A mapping cone formula for Involutive Heegaard Floer homology

Ian Zemke
joint w/ K. Hendricks, J. Hom and M. Stoffregen

September 17, 2020
Heegaard Floer homology

If Y is a 3-manifold, and $s \in \text{Spin}^c(Y)$, Ozsváth and Szabó construct three $F[U]$-modules $HF^-(Y, s), HF^+(Y, s)$ and $HF^{\infty}(Y, s)$. If Y is a \mathbb{Z}_{HS}^3 and $K \subseteq Y$, Ozsváth and Szabó constructed a graded chain complex, $CFK^{\infty}(Y, K)$, which is filtered by $\mathbb{Z} \oplus \mathbb{Z}$.
If Y is a 3-manifold, and $\mathfrak{s} \in \text{Spin}^c(Y)$, Ozsváth and Szabó construct three $\mathbb{F}[U]$-modules $HF^-(Y, \mathfrak{s})$, $HF^+(Y, \mathfrak{s})$ and $HF^\infty(Y, \mathfrak{s})$.
Heegaard Floer homology

- If Y is a 3-manifold, and $s \in \text{Spin}^c(Y)$, Ozsváth and Szabó construct three $\mathbb{F}[U]$-modules $HF^-(Y, s)$, $HF^+(Y, s)$ and $HF^\infty(Y, s)$.

- If Y is a $\mathbb{Z}HS^3$ and $K \subseteq Y$, Ozsváth and Szabó constructed a graded chain complex, $CFK^\infty(Y, K)$, which is filtered by $\mathbb{Z} \oplus \mathbb{Z}$.
Heegaard Floer homology

- If Y is a 3-manifold, and $s \in \text{Spin}^c(Y)$, Ozsváth and Szabó construct three $\mathbb{F}[U]$-modules $HF^{-}(Y, s)$, $HF^{+}(Y, s)$ and $HF^{\infty}(Y, s)$.
- If Y is a $\mathbb{Z}HS^3$ and $K \subseteq Y$, Ozsváth and Szabó constructed a graded chain complex, $CFK^{\infty}(Y, K)$, which is filtered by $\mathbb{Z} \oplus \mathbb{Z}$.
Ozsváth and Szabó’s mapping cone formula

Theorem (Ozsváth–Szabó)

If K *is a knot in* Y, *a* $\mathbb{Z}HS^3$, *then*

$$HF^{-}(Y_n(K)) \cong H_* \left(\text{Cone} \left(\begin{array}{c} \mathbb{A} \\ D_n \rightarrow \mathbb{B} \end{array} \right) \right),$$

where \mathbb{A} *and* \mathbb{B} *are chain complexes obtained from subcomplexes of* $CFK^\infty(Y, K)$, *and* D_n *is a chain map.*
Theorem (Ozsváth–Szabó)

If K is a knot in Y, a $\mathbb{Z}HS^3$, then

$$HF^-(Y_n(K)) \cong H_* \left(\text{Cone} \left(\bigtriangleup \xrightarrow{D_n} \bigcirc \right) \right),$$

where \bigtriangleup and \bigcirc are chain complexes obtained from subcomplexes of $\text{CFK}^\infty(Y, K)$, and D_n is a chain map.

- Bold HF^- indicates coefficients in the power series $\mathbb{F}[[U]]$.

Theorem (Ozsváth–Szabó)

If K *is a knot in* Y, *a* $\mathbb{Z}HS^3$, *then*

$$\text{HF}^{-}(Y_n(K)) \cong H_\ast \left(\text{Cone} \left(A \xrightarrow{D_n} B \right) \right),$$

where A *and* B *are chain complexes obtained from subcomplexes of* $\text{CFK}^\infty(Y,K)$, *and* D_n *is a chain map.*

- Bold HF^{-} indicates coefficients in the power series $\mathbb{F}[[U]]$.
- When $Y = S^3$, the map D_n is explicitly computable from just $\text{CFK}^\infty(S^3, K)$.
Ozsváth and Szabó’s mapping cone formula

\[A = \prod_{s \in \mathbb{Z}} A_s \quad \text{and} \quad B = \prod_{s \in \mathbb{Z}} B_s, \]

where \(A_s \) and \(B_s \) are subcomplexes of \(\text{CFK}_\infty(K) \), completed over \(F[[U]] \).

\(B_s \cong \text{CF}^{-}(Y) \) for all \(s \). (Actually, \(B_s \) is independent of \(s \)).

\(A_s \) is a subcomplex of \(B_s \) for all \(s \).
Ozsváth and Szabó’s mapping cone formula

\[A = \prod_{s \in \mathbb{Z}} A_s \quad \text{and} \quad B = \prod_{s \in \mathbb{Z}} B_s, \]

where \(A_s \) and \(B_s \) are subcomplexes of \(CFK^\infty(K) \), completed over \(\mathbb{F}[[U]] \).
Ozsváth and Szabó’s mapping cone formula

\[\mathcal{A} = \prod_{s \in \mathbb{Z}} \mathcal{A}_s \quad \text{and} \quad \mathcal{B} = \prod_{s \in \mathbb{Z}} \mathcal{B}_s, \]

where \(\mathcal{A}_s \) and \(\mathcal{B}_s \) are subcomplexes of \(\text{CFK}^\infty(K) \), completed over \(\mathbb{F}[[U]] \).

- \(\mathcal{B}_s \simeq CF^{-}(Y) \) for all \(s \). (Actually, \(\mathcal{B}_s \) is independent of \(s \)).
Ozsváth and Szabó’s mapping cone formula

\[A = \prod_{s \in \mathbb{Z}} A_s \quad \text{and} \quad B = \prod_{s \in \mathbb{Z}} B_s, \]

where \(A_s \) and \(B_s \) are subcomplexes of \(CFK^\infty(K) \), completed over \(\mathbb{F}[[U]] \).

