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Abstract

We consider the Prandtl boundary layer equations on the half plane, with initial
datum that lies in a weighted H' space with respect to the normal variable, and
is real-analytic with respect to the tangential variable. The boundary trace of the
horizontal Euler flow is taken to be a constant. We prove that if the Prandtl datum
lies within ¢ of a stable profile, then the unique solution of the Cauchy problem can
be extended at least up to time T, = exp(s‘l/ log(s‘l)).

1. Introduction

We consider the two dimensional Prandtl boundary layer equations for the
velocity field (u”, vF)

o’ —0u” +uPou” + v oyu” = o, p* (1.1)

deul +9,0" =0 (1.2)

posed in the upper half plane H = {(x, y) € R?>: y > 0}. Here p denotes the
trace at 0H of the underlying Euler pressure. The boundary conditions

ully=o =v"ly=0 =0 (1.3)
ullycoo = u® (1.4)
are obtained by matching the Navier—Stokes no-slip boundary condition ™S = 0
on 0H, with the Euler slip boundary condition at y = oco. The trace at dH of the

Euler tangential velocity %, obeys Bernoulli’s law

atuE +uE8qu + BxpE =0.

Published online: 15 October 2015


http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-015-0942-2&domain=pdf

MIHAELA IGNATOVA & VLAD VIiCcOL

The Prandtl system (1.1)—(1.4) is supplemented with a compatible initial condition
ulli=o = ul. (1.5)

Our main result states that if the Euler data (u£, pE ) is constant, and if the initial
datum ué) of the Prandtl equations lies within ¢ of the error function erf(y/2) (in
a suitable topology), then the Prandtl equations have a unique (classical in x weak
in y) solution on [0, 7], where T, > exp(e¢~!/log(¢~1)).

Theorem 1.1. (Almost global existence). Let the Euler data be given by u® = «
and 3, p¥ = 0. Define

up(x, y) = ug(x, y) — k erf (%)

where erf is the Gauss error function. There exists a sufficiently large universal
constant Cy > 0 and a sufficiently small universal constant ¢, > 0 such that the
following holds. For any given ¢ € (0, 4], assume that there exists an analyticity
radius Ty > 0 such that

Cs < 32 < 1
log%: 0 = Cue

3 bl
and such that the function
y
80(x, y) = dyuo(x. y) + Juo(x, y)
obeys

279)" —
L2(H) (270) m!

)2
”gOHXszJ/z = Z Hexp (%) a)r(ng()(xa y)‘
m=>0

Then there exists a unique solution u® of the Prandtl boundary layer equations on
[0, T, ], where

871
T 2 exp <log<e-1>) '

The solution u” is real analytic in x, with analyticity radius larger than 1o /2, and
lies in a weighted H? space with respect to y. We emphasize that € and Ty are
independent of k.

P

The precise function spaces, in which the solution u” lies, are given in Theo-
rem 2.2 below. The condition relating ¢ and 7 stated above roughly speaking says
that we think of 0 < ¢ < 1, and of tp = O(1). The stated condition is the sharp
version of this heuristic.
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Remark 1.2. (Initial vorticity may change sign). We note that the initial datum ug
is not necessarily monotonic in y, i.e. we do not necessarily have wé’ = Byug >0
or < 0 on H. Thus, the initial data in Theorem 1.1 need not fit in the OLEINIK
[33] sign-definite vorticity setting. To see this, one may, for example, consider
k = ¢ > 0 sufficiently small and 79 = 1/4. We then let

u§ (x,y) = elexp(—xHn(y) + erf(y/2)),
with n(y) such that n(0) = 0 and exp(y2/4)n(y) € Lfo Then

dyug (0, y) = e(n'(y) + exp(—y*/4)//7)
can be designed so that
dyud (0,0) >0 and dyul(0,1) <0.

This indeed shows that the initial profiles considered in Theorem 1.1 need not be
monotonic in y.

