed knot in Y, then there is an exact sequence

$$\cdots \boldsymbol{HFI}^-(Y) \to \boldsymbol{HFI}^-(Y_0) \to \boldsymbol{HFI}^-(Y_1) \to \boldsymbol{HFI}^-(Y) \cdots.$$

If K is a knot in a  $\mathbb{Z}HS^3$  Y, then there is an exact sequence

$$\cdots \underline{HFI}^-(Y) \to HFI^-(Y_n) \to HFI^-(Y_{n+m}) \to \underline{HFI}^-(Y) \to \cdots$$

## Theorem (In prep. Hendricks–Hom–Stoffregen–Z.)

If K is a framed knot in Y, then there is an exact sequence

$$\cdots \boldsymbol{HFI}^-(Y) \to \boldsymbol{HFI}^-(Y_0) \to \boldsymbol{HFI}^-(Y_1) \to \boldsymbol{HFI}^-(Y) \cdots$$

If K is a knot in a  $\mathbb{Z}HS^3$  Y, then there is an exact sequence

$$\cdots \underline{HFI}^-(Y) \to HFI^-(Y_n) \to HFI^-(Y_{n+m}) \to \underline{HFI}^-(Y) \to \cdots$$

Bold denotes coefficients in  $\mathbb{F}[[U]]$ . Underline denotes twisted coefficients.

## The involutive mapping cone formula (weak form)

## The involutive mapping cone formula (weak form)

#### Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

(Weak version) If K is a knot in a  $\mathbb{Z}HS^3$  Y, then there is a homotopy equivalence

$$CFI^{-}(Y_{n}(K)) \simeq Q(\operatorname{id} + \iota_{\mathbb{A}}) \downarrow QH_{n} \downarrow Q(\operatorname{id} + \iota_{\mathbb{B}})$$

$$Q \cdot \mathbb{A} \xrightarrow{D_{n}} Q \cdot \mathbb{B}$$

## The involutive mapping cone formula (weak form)

#### Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

(Weak version) If K is a knot in a  $\mathbb{Z}HS^3$  Y, then there is a homotopy equivalence

$$CFI^{-}(Y_{n}(K)) \simeq Q(\operatorname{id} + \iota_{\mathbb{A}})$$

$$Q \cdot \mathbb{A} \xrightarrow{D_{n}} Q \cdot \mathbb{B}$$

Not amenable for computations, since changing  $H_n$  could change the homotopy type.

Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

## Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

### Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

(Strong version) If K is a knot in a  $S^3$ , then we may choose the maps to satisfy the following:

 $D_n = v + h, \text{ where } h \text{ factors through } \widetilde{v} \colon A_s \hookrightarrow \widetilde{B}_s.$ 

### Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

- $D_n = v + h, \text{ where } h \text{ factors through } \widetilde{v} \colon A_s \hookrightarrow \widetilde{B}_s.$
- $H_n$  factors as  $\widetilde{v}$ , followed by a map from  $\widetilde{B}_s$  to  $B_{-s}$ .

### Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

- $D_n = v + h, \text{ where } h \text{ factors through } \widetilde{v} \colon A_s \hookrightarrow \widetilde{B}_s.$
- $H_n$  factors as  $\widetilde{v}$ , followed by a map from  $\widetilde{B}_s$  to  $B_{-s}$ .
- $\bullet$   $\iota_{\mathbb{A}}$  is  $U^{s}\iota_{K}$ , and sends  $A_{s}$  to  $A_{-s}$ .

## Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

- $D_n = v + h, \text{ where } h \text{ factors through } \widetilde{v} \colon A_s \hookrightarrow \widetilde{B}_s.$
- $H_n$  factors as  $\widetilde{v}$ , followed by a map from  $\widetilde{B}_s$  to  $B_{-s}$ .
- $\bullet$   $\iota_{\mathbb{A}}$  is  $U^{s}\iota_{K}$ , and sends  $A_{s}$  to  $A_{-s}$ .
- $\iota_{\mathbb{B}}$  is the composition of  $U^s\iota_K$ , which sends  $B_s$  to  $B_{-s}$ , followed by a homotopy equivalence from  $\widetilde{B}_{-s}$  to  $B_{-s+n}$ .

#### Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

- $D_n = v + h, \text{ where } h \text{ factors through } \widetilde{v} \colon A_s \hookrightarrow \widetilde{B}_s.$
- $H_n$  factors as  $\widetilde{v}$ , followed by a map from  $\widetilde{B}_s$  to  $B_{-s}$ .
- $\bullet$   $\iota_{\mathbb{A}}$  is  $U^{s}\iota_{K}$ , and sends  $A_{s}$  to  $A_{-s}$ .
- $\iota_{\mathbb{B}}$  is the composition of  $U^s\iota_K$ , which sends  $B_s$  to  $\widetilde{B}_{-s}$ , followed by a homotopy equivalence from  $\widetilde{B}_{-s}$  to  $B_{-s+n}$ .
- Most importantly, these conditions completely determine the homotopy type of the mapping cone.