- \(B_s \cong CF^-(Y) \) for all \(s \). (Actually, \(B_s \) is independent of \(s \)).
- \(A_s \) is a subcomplex of \(B_s \) for all \(s \).
Ozsváth and Szabó’s mapping cone formula

\[D_n = v + h. \]

\(v \) sends \(A_s \) to \(B_s \), while \(h \) sends \(A_s \) to \(B_s + n \).

\(v \) is the inclusion of \(A_s \) into \(B_s \).

\(h \) is the inclusion of \(A_s \) into \(\tilde{B}_s \), composed with a homotopy equivalence \(F: \tilde{B}_s \to B_s \), where \(\tilde{B}_s \) is as follows:

\[A_s \to B_s \mapsto \ j = s \cdot v B_s + n \tilde{B}_s \tilde{v} F h. \]
Ozsváth and Szabó’s mapping cone formula

\[D_n = v + h. \]
Ozsváth and Szabó’s mapping cone formula

- $D_n = v + h$.
- v sends A_s to B_s, while h sends A_s to B_{s+n}.

Ozsváth and Szabó’s mapping cone formula

- $D_n = v + h$.
- v sends A_s to B_s, while h sends A_s to B_{s+n}.
- v is the inclusion of A_s into B_s.
Ozsváth and Szabó’s mapping cone formula

- $D_n = v + h$.
- v sends A_s to B_s, while h sends A_s to B_{s+n}.
- v is the inclusion of A_s into B_s.
- h is the inclusion of A_s into \tilde{B}_s, composed with a homotopy equivalence $F: \tilde{B}_s \to B_s$, where \tilde{B}_s is as follows:
Ozsváth and Szabó’s mapping cone formula

- $D_n = v + h$.
- v sends A_s to B_s, while h sends A_s to B_{s+n}.
- v is the inclusion of A_s into B_s.
- h is the inclusion of A_s into \tilde{B}_s, composed with a homotopy equivalence $F : \tilde{B}_s \rightarrow B_s$, where \tilde{B}_s is as follows:

\[\tilde{B}_s \]
Ozsváth and Szabó’s mapping cone formula

For knots in S^3, the homotopy type of the mapping cone is determined by just $\text{CFK}^\infty(K)$. Indeed, the only ambiguity is the homotopy equivalence $F: \tilde{B}_s \to B_s + n$, but \tilde{B}_s and $B_s + n$ are both homotopy equivalent to $\text{CF}^{-}(S^3) \cong F[\mathbb{I}]$, so there is a unique homotopy equivalence, up to chain homotopy.
For knots in S^3, the homotopy type of the mapping cone is determined by just $\text{CFK}^\infty(K)$.
For knots in S^3, the homotopy type of the mapping cone is determined by just $CFK^\infty(K)$.

Indeed, the only ambiguity is the homotopy equivalence $F: \tilde{B}_s \to B_{s+n}$, but \tilde{B}_s and B_{s+n} are both homotopy equivalent to $CF^-(S^3) \cong \mathbb{F}[U]$, so there is a unique homotopy equivalence, up to chain homotopy.
Suppose Y a 3-manifold, $s \in \text{Spin}^c(Y)$ and $s = s$. Hendricks and Manolescu study a homotopy involution $\iota: \text{CF}^-(Y, s) \to \text{CF}^-(Y, s)$. If $H = (\Sigma, \alpha, \beta)$ is a Heegaard diagram, there is a canonical isomorphism $\eta: \text{CF}^-(H, s) \to \text{CF}^-(H, s)$ where $H = (\Sigma, \beta, \alpha)$. $\iota := \eta \circ \Psi_{H \to H}$, where $\Psi_{H \to H}$ is the map from naturality.
Suppose Y a 3-manifold, $s \in \text{Spin}^c(Y)$ and $\bar{s} = s$.
Suppose Y a 3-manifold, $s \in \text{Spin}^c(Y)$ and $\bar{s} = s$.

Hendricks and Manolescu study a homotopy involution

$$\iota : CF^- (Y, s) \rightarrow CF^- (Y, s).$$
Suppose \(Y \) a 3-manifold, \(s \in \text{Spin}^c(Y) \) and \(\bar{s} = s \).

Hendricks and Manolescu study a homotopy involution

\[
\iota: CF^-(Y, s) \to CF^-(Y, s).
\]

If \(\mathcal{H} = (\Sigma, \alpha, \beta) \) is a Heegaard diagram, there is a canonical isomorphism

\[
\eta: CF^-(\mathcal{H}, s) \to CF^-(\overline{\mathcal{H}}, s)
\]

where \(\overline{\mathcal{H}} = (\Sigma, \beta, \alpha) \).
Suppose Y a 3-manifold, $s \in \text{Spin}^c(Y)$ and $\bar{s} = s$.

Hendricks and Manolescu study a homotopy involution

$$\iota : CF^-(Y, s) \to CF^-(Y, s).$$

If $\mathcal{H} = (\Sigma, \alpha, \beta)$ is a Heegaard diagram, there is a canonical isomorphism

$$\eta : CF^- (\mathcal{H}, s) \to CF^- (\mathcal{H}, s)$$

where $\bar{\mathcal{H}} = (\bar{\Sigma}, \beta, \alpha)$.

$$\iota := \eta \circ \Psi_{\mathcal{H} \to \mathcal{H}},$$

where $\Psi_{\mathcal{H} \to \mathcal{H}}$ is the map from naturality.
Involution Heegaard Floer homology

Hendricks and Manolescu define

$$\text{CFI}^-(Y, s) := \text{Cone} \left(\text{CF}^- (Y, s) \xrightarrow{Q(id + \iota)} \text{CF}^- (Y, s) \right)$$

Module over $\mathbb{F}[[U, Q]] / Q^2$.