1.1. The Local Well-Posedness of the Prandtl Equations

Before discussing the proof of our main result (cf. Section 1.3 below), we present
the history of the problem. The Prandtl equations arise from matched asymptotic
expansions [35] meant to describe the boundary behavior of solutions to the Navier—
Stokes equations with Dirichlet boundary conditions

au —vAu™ +u» . vy 4 Vp(”) =0, V.u® =0, in Q,

u) =0, on a9
(1.6)

in the vanishing viscosity limit v — 0. Here Q C R? is a smooth domain. Formally,
as v — 0, the Navier—Stokes equations reduce to the Euler equations, for which the
slip boundary condition ¥ - n = 0 holds on 8. Due to this mismatch of boundary
conditions, uniform in v bounds for Vu") in, e.g., the L' () norm, on an O(1)
time interval, remain an outstanding mathematical challenge.

One of the fundamental questions which arises is to either prove that the Prandtl
asymptotic expansion

@™, v, x, y) = @E 0B, x, y) + @l o), x, v /) + o(W),
(1.7)

can be justified rigorously [12,30,38], or to show that it fails [8§-11,13,16,18].
Naturally, the answer is expected to depend on the topology in which (1.7) is
considered, and this is intimately related to the question of the well-posedness of
the Prandtl system. By now, the local in time well-posedness of (1.1)—(1.5) has
been considered by many authors, see e.g. [1,4,5,7,14,15,17,19,23,26-30,32,33,
38,39] and references therein. However, the question of whether the inviscid limit
u™ — uf holds whenever the Prandtl equations are locally well-posed, and are
thus stable in some sense, remains open. See [3] for partial progress in this direction.
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In [33], OLEINIK proved the existence of solutions for the unsteady Prandtl
system provided the prescribed horizontal velocities are positive and monotonic,
ie.uf > 0andw’ = Oyu P~ 0. From the physical point of view, the monotonicity
assumption has a stabilizing effect since it prevents boundary layer separation.
The main ingredient of the proof is the Crocco transform which uses u#” as an
independent variable instead of y and w” as an unknown instead of u”. More
recently in [32], MasmMouDI and WONG use solely energy methods and a new
change of variables to prove the local in time existence and uniqueness in weighted
Sobolev spaces, under Oleinik’s monotonicity assumption. The main idea of [32] is
to use a Sobolev energy in terms of the good unknown g¥ = w? —ufd, log(w?),
which may be done if o > 0. The equation obeyed by the top derivative in x of
g" is better behaved than that of the top derivative of either u” or w”. Although
cf. Remark 1.2 this change of variables is unavailable to us, the idea of a good
unknown inspired by [32] plays a fundamental role in our proof. Recently, in [23],
the local existence and uniqueness for the Prandtl system was proven for initial data
with multiple monotonicity regions, as long as on the complement of these regions
the initial datum is tangentially real-analytic.

For real-analytic initial datum, SAMMARTINO and CAFLISCH [5,38] established
the local well-posedness by using the abstract Cauchy—Kowalewski theorem. For
initial datum analytic only with respect to the tangential variable the local well-
posedness was obtained in [27]. In [26], the authors gave an energy-based proof
of this fact, and considered initial data with polynomial rather than exponential
matching at the top of the boundary layer u” (¢, x, y) — uf (¢, x) = 0 as y — oc.
The tangentially-analytic norms introduced in [26] encode at L level a full one-
derivative gain from the decaying analyticity radius. These norms play an essential
role in our proof.

More recently, for data in the Gevrey class-7/4 in the tangential variable, which
has a single curve of non-degenerate critical points (i.e. a)g =0iffy = ap(x) >0
with ang;’ (x,ap(x)) > 0 for all x), the local well-posedness of the Prandtl equa-
tions was proven by GERARD-VARET and MASMOUDI in [17]. Note that this Gevrey-
exponent is not in contradiction with the ill-posedness in Sobloev spaces established
by GERARD-VARET and Dormy in [16] for the linearized Prandtl equation around
a non-monotonic shear flow. Here the authors show that some perturbations with

high tangential frequency, k >> 1, grow in time as eVt At the nonlinear level this
strong ill-posedness was obtained by GERARD-VARET and NGUYEN [18].