# On the strong version of the mapping cone formula

## On the strong version of the mapping cone formula

■ In particular, the homotopy type of  $CFI^{-}(S_n^3(K))$  is completely determined by, and is easily computed from  $(CFK^{\infty}(K), \iota_K)$ .

# On the strong version of the mapping cone formula

- In particular, the homotopy type of  $CFI^{-}(S_n^3(K))$  is completely determined by, and is easily computed from  $(CFK^{\infty}(K), \iota_K)$ .
- We prove similar mapping cone formulas for rational surgeries and 0-surgeries (and prove a similar computability result for knots in  $S^3$ ).

## Diagrams when n=1

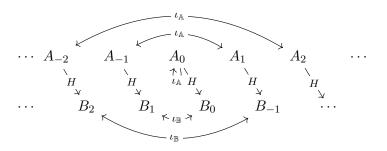
## Diagrams when n=1

Here is  $D_1$  on  $X_1$ :

## Diagrams when n=1

# Diagrams when n = 1

Here is  $\iota_{\mathbb{X}}$  on  $\mathbb{X}_1$ :



(Note,  $B_s$  are shown in reverse order).

It's often useful to consider the algebraic categories of  $\iota$ -complexes and  $\iota_K$ -complexes.

It's often useful to consider the algebraic categories of  $\iota$ -complexes and  $\iota_K$ -complexes. These are the categories consisting of  $\mathbb{F}[U]$ -chain complexes, equipped with involutions, and an extra filtration structure for  $\iota_K$ -complexes.

It's often useful to consider the algebraic categories of  $\iota$ -complexes and  $\iota_K$ -complexes. These are the categories consisting of  $\mathbb{F}[U]$ -chain complexes, equipped with involutions, and an extra filtration structure for  $\iota_K$ -complexes.

#### Definition

We say an algebraic  $\iota_K$ -complex is of L-space type if  $H_*(B_s) \cong \mathbb{F}[U]$ .

It's often useful to consider the algebraic categories of  $\iota$ -complexes and  $\iota_K$ -complexes. These are the categories consisting of  $\mathbb{F}[U]$ -chain complexes, equipped with involutions, and an extra filtration structure for  $\iota_K$ -complexes.

#### Definition

We say an algebraic  $\iota_K$ -complex is of L-space type if  $H_*(B_s) \cong \mathbb{F}[U]$ .

For complexes arising from a knot K in Y,  $H_*(B_s) \cong HF^-(Y)$ .

## Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

There is a well-defined (algebraic) map

$$\mathbb{XI}_n^{\mathrm{alg}} \colon \frac{\{\iota_K\text{-}complexes\ of\ L\text{-}space\ type}\}}{\simeq} \longrightarrow \frac{\{\iota\text{-}complexes}\}{\simeq},$$

sending an algebraic  $\iota_K$ -complex to a model of the involutive mapping cone with the above factorization properties.

Expanding on the work of Dai, Hom, Stoffregen and Truong, we prove the following:

Expanding on the work of Dai, Hom, Stoffregen and Truong, we prove the following:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

The homology cobordism group is not generated by Seifert fibered homology 3-spheres.

Expanding on the work of Dai, Hom, Stoffregen and Truong, we prove the following:

#### Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

The homology cobordism group is not generated by Seifert fibered homology 3-spheres.

Previous work of Frøyshov (unpublished), F. Lin (2017) and Stoffregen (2020) construct classes in  $\Theta^3_{\mathbb{Z}}$  which are not represented by Seifert fibered spaces. However none of these proofs imply that the classes are not connected sums of such classes.

Expanding on the work of Dai, Hom, Stoffregen and Truong, we prove the following:

#### Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

The homology cobordism group is not generated by Seifert fibered homology 3-spheres.

Previous work of Frøyshov (unpublished), F. Lin (2017) and Stoffregen (2020) construct classes in  $\Theta^3_{\mathbb{Z}}$  which are not represented by Seifert fibered spaces. However none of these proofs imply that the classes are not connected sums of such classes.

The standard complexes approach of Dai, Hom, Stoffregen and Truong give an algebraic obstruction to being in the span of Seifert fibered spaces, and we use the cone formula to find an example.

#### Definition

Two  $\iota$ -complexes  $(C_1, \iota_1)$  and  $(C_2, \iota_2)$  are locally equivalent if there are grading preserving chain maps

$$F \colon C_1 \to C_2$$
 and  $G \colon C_2 \to C_1$ 

such that  $F\iota_1 + \iota_2 F \simeq 0$  and  $G\iota_2 + \iota_1 G \simeq 0$ , such that F and G become isomorphisms on homology after inverting U.