Applications to the homology cobordism group. E.g. $\exists Z^\infty$ summand of $\Theta^3 Z$ (Dai, Hom, Stoffregen, Truong).
Hendricks and Manolescu define

\[CFI^{-}(Y, \mathfrak{s}) := \text{Cone} \left(CF^{-}(Y, \mathfrak{s}) \xrightarrow{Q(\text{id} + \iota)} Q \cdot CF^{-}(Y, \mathfrak{s}) \right). \]
Hendricks and Manolescu define

$$\text{CFI}^{-}(Y, s) := \text{Cone} \left(\text{CF}^{-}(Y, s) \xrightarrow{Q(id + \iota)} Q \cdot \text{CF}^{-}(Y, s) \right).$$

Module over $\mathbb{F}[U, Q]/Q^2$.
Hendricks and Manolescu define

\[CFI^-(Y, \mathfrak{s}) := \text{Cone} \left(CF^-(Y, \mathfrak{s}) \xrightarrow{Q(id + \iota)} Q \cdot CF^-(Y, \mathfrak{s}) \right). \]

- Module over \(\mathbb{F}[U, Q]/Q^2 \).
- Applications to the homology cobordism group.
Hendricks and Manolescu define

\[
CFI^{-}(Y, s) := \text{Cone} \left(CF^{-}(Y, s) \xrightarrow{Q(id + \iota)} Q \cdot CF^{-}(Y, s) \right).
\]

Module over \(\mathbb{F}[U, Q]/Q^2 \).

Applications to the homology cobordism group.

E.g. \(\exists \mathbb{Z}^\infty \) summand of \(\Theta^3_{\mathbb{Z}} \) (Dai, Hom, Stoffregen, Truong).
How can we compute $HFI^{-}(Y)$?
Computing involutive Heegaard Floer homology

Question

How can we compute $HFI^-(Y)$?

For example, is there an analog of the mapping cone formula?
Hendricks and Manolescu also defined a knot involution ι_K: \[\text{CFK}_\infty(K) \to \text{CFK}_\infty(K). \]

Theorem (Hendricks–Manolescu)

If n is large, and $K \subseteq Y$ is a knot in a \mathbb{Z}_{HS}^3, Y, then
\[(\text{CF}^-(Y^n(K)), [0]), \iota_K) \cong (A_0, \iota_K), \]
where \(\cong \) denotes homotopy equivalence of ι-complexes.

Hence $HFI^-(Y^n(K), [0]) \cong H^*(\text{Cone}(A_0 Q \overset{id + \iota_K}{\longrightarrow} Q \cdot A_0))$.

Here, $[0]$ denotes the Spinc structure identified with 0 under Spin$^c(Y^n(K)) \cong \mathbb{Z}_n$.
Previous results

Hendricks and Manolescu also defined a knot involution

$$\iota_K: \text{CFK}^\infty(K) \to \text{CFK}^\infty(K).$$
Previous results

Hendricks and Manolescu also defined a knot involution

\[\iota_K : CFK^\infty(K) \to CFK^\infty(K). \]

Theorem (Hendricks–Manolescu)

If \(n \) *is large, and* \(K \subseteq Y \) *is a knot in a* \(\mathbb{Z}HS^3 \), \(Y \), *then*

\[(CF^{-}(Y_n(K), [0]), \iota) \simeq (A_0, \iota_K), \]

where \(\simeq \) denotes homotopy equivalence of \(\iota \)-complexes.
Hendricks and Manolescu also defined a knot involution
\[\iota_K : \text{CFK}^\infty(K) \to \text{CFK}^\infty(K). \]

Theorem (Hendricks–Manolescu)

If \(n \) *is large, and* \(K \subseteq Y \) *is a knot in a* \(\mathbb{Z}HS^3 \), \(Y \), *then*

\[
(CF^-(Y_n(K), [0]), \iota) \simeq (A_0, \iota_K),
\]

where \(\simeq \) *denotes homotopy equivalence of* \(\iota \)-*complexes. Hence*

\[
\text{HFI}^-(Y_n(K), [0]) \simeq H_* \left(\text{Cone} \left(A_0 \xrightarrow{Q(\text{id} + \iota_K)} Q \cdot A_0 \right) \right).
\]
Previous results

Hendricks and Manolescu also defined a knot involution

$$\iota_K : CF^K(\mathfrak{K}) \to CF^K(\mathfrak{K}).$$

Theorem (Hendricks–Manolescu)

If \(n\) is large, and \(K \subseteq Y\) is a knot in a \(\mathbb{Z}HS^3, Y\), then

\[
(CF^{-}(Y_n(K), [0]), \iota) \simeq (A_0, \iota_K),
\]

where \(\simeq\) denotes homotopy equivalence of \(\iota\)-complexes. Hence

\[
HFI^-(Y_n(K), [0]) \cong H_*(\text{Cone}(A_0 \xrightarrow{Q(\text{id} + \iota_K)} Q \cdot A_0)).
\]

Here, \([0]\) denotes the \(\text{Spin}^c\) structure identified with 0 under \(\text{Spin}^c(Y_n(K)) \cong \mathbb{Z}_n\).
Using bordered Floer homology, \(\widehat{HFI}(Y) \) may be computed combinatorially.
Computing involutive Heegaard Floer homology

Theorem (Hendricks–Lipshitz)

Using bordered Floer homology, \(\widehat{HF}_I(Y) \) may be computed combinatorially.