1.2. The Long Time Behavior of the Prandtl Equations

As pointed out by GRENIER, GUO, and NGUYEN [8-10] (see also [6]), in order
to make progress towards proving or disproving the inviscid limit of the Navier—
Stokes equations, a finer understanding of the Prandtl equations is required, and
in particular one must understand its behavior on a longer time interval than the
one which causes the instability used to prove ill-posedness. However, to the best
of our knowledge, the long-time existence of the Prandtl equations has only been
considered in [33,40], and [41].
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OLEINIK shows in [33] that global regular solutions exist, when the horizontal
variable x belongs to a finite interval [0, L], with L sufficiently small. Xin and
ZHANG prove in [40] that if the pressure gradient has a favorable sign, that is
3 pE(t,x) < 0forallt > 0and x € R, and the initial condition ué) of Prandtl
is monotone in y, the solutions are global. However these are weak solutions in
Crocco variables, which are not known to be unique or to be regular. The global
existence of smooth solutions in the monotonic case remains, to date, open. In the
case of large datum, the assumption of a monotone initial velocity is essential.
Indeed, E and ENGQuUIsT [7] take uf = 9, pE = 0 and construct an initial datum
ul which is real-analytic in the tangential variable, but for which !’ is not sign
definite, and prove that the resulting solution of Prandtl (known to exist for short
time in view of [26,27]) blows up in finite time. We emphasize that for this blowup
to occur, the initial datum must be at least O(1): indeed, for initial datum that is
sufficiently small, the conditions of Lemma 2.1 in [7] fail, and thus the proof does
not apply.

In fact, for initial datum that is tangentially real-analytic and small, in a recent
paper ZHANG and ZHANG [41] prove that the system (1.1)—(1.5) has a unique
solution on a time interval that is much longer than the one guaranteed by the local
existence theory. More precisely, for u® = ¢ and 9, p¥ = 0itis proven in [41] that
if ué) = (O(e) in a norm that encodes Gaussian decay as y — oo and tangential
analyticity in x, and if ¢ < 1, the time of existence of the resulting solution is at
least O(¢~%/3). The elegant proof relies on anisotropic Littlewood—Paley energy
estimates in tangentially analytic norms, inspired by the ones previously used by
CHEMIN, GALLAGHER, and Paicu [2] to treat the Navier—Stokes equations with
datum highly oscillating in one direction (see also [37] and references therein).

1.3. Almost Global Existence for the Prandtl Equations

In [41, Remark 1.1], the authors raise the question of “whether the lifespan
obtained in Theorem 1.1 is sharp”. That is, do the solutions of the Prandtl equations
with size ¢ initial datum live for a time interval longer than 0(8_4/ 3)? In this
paper we give a positive answer to this question, and prove (cf. Theorem 1.1 or
Theorem 2.2) that in two dimensional we have almost global existence (in the
sense of [22]). That is, the solution lives up to time O(exp(e~'/loge™1)). Our
initial datum ué’ consists of a stable O(k) boundary layer lift profile, and an O(g)
possibly unstable, but tangentially real-analytic profile. In particular, the total initial
vorticity is not necessarily positive (cf. Remark (1.2)). Whether solutions arising
from sufficiently small initial datum are in fact global in time remains open, and
this may depend on whether k < ¢ or ¢ K k.

The proof of Theorem 1.1 proceeds in several steps. In order to homogenize
the boundary condition at y = oo, we write u” as a perturbation u of a stable
shear profile k¢(z, y), with d,¢(z, y) > 0. In order to capture the maximal time
decay from the heat equation, and to explore certain cancellations in the nonlinear
terms of Prandtl, we choose the boundary lift ¢ (¢, ) to be the Gauss error function
erf(y/+/4(t + 1)). The equation obeyed by u (cf. (2.5)) contains the usual terms
in the Prandtl equations, but also terms that are linear and quadratic in ¢. The lift
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@ is chosen so that the quadratic terms in ¢ vanish, and we are left to understand
the linear ones in ¢. We note that until this point a similar path is followed in [41],
and that energy estimates for the ensuing linear problem lead to the maximal time
of existence O(g~4/3).

The main enemy to obtaining a longer time of existence is the term xkvdy¢ in
the velocity equation (2.5) (respectively Kv8y2<p in the vorticity equation (2.7)). As

v = —By_ 19, u, this term loses one tangential derivative, and is merely linear in u,
so that it is not small with respect to €.