#### Definition

Two  $\iota$ -complexes  $(C_1, \iota_1)$  and  $(C_2, \iota_2)$  are locally equivalent if there are grading preserving chain maps

$$F \colon C_1 \to C_2$$
 and  $G \colon C_2 \to C_1$ 

such that  $F \iota_1 + \iota_2 F \simeq 0$  and  $G \iota_2 + \iota_1 G \simeq 0$ , such that F and G become isomorphisms on homology after inverting U.

The local class of  $(CF^-(Y), \iota)$  contains all the algebraic obstructions to homology cobordism coming from HFI.

Recall:

#### Recall:

• If  $K \subseteq S^3$ , then  $\operatorname{Spin}^c(S_n^3(K)) \cong \mathbb{Z}/n$ .

#### Recall:

- If  $K \subseteq S^3$ , then  $\operatorname{Spin}^c(S_n^3(K)) \cong \mathbb{Z}/n$ .
- If n is odd, then [0] is the only self-conjugate  $Spin^c$  structure.

#### Recall:

- If  $K \subseteq S^3$ , then  $\operatorname{Spin}^c(S_n^3(K)) \cong \mathbb{Z}/n$ .
- If n is odd, then [0] is the only self-conjugate  $Spin^c$  structure.
- If n is even, then [0] and [n/2] are the only self-conjugate Spin<sup>c</sup> structures.

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose  $K \subseteq S^3$ , and n > 0.

#### Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose  $K \subseteq S^3$ , and n > 0.

■ Then  $CFI^{-}(S_n^3(K), [0])$  is locally equivalent to  $(A_0, \iota_K)$ .

#### Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

Suppose  $K \subseteq S^3$ , and n > 0.

- Then  $CFI^{-}(S_n^3(K), [0])$  is locally equivalent to  $(A_0, \iota_K)$ .
- Also,  $CFI^{-}(S_{2n}^{3}(K), [n])$  is locally equivalent to

$$A_n$$
 $A_n$ 
 $B_n$ 

with the involution which swaps the two copies of  $A_n$  via the identity map.

#### Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

Suppose  $K \subseteq S^3$ , and n > 0.

- Then  $CFI^{-}(S_n^3(K), [0])$  is locally equivalent to  $(A_0, \iota_K)$ .
- Also,  $CFI^{-}(S_{2n}^{3}(K), [n])$  is locally equivalent to

$$A_n$$
 $V$ 
 $B_n$ 

with the involution which swaps the two copies of  $A_n$  via the identity map.

A similar story holds for rational surgeries.



Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose  $K \subseteq S^3$ , and n > 0.

#### Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose  $K \subseteq S^3$ , and n > 0.

- $\underline{d}(S_n^3(K), [0]) = d(L(n, 1), [0]) 2\underline{V}_0(K).$
- $\overline{d}(S_n^3(K),[0]) = d(L(n,1),[0]) 2\overline{V}_0(K).$

This is an analog of a result by Ni and Wu, concerning the ordinary d-invariants of surgeries.

#### Theorem (In prep., Hendricks-Hom-Stoffregen-Z.)

Suppose  $K \subseteq S^3$ , and n > 0.

- $\underline{d}(S_n^3(K), [0]) = d(L(n, 1), [0]) 2\underline{V}_0(K).$
- $\label{eq:definition} \blacksquare \ \overline{d}(S^3_n(K),[0]) = d(L(n,1),[0]) 2\overline{V}_0(K).$
- $\underline{d}(S_{2n}^3(K), [n]) = d(S_{2n}^3(K), [n]).$
- $\overline{d}(S_{2n}^3(K), [n]) = d(L(2n, 1), [n]).$

This is an analog of a result by Ni and Wu, concerning the ordinary d-invariants of surgeries.

Recall the main steps in Ozsváth and Szabó's proof of the ordinary mapping cone formula:

Recall the main steps in Ozsváth and Szabó's proof of the ordinary mapping cone formula:

■ A large surgeries formula, which states that

$$HF^-(Y_n(K),[i]) \cong H_*(A_i(K)),$$

if n is sufficiently large.

Recall the main steps in Ozsváth and Szabó's proof of the ordinary mapping cone formula:

■ A large surgeries formula, which states that

$$HF^-(Y_n(K),[i]) \cong H_*(A_i(K)),$$

if n is sufficiently large.