If \(K \subseteq Y \) is a framed knot there is an exact sequence

\[\cdots \rightarrow \widehat{HF}_I(Y_0) \rightarrow \widehat{HF}_I(Y_1) \rightarrow \widehat{HF}_I(Y) \rightarrow \cdots \]
Theorem (Dai–Manolescu)

Involutive Heegaard Floer homology is computable for three manifolds obtained by plumbing along almost rational graphs. (This includes all Seifert fibered homology 3-spheres).
More computational tools
More computational tools

Theorem (Hendricks–Manolescu–Z.)

If Y_1 and Y_2 are homology spheres, then under the equivalence $CF^{-}(Y_1 \# Y_2) \simeq CF^{-}(Y_1) \otimes CF^{-}(Y_2)$, the involution $\nu_{Y_1 \# Y_2}$ is equivalent to $\nu_{Y_1} \otimes \nu_{Y_2}$.
More computational tools

Theorem (Hendricks–Manolescu–Z.)

If Y_1 and Y_2 are homology spheres, then under the equivalence $\mathcal{CF}^{-}(Y_1 \# Y_2) \simeq \mathcal{CF}^{-}(Y_1) \otimes \mathcal{CF}^{-}(Y_2)$, the involution $\iota_{Y_1 \# Y_2}$ is equivalent to $\iota_{Y_1} \otimes \iota_{Y_2}$.

Theorem (Z.)

Given $(\mathcal{CFK}^\infty(K_1), \iota_{K_1})$ and $(\mathcal{CFK}^\infty(K_2), \iota_{K_2})$, there is a formula for $(\mathcal{CFK}^\infty(K_1 \# K_2), \iota_{K_1 \# K_2})$.
New developments: exact sequences

Theorem (In prep. Hendricks–Hom–Stoffregen–Z.)

If K is a framed knot in Y, then there is an exact sequence

$$
\cdots \to H^{FI}_{\mathbb{Z}}(Y) \to H^{FI}_{\mathbb{Z}}(Y_0) \to H^{FI}_{\mathbb{Z}}(Y_1) \to H^{FI}_{\mathbb{Z}}(Y) \to \cdots
$$

If K is a knot in a $\mathbb{Z}_{HS}^3 Y$, then there is an exact sequence

$$
\cdots \to H^{FI}_{\mathbb{Z}}(Y) \to H^{FI}_{\mathbb{Z}}(Y_n) \to H^{FI}_{\mathbb{Z}}(Y_n+m) \to H^{FI}_{\mathbb{Z}}(Y) \to \cdots
$$

Bold denotes coefficients in $\mathbb{Z}[[U]]$. Underline denotes twisted coefficients.
New developments: exact sequences

Theorem (In prep. Hendricks–Hom–Stoffregen–Z.)

If K is a framed knot in Y, then there is an exact sequence

$$
\cdots \text{HFI}^{-}(Y) \rightarrow \text{HFI}^{-}(Y_{0}) \rightarrow \text{HFI}^{-}(Y_{1}) \rightarrow \text{HFI}^{-}(Y) \cdots .
$$
New developments: exact sequences

Theorem (In prep. Hendricks–Hom–Stoffregen–Z.)

If K is a framed knot in Y, then there is an exact sequence

$$
\cdots HFI^-(Y) \to HFI^-(Y_0) \to HFI^-(Y_1) \to HFI^-(Y) \cdots .
$$

If K is a knot in a $\mathbb{Z}HS^3 Y$, then there is an exact sequence

$$
\cdots \underline{HFI}^-(Y) \to \underline{HFI}^-(Y_n) \to \underline{HFI}^-(Y_{n+m}) \to \underline{HFI}^-(Y) \to \cdots .
$$
New developments: exact sequences

Theorem (In prep. Hendricks–Hom–Stoffregen–Z.)

If K is a framed knot in Y, then there is an exact sequence

$$
\cdots \mathcal{HFI}^-(Y) \rightarrow \mathcal{HFI}^-(Y_0) \rightarrow \mathcal{HFI}^-(Y_1) \rightarrow \mathcal{HFI}^-(Y) \cdots .
$$

If K is a knot in a $\mathbb{Z}HS^3$ Y, then there is an exact sequence

$$
\cdots \underline{\mathcal{HFI}}^-(Y) \rightarrow \mathcal{HFI}^-(Y_n) \rightarrow \mathcal{HFI}^-(Y_{n+m}) \rightarrow \underline{\mathcal{HFI}}^-(Y) \rightarrow \cdots .
$$

Bold denotes coefficients in $\mathbb{F}[[U]]$. Underline denotes twisted coefficients.
The involutive mapping cone formula (weak form)

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

(Weak version) If \(K \) is a knot in a \(\mathbb{Z} \text{HS}^3(\mathbb{Y}) \), then there is a homotopy equivalence

\[
\text{CFI}^{-}(\mathbb{Y}_n(K)) \cong A \cdot B \cdot Q \cdot (\text{id} + \iota_A) \cdot D^n \cdot QH^n \cdot Q \cdot (\text{id} + \iota_B) \cdot D^n
\]

Not amenable for computations, since changing \(H_n \) could change the homotopy type.
The involutive mapping cone formula (weak form)

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

(Weak version) If K is a knot in a $\mathbb{Z}HS^3 Y$, then there is a homotopy equivalence

$$\text{CFI}^-(Y_n(K)) \cong Q(id + \iota_A)$$

Not amenable for computations, since changing H_n could change the homotopy type.
Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