The main idea of our paper is to introduce a new linearly-good unknown g =
o — udy(log dye), cf. (2.12) below. This change of variable is directly motivated
by the one in [31] for the case w” > 0. The upshot is that g obeys an equation in
which the bad terms xkvdy ¢ and Kvaf,gp cancel out, cf. (2.20) below. The solution of
this new equation may be shown to be globally well-posed. Note here that we may
recover u = U(g) and v = V(g) via linear operators U and V that are nonlocal in
v, cf. (2.23)—(2.24). Thus g is the only prognostic variable in the problem, and the
system (2.20)—(2.22) is equivalent to (1.1)—(1.4).

In order to take advantage of the time decay in the heat equation, it is natural
to replace the y variable with the heat of a self-similar variable z = z(¢,y) =
y/+/t + 1, and to use L? norms with gaussian weights in the normal direction. The
gaussian weights are useful when bounding u and v in terms of g, cf. Lemma 3.1.
Moreover, the gaussian weights allow us to deal with another technical obstacle;
namely, that in unbounded domains the Poincaré inequality does not hold. However,
with the gaussian weights defined in (2.25), we may use a special case of the Treves
inequality (cf. Lemma (3.3)) as a replacement of the Poincaré inequality. The need
for a Poincaré-type inequality in the y variable comes from the desire to work
with L2 norms, and still capture the full one-derivative gain from the decay of the
analyticity radius. As was shown in [25,26,34] this may be achieved by designing
norms based on £! rather than ¢? sums over the derivatives. The one derivative gain
inherent in these £!-based norms allows for direct energy estimates.

The main ingredient of the proof is the a priori estimate (3.23) below. The idea
is to solve the PDE (2.20)—(2.22) for g simultaneously with a nonlinear ODE (3.24)
for the tangential analyticity radius t. The fact that the analyticity radius t does
not decrease to less than 7(0)/2 on the time interval considered follows from the
time integrability of the dissipative terms present on the left side of (3.23) (see also
[36]).

The proof of Theorem 1.1 is concluded once we establish the uniqueness of
solutions in this class, and show that there exists at least one solution to the coupled
system for g and t. While uniqueness follows from the available a priori estimates,
the existence of solutions introduces a number of additional difficulties. One of
these is proving existence of solutions to (3.24). This is a first order ODE in 7, for
which the nonlinear forcing term is well defined (i.e., the infinite sum converges),
only if the solution g already is known to have analyticity radius . To overcome
this difficulty, we consider a dissipative approximation of (2.20)—(2.22) and for
v > 0adda —vaf g term on the left side of (2.20). We prove that this regularized
equation has solutions g in a fixed order Sobolev space, and a posteriori show
that these solutions are tangentially real-analytic, with radii (") that obey an ODE
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similar to (3.24). Here we essentially use that the initial datum g¢ is assumed to
have tangential analyticity radius 21, while the solution is only shown to have a
radius that lies between 7g/2 and 79. We prove that these radii (") are uniformly
equicontinuous in v (in fact uniformly Holder 1/2) so that they converge along a
subsequence on the compact time interval [0, T ]. To conclude the proof, we show
that along this subsequence the g(*) are a Cauchy sequence when measured in the
tangentially analytic norms, and that the limiting solution g and limiting radius ©
obey (3.24).

1.4. Organization of the Paper

The detailed reformulation of the Prandtl system is given in Section 2. Here we
also define the spaces in which the solutions lives, and reformulate Theorem 1.1 in
these terms. The a priori estimates are given in Section 3, the uniqueness of solutions
is proven in Section 4, and the details concerning the existence of solutions are given
in Section 5.

2. The Linearly-Good Unknown, Function Spaces, and the Main Result

Denote by

y
z=2z(,y) = O where (1) =71+ 1 2.1

the heat self-similar variable. We consider the lift

k@ =ko(t,y)

of the boundary conditions (1.3) and (1.4), where

@, y) = P(z(t, y)) (2.2)
and the function ®(z) obeys
d(0) =0, 11120 d() =1, P'(z)>0. (2.3)

We make a precise choice of ® in (2.18) below. We already note that by design
dyp(t,y) > O0fory > 0, i.e., the vorticity of the shear flow ¢ is positive, and thus
stable (in the sense of [33]).