■ A surgery exact sequence

$$\cdots \underline{HF}^-(Y) \to HF^-(Y_n) \to HF^-(Y_{n+m}) \to \underline{HF}^-(Y) \cdots,$$
  
where  $\underline{HF}^-(Y) = \bigoplus^m HF^-(Y).$ 

• Consider the m=1 case

$$\cdots HF^-(Y) \rightarrow HF^-(Y_n) \rightarrow HF^-(Y_{n+1}) \rightarrow HF^-(Y) \cdots$$

• Consider the m=1 case

$$\cdots \mathbf{HF}^-(Y) \to \mathbf{HF}^-(Y_n) \to \mathbf{HF}^-(Y_{n+1}) \to \mathbf{HF}^-(Y) \cdots$$

■ Define a "cobordism" map

$$\mathbf{CFI}^-(Y_{n+1}) \to \mathbf{CFI}^-(Y)$$

as well as a quasi-isomorphism

$$\Phi \colon \mathbf{CFI}^-(Y_n) \to \operatorname{Cone}\left(\mathbf{CFI}^-(Y_{n+1}) \to \mathbf{CFI}^-(Y)\right).$$



• Consider the m=1 case

$$\cdots HF^-(Y) \rightarrow HF^-(Y_n) \rightarrow HF^-(Y_{n+1}) \rightarrow HF^-(Y) \cdots$$

■ Define a "cobordism" map

$$\mathbf{CFI}^-(Y_{n+1}) \to \mathbf{CFI}^-(Y)$$

as well as a quasi-isomorphism

$$\Phi \colon \mathbf{CFI}^-(Y_n) \to \operatorname{Cone}\left(\mathbf{CFI}^-(Y_{n+1}) \to \mathbf{CFI}^-(Y)\right).$$

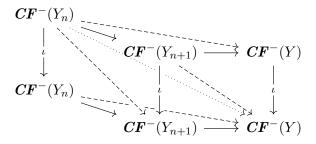
■ The exact sequence for mapping cones from homological algebra gives the surgery exact sequence.



■ To build

$$\Phi \colon \mathbf{CFI}^-(Y_n) \to \operatorname{Cone}(\mathbf{CFI}^-(Y_{n+1}) \to \mathbf{CFI}^-(Y))$$

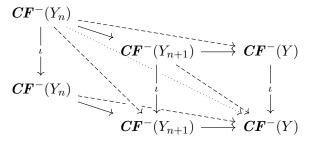
we start by building a hypercube (i.e. a cubical diagram whose total complex is a chain complex)



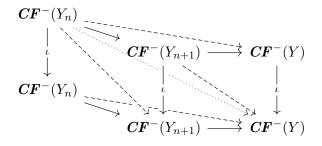
■ To build

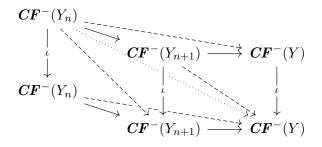
$$\Phi \colon \mathbf{CFI}^-(Y_n) \to \operatorname{Cone}(\mathbf{CFI}^-(Y_{n+1}) \to \mathbf{CFI}^-(Y))$$

we start by building a hypercube (i.e. a cubical diagram whose total complex is a chain complex)

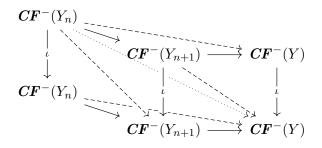


■ Furthermore, the maps along top coincide with the maps along the bottom.

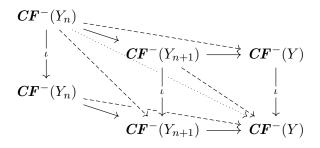




■ The maps along the top and bottom were constructed by Ozsváth and Szabó.



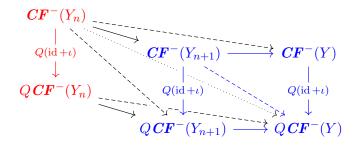
- The maps along the top and bottom were constructed by Ozsváth and Szabó.
- The maps along the left and front face were constructed by Hendricks and Manolescu.



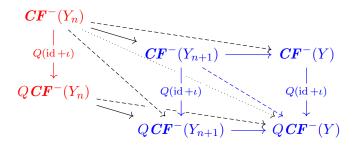
- The maps along the top and bottom were constructed by Ozsváth and Szabó.
- The maps along the left and front face were constructed by Hendricks and Manolescu.
- The challenging part which is new to our work is the length 3 dotted arrow.

Since the maps along the top and bottom, agree, we can add id to each vertical map, and total complex will still be a chain complex:

Since the maps along the top and bottom, agree, we can add id to each vertical map, and total complex will still be a chain complex:



Since the maps along the top and bottom, agree, we can add id to each vertical map, and total complex will still be a chain complex:



This is the same as a chain map from  $CFI^-(Y_n)$  to  $Cone(CFI^-(Y_{n+1}) \to CFI^-(Y))$ .

## Thanks for listening!