(Weak version) If \(K \) is a knot in a \(\mathbb{Z}HS^3 Y \), then there is a homotopy equivalence

\[
\text{CFI}^-(Y_n(K)) \cong Q(\text{id} + \iota_A) \\
\cong Q \cdot A \\
\cong Q \cdot B
\]

Not amenable for computations, since changing \(H_n \) could change the homotopy type.
The involutive mapping cone formula for knots in S^3:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

| ι_A sends A_s to A_{s-1}, and ι_K sends A_s to A_{s+1}. |
| ι_B is the composition of $U_s \iota_K$, which sends B_s to \tilde{B}_{s-1}, followed by a homotopy equivalence from \tilde{B}_{s-1} to $B_{s-1} + n$. |

Most importantly, these conditions completely determine the homotopy type of the mapping cone.
The involutive mapping cone formula for knots in S^3:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

(Strong version) If K is a knot in a S^3, then we may choose the maps to satisfy the following:

\[D_n = v + h, \text{ where } h \text{ factors through } \tilde{v} : A_s \rightarrow \tilde{B}_s. \]

\[H_n \text{ factors as } \tilde{v}, \text{ followed by a map from } \tilde{B}_s \text{ to } B_s. \]

\[\iota_A \text{ is } U_s \iota_K, \text{ and sends } A_s \text{ to } A_s. \]

\[\iota_B \text{ is the composition of } U_s \iota_K, \text{ which sends } B_s \text{ to } \tilde{B}_s, \text{ followed by a homotopy equivalence from } \tilde{B}_s \text{ to } B_s + n. \]

Most importantly, these conditions completely determine the homotopy type of the mapping cone.
The involutive mapping cone formula for knots in S^3:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

(Strong version) If K is a knot in a S^3, then we may choose the maps to satisfy the following:

- $D_n = v + h$, where h factors through $\tilde{v} : A_s \hookrightarrow \tilde{B}_s$.

Most importantly, these conditions completely determine the homotopy type of the mapping cone.
The involutive mapping cone formula for knots in S^3:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

(Strong version) If K is a knot in a S^3, then we may choose the maps to satisfy the following:

- $D_n = \nu + h$, where h factors through $\tilde{\nu} : A_s \hookrightarrow \tilde{B}_s$.
- H_n factors as $\tilde{\nu}$, followed by a map from \tilde{B}_s to B_{-s}.
The involutive mapping cone formula for knots in S^3:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

(Strong version) If K is a knot in a S^3, then we may choose the maps to satisfy the following:

- $D_n = v + h$, where h factors through $\tilde{v}: A_s \hookrightarrow \tilde{B}_s$.
- H_n factors as \tilde{v}, followed by a map from \tilde{B}_s to B_{-s}.
- ι_A is $U^s \iota_K$, and sends A_s to A_{-s}.
The involutive mapping cone formula for knots in S^3:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

(Strong version) If K is a knot in S^3, then we may choose the maps to satisfy the following:

- $D_n = v + h$, where h factors through $\tilde{v}: A_s \hookrightarrow \tilde{B}_s$.
- H_n factors as \tilde{v}, followed by a map from \tilde{B}_s to B_{-s}.
- ι_A is $U^s \iota_K$, and sends A_s to A_{-s}.
- ι_B is the composition of $U^s \iota_K$, which sends B_s to \tilde{B}_{-s}, followed by a homotopy equivalence from \tilde{B}_{-s} to B_{-s+n}.

Most importantly, these conditions completely determine the homotopy type of the mapping cone.
The involutive mapping cone formula for knots in S^3:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

(Strong version) If K is a knot in a S^3, then we may choose the maps to satisfy the following:

- $D_n = v + h$, where h factors through $\tilde{v}: A_s \hookrightarrow \tilde{B}_s$.
- H_n factors as \tilde{v}, followed by a map from \tilde{B}_s to B_{-s}.
- ι_A is $U^s \iota_K$, and sends A_s to A_{-s}.
- ι_B is the composition of $U^s \iota_K$, which sends B_s to \tilde{B}_{-s}, followed by a homotopy equivalence from \tilde{B}_{-s} to B_{-s+n}.
- Most importantly, these conditions completely determine the homotopy type of the mapping cone.
On the strong version of the mapping cone formula

In particular, the homotopy type of $\text{CFI}^-(S^3_n(K))$ is completely determined by, and is easily computed from $(\text{CFK}_\infty(K), \iota K)$. We prove similar mapping cone formulas for rational surgeries and 0-surgeries (and prove a similar computability result for knots in S^3).
In particular, the homotopy type of $\text{CFI}^-(S^3_n(K))$ is completely determined by, and is easily computed from $(\text{CFK}^\infty(K), \iota_K)$.
On the strong version of the mapping cone formula

- In particular, the homotopy type of $CFI^-(S^3_n(K))$ is completely determined by, and is easily computed from $(CFK^\infty(K), \iota_K)$.
- We prove similar mapping cone formulas for rational surgeries and 0-surgeries (and prove a similar computability result for knots in S^3).
Diagrams when $n = 1$
Diagrams when $n = 1$

Here is D_1 on X_1

\[
\begin{array}{cccccc}
\cdots & A_{-2} & A_{-1} & A_0 & A_1 & A_2 & \cdots \\
& v & / & h & v & / & h & v & h & v & / & \cdots \\
\vdots & B_{-1} & B_0 & B_1 & B_2 & \cdots
\end{array}
\]
Diagrams when $n = 1$
Diagrams when $n = 1$

Here is ι_X on X_1:

(Note, B_s are shown in reverse order).
On the algebra of the involutive mapping cone

It's often useful to consider the algebraic categories of ι-complexes and ι_K-complexes. These are the categories consisting of $F[U]$-chain complexes, equipped with involutions, and an extra filtration structure for ι_K-complexes.