We write the solution of (1.1)—(1.4) as a perturbation u(z, x, y) of the lift
Ko(t,y) via

uf(t,x, y) = k@t y) +ut,x, y)
so that the perturbation u obeys the homogenous boundary conditions

u|y=0 = u|y=oo =0, (2.4)
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and satisfies the equation
o — 8)2,u + K@U + Kkvdy + udcu + voyu = —k (¢ — 8}2,<p), 2.5)

where v is computed from u as

v(t, x,y) = _/Oy dyu(t, x, y)dy. (2.6)
Using (2.5), we obtain the equation for the perturbed vorticity @ = dyu,
orw — aga) + kporw + Kvag(p +udrw +voyw = —k(3,0yp — 8;’<p), 2.7
with the natural boundary condition
dywly—0 = —K 39| y—0. (2.8)
As we work in weighted spaces, at y = co we impose the condition

®]y—oo = 0. 2.9)

2.1. The Linearly-Good Unknown

As can already be seen in [41], the main obstruction for obtaining the global
in time existence of solutions comes from the linear problem for the velocity and
vorticity

o — 8§u + k@oxu + kvdyp = —Kk (0 — Byz(p) + nonlinearity, (2.10)

dw — 0w + kpdyw + kv p = —k (3,dyp — d,¢) + nonlinearity.  (2.11)

Inspired by [31] (see also [17,23]), we tackle this issue by considering the linearly-
good unknown

glt,x,y) =w(t, x,y) —ut, x,ya(t,y) (2.12)
where
e(t, y)
Sy = 2 2.13
a(t y) ay‘P(t» )7) ( )

Note that one may solve the first order (in y) linear equation (2.12) to compute u
from g explicitly as

Y 1
u(t,x,Y)za*(ﬂ(t,y)/ g(t’x7.)_}) = dy
’ 0 3y (1, )

y 1
— @' (z(t, X, ) ———dy, 2.14
(z( y))/o g(t, x y)q),(z(t’y)) y (2.14)

where we have used the boundary condition of # at y = 0. Also, if g decays
sufficiently fast at infinity, this ensures the correct boundary conditions for u. The
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formula (2.14) is useful when performing weighted estimates for « in terms of
weighted norms of g.
The evolution equation obeyed by prognostic variable g is

0:rg — Byz,g + (u+kp)ocg +viyg — 20yag +ulL +vudya = k F, (2.15)

where the diagnostic variables u and v may be computed from g via (2.14) and
(2.6). The functions F and L are given by

F(t.y) = a@p — 859) — @y — 9¢)
L(t.y) = da — dja — 2adya,

and a is as defined in (2.13). Moreover, in view of (2.4), (2.8), and (2.9), the
linearly-good unknown obeys the boundary conditions

(0yg +ag)ly=0 = dyw|y=0 = —K8}2,g0|y=o, (2.16)
and
8ly=00 =0, (2.17)

where the latter one comes from the convenience of vorticity that vanishes as
y — 00.

2.2. A Gaussian Lift of the Boundary Conditions

At this stage we make a choice for the boundary condition lift ®. Our choice
is determined by trying to eliminate the forcing term F on the right side of (2.15),
and the linear term u L on the left side of (2.15). For this purpose, let ® be defined
via ®(0) = 0 and

() = —= (—5) 2.18)
Z _ﬁexp ) .

where the normalization ensures that ® — 1 as z — oo. In the original variables,
this means that

1 ¥/ 2 y
@(t,y) = ﬁ/o exp (—Z) dz = erf (W)

where erf is the Gauss error function. With this choice of ®, we immediately obtain

4 y
O TN AT

F(z)=L(z)=0

and the boundary values

®"(0)=0 and ®'(0) =1/ > 0.
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The evolution equation (2.15) for the good unknown

_ R
g=w+ 2<t>u (2.19)

thus becomes

1 1
8,g—8y2g+(u+lcg0)8xg+v8yg+ —g——vu=0 (2.20)
(n=  2(r)
9y8ly=0 = &ly=00 =0 (2.21)

gli=0 = go- (2.22)
As noted before (cf. (2.14) and (2.6)), u and v may be computed from g explicitly

32 y y?
u(t,x,y) =U(g)(t, x,y) :=exp (_M)/o g(t, x, y)exp (m) dy
(2.23)

y

v(t, x,y) = V(). x, y) = _/0, U(0xg)(#, x, y)dy, (2.24)

and thus, solving (2.20)—(2.22) is equivalent to solving the Prandtl boundary layer
equations (1.1)—(1.5).