Definition: We say an algebraic ι_K-complex is of L-space type if $H^*(B_s) \cong F[U]$.

For complexes arising from a knot K in Y, $H^*(B_s) \cong HF^-(Y)$.
It’s often useful to consider the algebraic categories of ι-complexes and ι_K-complexes.
It’s often useful to consider the algebraic categories of ι-complexes and ι_K-complexes. These are the categories consisting of $\mathbb{F}[U]$-chain complexes, equipped with involutions, and an extra filtration structure for ι_K-complexes.
It’s often useful to consider the algebraic categories of ι-complexes and ι_K-complexes. These are the categories consisting of $\mathbb{F}[U]$-chain complexes, equipped with involutions, and an extra filtration structure for ι_K-complexes.

Definition

We say an algebraic ι_K-complex is of L-space type if $H_(B_s) \cong \mathbb{F}[U]$.***
It’s often useful to consider the algebraic categories of ι-complexes and ι_K-complexes. These are the categories consisting of $\mathbb{F}[U]$-chain complexes, equipped with involutions, and an extra filtration structure for ι_K-complexes.

Definition

We say an algebraic ι_K-complex is of L-space type if $H_*(B_s) \cong \mathbb{F}[U]$.

For complexes arising from a knot K in Y, $H_*(B_s) \cong HF^-(Y)$.
On the algebra of the involutive mapping cone

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

There is a well-defined (algebraic) map

$$XI_{alg}^n \colon \{\iota K\text{-complexes of L-space type}\} \rightarrow \{\iota\text{-complexes}\} \rightarrow \text{,}$$

sending an algebraic $$\iota K$$-complex to a model of the involutive mapping cone with the above factorization properties.
Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

There is a well-defined (algebraic) map

\[\Xi_{\text{alg}}^n : \{ \iota_K\text{-complexes of } L\text{-space type} \} \xrightarrow{\sim} \{ \iota\text{-complexes} \}, \]

sending an algebraic \(\iota_K \)-complex to a model of the involutive mapping cone with the above factorization properties.
An application to the homology cobordism group

Expanding on the work of Dai, Hom, Stoffregen and Truong, we prove the following:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

The homology cobordism group is not generated by Seifert fibered homology 3-spheres.

Previous work of Frøyshov (unpublished), F. Lin (2017) and Stoffregen (2020) construct classes in Θ^3 which are not represented by Seifert fibered spaces. However none of these proofs imply that the classes are not connected sums of such classes.

The standard complexes approach of Dai, Hom, Stoffregen and Truong give an algebraic obstruction to being in the span of Seifert fibered spaces, and we use the cone formula to find an example.
Expanding on the work of Dai, Hom, Stoffregen and Truong, we prove the following:
Expanding on the work of Dai, Hom, Stoffregen and Truong, we prove the following:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

The homology cobordism group is not generated by Seifert fibered homology 3-spheres.
Expanding on the work of Dai, Hom, Stoffregen and Truong, we prove the following:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

The homology cobordism group is not generated by Seifert fibered homology 3-spheres.

Previous work of Frøyshov (unpublished), F. Lin (2017) and Stoffregen (2020) construct classes in Θ^3_Z which are not represented by Seifert fibered spaces. However none of these proofs imply that the classes are not connected sums of such classes.
Expanding on the work of Dai, Hom, Stoffregen and Truong, we prove the following:

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

The homology cobordism group is not generated by Seifert fibered homology 3-spheres.

Previous work of Frøyshov (unpublished), F. Lin (2017) and Stoffregen (2020) construct classes in Θ^3_Z which are not represented by Seifert fibered spaces. However none of these proofs imply that the classes are not connected sums of such classes.

The *standard complexes* approach of Dai, Hom, Stoffregen and Truong give an algebraic obstruction to being in the span of Seifert fibered spaces, and we use the cone formula to find an example.
More applications: local equivalence classes

Definition

Two \(\iota \)-complexes \((C_1,\iota_1)\) and \((C_2,\iota_2)\) are locally equivalent if there are grading preserving chain maps \(F: C_1 \to C_2\) and \(G: C_2 \to C_1\) such that \(F\iota_1 + \iota_2 F \simeq 0\) and \(G\iota_2 + \iota_1 G \simeq 0\), such that \(F\) and \(G\) become isomorphisms on homology after inverting \(U\).

The local class of \((C^F - (Y),\iota)\) contains all the algebraic obstructions to homology cobordism coming from \(HFI\).
More applications: local equivalence classes

Definition

Two ω-complexes \((C_1, \omega_1)\) and \((C_2, \omega_2)\) are locally equivalent if there are grading preserving chain maps

\[F: C_1 \to C_2 \quad \text{and} \quad G: C_2 \to C_1 \]

such that \(F \omega_1 + \omega_2 F \simeq 0\) and \(G \omega_2 + \omega_1 G \simeq 0\), such that \(F\) and \(G\) become isomorphisms on homology after inverting \(U\).
More applications: local equivalence classes

Definition

Two ν-complexes (C_1, ν_1) and (C_2, ν_2) are locally equivalent if there are grading preserving chain maps

$$F: C_1 \to C_2 \quad \text{and} \quad G: C_2 \to C_1$$

such that $F\nu_1 + \nu_2 F \simeq 0$ and $G\nu_2 + \nu_1 G \simeq 0$, such that F and G become isomorphisms on homology after inverting U.

The local class of $(CF^-(Y), \nu)$ contains all the algebraic obstructions to homology cobordism coming from HFI.
More applications: local equivalence classes

Recall:

If $K \subseteq S^3$, then $\text{Spin}^c(S^3 \#_{n} (K)) \sim = \mathbb{Z}/n$. If n is odd, then $[0]$ is the only self-conjugate Spinc structure. If n is even, then $[0]$ and $[n/2]$ are the only self-conjugate Spinc structures.
Recall:

- If $K \subseteq S^3$, then $\text{Spin}^c(S^3_n(K)) \cong \mathbb{Z}/n$.
More applications: local equivalence classes

Recall:

- If $K \subseteq S^3$, then $\text{Spin}^c(S^3_n(K)) \cong \mathbb{Z}/n$.
- If n is odd, then $[0]$ is the only self-conjugate Spin^c structure.
More applications: local equivalence classes

Recall:

- If $K \subseteq S^3$, then $\text{Spin}^c(S_n^3(K)) \cong \mathbb{Z}/n$.
- If n is odd, then $[0]$ is the only self-conjugate Spin^c structure.
- If n is even, then $[0]$ and $[n/2]$ are the only self-conjugate Spin^c structures.
Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose $K \subseteq S^3$, and $n > 0$.

Then \(\text{CFI}^{-}(S^3_n(K), [0]) \) is locally equivalent to \((A_0, \iota_K) \).

Also, \(\text{CFI}^{-}(S^3_2^n(K), [n]) \) is locally equivalent to

\[A_n \times A_n \times B_n \varepsilon \]

with the involution which swaps the two copies of \(A_n \) via the identity map.

A similar story holds for rational surgeries.
Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose $K \subseteq S^3$, and $n > 0$.

Also, $\text{CFI}^{-}(S^3_n(K),[0])$ is locally equivalent to $\text{A}_n \text{A}_n \text{B}_n v$ with the involution which swaps the two copies of A_n via the identity map.

A similar story holds for rational surgeries.
More applications: local equivalence classes

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose $K \subseteq S^3$, and $n > 0$.

Then $CFI^- (S^3_n(K), [0])$ is locally equivalent to (A_0, ι_K).
More applications: local equivalence classes

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose $K \subseteq S^3$, and $n > 0$.

- Then $\text{CFI}^{-}(S^3_n(K), [0])$ is locally equivalent to (A_0, ν_K).
- Also, $\text{CFI}^{-}(S^3_{2n}(K), [n])$ is locally equivalent to

$$
\begin{array}{c}
A_n \\
\Downarrow \nu \\
B_n
\end{array}
\quad
\begin{array}{c}
A_n \\
\Downarrow \nu'
\end{array}
$$

with the involution which swaps the two copies of A_n via the identity map.
Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose $K \subseteq S^3$, and $n > 0$.

- Then $CFI^-(S^3_n(K), [0])$ is locally equivalent to (A_0, ι_K).
- Also, $CFI^-(S^3_{2n}(K), [n])$ is locally equivalent to

 \[
 \begin{array}{c}
 A_n \quad A_n \\
 \downarrow v \quad \downarrow v' \\
 B_n
 \end{array}
 \]

 with the involution which swaps the two copies of A_n via the identity map.

A similar story holds for rational surgeries.
More applications: correction terms

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose $K \subseteq S^3$, and $n > 0$.

$$d(S^3_n(K), [0]) = d(L(n, 1), [0]) - 2V_0(K).$$

$$d(S^3_2^n(K), [n]) = d(S^3_2^n(K), [n]).$$

$$d(S^3_2^n(K), [n]) = d(L(2n, 1), [n]).$$

This is an analog of a result by Ni and Wu, concerning the ordinary d-invariants of surgeries.
More applications: correction terms

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose $K \subseteq S^3$, and $n > 0$.
More applications: correction terms

Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose $K \subseteq S^3$, and $n > 0$.

- $d(S^3_n(K), [0]) = d(L(n, 1), [0]) - 2V_0(K)$.
- $\overline{d}(S^3_n(K), [0]) = d(L(n, 1), [0]) - 2\overline{V}_0(K)$.

This is an analog of a result by Ni and Wu, concerning the ordinary d-invariants of surgeries.
Theorem (In prep., Hendricks–Hom–Stoffregen–Z.)

Suppose $K \subseteq S^3$, and $n > 0$.

- $d(S^3_n(K), [0]) = d(L(n, 1), [0]) - 2V_0(K)$.
- $\overline{d}(S^3_n(K), [0]) = d(L(n, 1), [0]) - 2\overline{V}_0(K)$.
- $\underline{d}(S^3_n(K), [n]) = d(S^3_{2n}(K), [n])$.
- $\overline{d}(S^3_n(K), [n]) = d(L(2n, 1), [n])$.

This is an analog of a result by Ni and Wu, concerning the ordinary d-invariants of surgeries.
Idea of proof

Recall the main steps in Ozsváth and Szabó’s proof of the ordinary mapping cone formula:

A large surgeries formula, which states that $\tilde{HF}^{-\left(\frac{Y}{n}\right)}(K)\sim H^\ast\left(A_i(K)\right)$, if n is sufficiently large.

An exact sequence

$\cdots \tilde{HF}^{-\left(\frac{Y}{n}\right)} \rightarrow \tilde{HF}^{-\left(\frac{Y}{n}+m\right)} \rightarrow \tilde{HF}^{-\left(\frac{Y}{n}\right)} \cdots$,

where $\tilde{HF}^{-\left(\frac{Y}{n}\right)} = \bigoplus m \tilde{HF}^{-\left(\frac{Y}{n}\right)}$.