2.3. Tangentially Analytic Functions with Gaussian Normal Weights

Lastly, in view of (2.14) and the choice (2.18) of @, it is natural to use the
Gaussian weight defined by

2 2
Ou (2, y) = exp (@) — exp (%) (2.25)
for some

« € [1/4,1/2]

to be chosen later (e-close to 1/2).
In order to define the functional spaces in which the solution lies, motivated by
[26], it is convenient to define
m+ 1

My = Y20
m.

and introduce the Sobolev weighted semi-norms

Xim = Xm(g, 1) = 109y gll 27" Mim, (2.26)
Dy = D (8. 7) = 160,07 gll 127" My = X (3y8, 7). (2.27)
Zn =Zn(g,v) = 12000y gll 127" My = Xin(28, T), (2.28)

Bw = Bu(g, 0) = (0" * X, O + ()4 Zy(g, 0) + (1)¥*Dp(g. T)  (2:29)
Yo = Yi(g, ) = 10007 gll 27" ' mM,y,. (2.30)
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As in [26], we consider the following space of function that are real-analytic in x
and lie in a weighted L? space with respect to y

Xeo={g(t,x,y) € L*(H; 6,dydx): |glx,, < oo}
where for T > 0 and « as above we define
lglx,e = D Xm(g. 7). (2.31)
m20
We also define the semi-norm
lgllye, = D Ym(g, T) (2.32)
m21

which encodes the one-derivative gain in the analytic estimates, when the summa-
tion in m is considered in ¢! rather than in ¢2, as is classical when using Fourier
analysis. Note that for 8 > 1, we have

gy, < v 18lxp0n sUpmB™) < Cprlgllxpe-  (233)
>

m=1

In particular, g € Xo; o implies that [|g]ly,, < 7! llgllx,, - The gain of a y
derivative shall be encoded in the dissipative semi-norm

IglDee = D Din(g.7) = 13,8l x, -
m=0
while the damping in the heat self-similar variable z is measured via
lgllze, = D Zm(g. 7) = lz8lx,.,-
m=0
For compactness of notation, for a function g such that g, zg, d,g € X; o we use

the time-weighted norm

IglB, = D Bug. ) = (0 1glx.s + )18l 2w + 018N,
m=0
(2.34)
where as before T > Oand o € [1/4, 1/2]. Lastly, in order to obtain time regularity

for the radius of analyticity 7 (¢), it will be convenient to use a hybrid of the £2 and
¢! tangentially analytic norms, given by

~ =~ = Dy (g, 1)
Igl5,, = > Du.  Du=Dplg.v) = =82 (2.35)
: = Xm(g. 1)
5 s 5 Zn(g, 1)
gz, = > Zu.  Zw=Znm(g.v) = 28T (2.36)
: = Xm(g. 1)
lgllz,, =D Bun  Bnw=Bu(gt)=(t)""*"Xn(g 1)
m20

+ OV Zu(g, ) + (1) *D(g, 1) (2.37)
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‘We note that the bound

1/2 1/2
2 gl

lgls.. <200 lgly”, llgll (2.38)

is an immediate consequence of the Cauchy-Schwartz inequality.

2.4. The Main Result

Having introduced the functional setting of this paper we restate Theorem 1.1
in these terms. First, we give a definition of solutions to the reformulated Prandtl
equations (2.20)—(2.22).

Definition 2.1. (Classical in x weak in y solutions). For § > 0 define H> | g to be
the closure under the norm

By?
113, ,, Z Z/ |07 93 h(x, y>|2exp( dydx
m=0 j=0
of the set of functions
={h(x,y) € C;°(R x [0, 00)): dyh|y—o = 0}.

Let o € [1/4,1/2], and 6,(t, y) be defined by (2.25). For T > 0 we say that a
function

g € L=([0, T); Ha,1,a/(1))

is a classical in x weak in y solution of the initial value problem for the Prandtl
equations (2.20)-(2.22) on [0, T), if (2.20) holds when tested against elements of
C3°([0, T) x R x [0, 00)).