Idea of proof

Recall the main steps in Ozsváth and Szabó’s proof of the ordinary mapping cone formula:
Idea of proof

Recall the main steps in Ozsváth and Szabó’s proof of the ordinary mapping cone formula:

- A large surgeries formula, which states that

\[
HF^-(Y_n(K), [i]) \cong H_*(A_i(K)),
\]

if \(n \) is sufficiently large.
Idea of proof

Recall the main steps in Ozsváth and Szabó’s proof of the ordinary mapping cone formula:

- A large surgeries formula, which states that

\[HF^{-}(Y_{n}(K), [i]) \cong H_{*}(A_{i}(K)), \]

if \(n \) is sufficiently large.

- A surgery exact sequence

\[\cdots \xrightarrow{HF^{-}} (Y) \rightarrow HF^{-}(Y_{n}) \rightarrow HF^{-}(Y_{n+m}) \rightarrow HF^{-}(Y) \cdots , \]

where \(HF^{-}(Y) = \bigoplus^{m} HF^{-}(Y) \).
Idea of proof: exact sequence, $m = 1$
Idea of proof: exact sequence, $m = 1$

- Consider the $m = 1$ case

\[\cdots \; \mathcal{H}F^-(Y) \rightarrow \mathcal{H}F^-(Y_n) \rightarrow \mathcal{H}F^-(Y_{n+1}) \rightarrow \mathcal{H}F^-(Y) \cdots , \]
Idea of proof: exact sequence, $m = 1$

- Consider the $m = 1$ case

$$\cdots \longrightarrow HF^{-}(Y) \longrightarrow HF^{-}(Y_{n}) \longrightarrow HF^{-}(Y_{n+1}) \longrightarrow HF^{-}(Y) \longrightarrow \cdots$$

- Define a “cobordism” map

$$CFI^{-}(Y_{n+1}) \rightarrow CFI^{-}(Y)$$

as well as a quasi-isomorphism

$$\Phi: CFI^{-}(Y_{n}) \rightarrow \text{Cone} \left(CFI^{-}(Y_{n+1}) \rightarrow CFI^{-}(Y) \right).$$
Idea of proof: exact sequence, $m = 1$

- Consider the $m = 1$ case

$$
\cdots HF^{-}(Y) \rightarrow HF^{-}(Y_n) \rightarrow HF^{-}(Y_{n+1}) \rightarrow HF^{-}(Y) \cdots ,
$$

- Define a “cobordism” map

$$
CFI^{-}(Y_{n+1}) \rightarrow CFI^{-}(Y)
$$

as well as a quasi-isomorphism

$$
\Phi: CFI^{-}(Y_n) \rightarrow \text{Cone} \left(CFI^{-}(Y_{n+1}) \rightarrow CFI^{-}(Y) \right).
$$

- The exact sequence for mapping cones from homological algebra gives the surgery exact sequence.
Idea of proof: exact sequence, $m = 1$
Idea of proof: exact sequence, $m = 1$

To build

$$\Phi: CFI^{-}(Y_n) \rightarrow \text{Cone}(CFI^{-}(Y_{n+1}) \rightarrow CFI^{-}(Y))$$

we start by building a hypercube (i.e. a cubical diagram whose total complex is a chain complex)
Idea of proof: exact sequence, $m = 1$

To build

$$
\Phi: CFI^-(Y_n) \to \text{Cone}(CFI^-(Y_{n+1}) \to CFI^-(Y))
$$

we start by building a hypercube (i.e. a cubical diagram whose total complex is a chain complex)

Furthermore, the maps along top coincide with the maps along the bottom.
Idea of proof: exact sequence, $m = 1$

The maps along the top and bottom were constructed by Ozsváth and Szabó. The maps along the left and front face were constructed by Hendricks and Manolescu. The challenging part which is new to our work is the length 3 dotted arrow.
Idea of proof: exact sequence, $m = 1$

The maps along the top and bottom were constructed by Ozsváth and Szabó.

The challenging part which is new to our work is the length 3 dotted arrow.
Idea of proof: exact sequence, \(m = 1 \)

The maps along the top and bottom were constructed by Ozsváth and Szabó.

The maps along the left and front face were constructed by Hendricks and Manolescu.
Idea of proof: exact sequence, $m = 1$

The maps along the top and bottom were constructed by Ozsváth and Szabó.

The maps along the left and front face were constructed by Hendricks and Manolescu.

The challenging part which is new to our work is the length 3 dotted arrow.
Idea of proof: exact sequence, $m = 1$
Idea of proof: exact sequence, $m = 1$

Since the maps along the top and bottom, agree, we can add id to each vertical map, and total complex will still be a chain complex:
Idea of proof: exact sequence, $m = 1$

Since the maps along the top and bottom, agree, we can add id to each vertical map, and total complex will still be a chain complex:

\[
\begin{align*}
&CF^{-}(Y_n) \\
| & Q(id + \iota) \\
\downarrow & \quad \downarrow \\
QCF^{-}(Y_n) & \quad \quad \quad \quad QCF^{-}(Y_{n+1}) & \xrightarrow{\quad Q(id + \iota) \quad \quad \quad \quad} & QCF^{-}(Y)
\end{align*}
\]
Idea of proof: exact sequence, $m = 1$

Since the maps along the top and bottom, agree, we can add id to each vertical map, and total complex will still be a chain complex:

This is the same as a chain map from $CFI^{-}(Y_n)$ to $\text{Cone}(CFI^{-}(Y_{n+1}) \to CFI^{-}(Y))$.
Thanks for listening!