Theorem 2.2. (Main result). Assume the trace of the Euler flow is given by u® = «
and 3, pF = 0. Fort > 0, define

P Yy
ta ) == tv ) - f
u(t,x,y)=u" (t,x,y) —ker (—4(t))
and let

Yy
t,x,y) =oyu(t,x,y) + ——ul(t,x,y).
gt x,y) = dyult,x,y) ) (r,x,y)
There exists a sufficiently large universal constant C, > 0 and a sufficiently small
universal constant g, > 0 such that the following holds. Assume that there exists
an analyticity radius Ty > 0 and an ¢ € (0, &,] such that

32
, 2.39
log 1 0 Cye3 239
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and such that the initial condition gy = g(0, -, -) is small, in the sense that

”gO”erO_]/z § E. (240)

Then there exists a unique classical in x weak in y solution g of the Prandtl boundary
layer equations (2.20)—(2.22) on [0, T ] which is tangentially real-analytic, and the
maximal time of existence obeys

871
T 2 exp (log(s—1>) '

Moreover, letting § = ¢log % and a = %, the tangential analyticity radius T (t)
of the solution g(t) satisfies

c <t>5 2/3
2w -] 22 (2.41)
2log ¢ 2
and the solution g(t) obeys the bounds
I8 l1x, 00 < ()4 (2.42)
Cy(t)’
/ 86,00 + 180, )05 < 20 (2.43)
&
(S>5/4 8
/O ST N0 05 S Cut (2.44)

forallt € [0, T,].

It follows from the estimates in the next section (cf. Lemmas 3.1 and 3.5)
that bounds on g, zg, and d,g in X; , imply similar bounds on u and v in X¢ 4,
and thus (2.42)—(2.44) directly translate into bounds for u? and v¥. Moreover,
when g(t) € H2,1,a/(), then u(z) lies in H3 2 « /() and the Prandtl equations (1.1)
hold pointwise in x and in an L? sense in y. We omit these details. The proof of
Theorem 2.2 consists of a priori estimates (cf. Section 3), the proof of uniqueness of
solutions in this class (cf. Section 4), and the construction of solutions (cf. Section 5).

3. A Priori Estimates

In this section we give the a priori estimates needed to prove Theorem 2.2. We
start with a number of preliminary lemmas, which lead up to Section 3.5, where
we conclude the a priori bounds.
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3.1. Bounding the Diagnostic Variables in Terms of the Prognostic One

We may use (2.14) to write

y 1—
O (Mu(y) = / 8(3)0u(y) exp (( %) G — yz)) dy. (3.1)
0 4(t)

On the one hand, it is immediately apparent from the above that
I0autllLse = N6aglpt- (3.2)

On the other hand, for p € [1, 2] we may estimate

y 1— 1/p
100 (D] < 10ugll -1 ( / exp (—p A=) _ y2>) dy)
0 A(1)

DawsonF[z(z, y)Kp,a])l/p
Kpo

= 0 gll Lr/r-1 (t)l/(zl’) (
where K o = vp(I —a)/2 and

2 Y 2 J 2 2
DawsonF[y] = exp(—y~) /O exp(y")dy = /0 exp(y” — y7)dy.

It is not hard to check that

2
DawsonF[y] £ ——
I+y

for all y = 0. Because there exists a universal constant C > 0 such that 1/C <
Kpo < Cforpe[l,2]and o € [1/4, 1/2], it follows that

Ot y)u(t, x, )] £ YD Bagll prio- (3.3)

(1 +z(t, y)1/P

for p € [1,2]. Using (3.3) and recalling the definition of v in (2.6) we may prove
the following estimates.

Lemma 3.1. (Bounds for the diagnostic variables). Let 8, be given by (2.25) with
a € [1/4,1/2], Define u = U(g) and v = V(g) by (2.23) respectively (2.24). For
m = 0 we have
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1 ull 200 < €O A0 g2 (3.4)
1 2 1/2
19l ze, < €OV I0a gl 100 g1 5 (3.5)
1 2 1 2
162078l < COY 416207 1 s / 260 81 (3.6)

1/2 l 2
108 ull 2 = C0* 1600 g1l / 163y gl !
l 2 1 2

+ ' 16a0 g1 / zbad gl p 3.7)

1 4 1 4 1/4 1/4
160l e 2 SCUY 1000 g1 ||eaa'”+‘g|| / ||9aa’"a>g|| 2 160 aygll

1 4 1 4 1 4

+Cr >”2||9a8’"g|| ||0aa’”+‘g|| / L / ||29a3m+lg|| /
XV
(3.8)
10 vll 200 < €OV 10007 gl 12 (3.9)
m < 3/4 m+1 1/2 m+2 1 1/2 3.10
195" olege, < CUread ™ gl 10ady gl (3.10)

for some universal constant C > 0, which is independent of o € [1/4,1/2].

Proof of Lemma 3.1. From identity (3.1) we have

m 1 Y —Nam /= (1—0() =2 .2
|0y =0 Iéa(y)axg(y)leXp( i (y y))dy
2
< 1629781l .2 9*?) (1) 41160" g1l .2 /2 exp (—“%)

Ct) 116407 gl 12

The bound (3.4) follows by taking the L norm in x of the above, while the bound
(3.5) follows upon additionally applying the one dimensional Agmon inequality in
the x variable,

1/2 1/2
1/l < CIFIS 1815

To bound 6,9 u, we note that for R > 0 we have

o0

R
106 03" & .1 =/ |9a(y)3,?’g(y)ldy+/ 190 ()3 g(1y]~'dy
’ 0 R
< RV210a07 g2 + R 190407 81112
which upon optimizing in R yields
mo < m m g (1/2
16088l 1 = Cllfdy glle 19608112

1/2 1/2
C(0) 4 16a02 g1l 5 qE a'”gn .
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Upon taking L? norm in x, this proves (3.6). When combined with (3.2), we obtain
from the above that

1/2 1/2
163 ullige < Cl) 1607 g1, 126005 115

In order to prove (3.7), we use (3.3) with p = 1 and the one dimensional Agmon
inequality in the y variable to obtain

1600l 3 < C(0)' /211020 gl I (1 + 2t 9)) 12
1/2

2 160,813 + 18,8007 gl13)"/2

12

12 12

1/2 1/2
+ €U0 1607 g5 0D g1

< C() 10,07 gl

1/2

< )10, gl 5 1000 3y gl

Taking the L? norm in x of the above yields (3.7), while an application of the one
dimensional Agmon inequality in x gives (3.8). For the v bounds, we use (3.3) with
p = 2 and obtain

1 1 -1
107 vllzge < 197 ully < 10607 ullzsell6y iy
1/2 1
< C)2 16,07 ul e

< 160 gl 2

Integrating in x the above implies (3.9). An extra use of the one dimensional Agmon
inequality yields (3.10). O

Remark 3.2. The first two estimates in Lemma 3.1 also hold in the case when we
don’t use the weight (i.e., when 6, = 1). Indeed, we use the relation

L =% -
u(y)—/o g(y)eXp( 20 )dy,

which implies that

1
< 1/2p - -
O = €W el 7

for1 < p < 0.
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3.2. Weighted Sobolev Energy Estimates for the Good Unknown

Letm = 0. We apply 8" to (2.20), multiply the resulting equation with 629" g
and integrate over H to obtain

1d 2 5 a(l —2a) 2 2—« 5
EE”eaa;ng”Lz + 1000,y gll7 2 + T||Z9a3;ng||Lz + m”eaaing”y
ST & S R B o (L m—j J g, am
=—> ) [ 0 ubadl T 00 g — D () [ O v0a0,0] g0,07" ¢
j=o j=o
1 m m . .
+m2(j)/a){v9aaffu9aa;"g
j=0
=Up + Vi + T (.11)

Here we have used the boundary conditions (2.21) and (2.22) and the cancellation
/wa;"“geja;"gdx =0,

which follows upon integration by parts and the fact that 9, ((pég) = 0. Dividing
(3.11) by [|6,, 07" gl 2, multiplying by 7" M,,, and using the notations (2.26)—(2.30)
and (2.35)—(2.37), we arrive at

~ a(l —2a) ~ 2—« ™ M,,

d
—X D —_—Z — Xy = ——(, V, Tn).

(3.12)

In the next subsection we obtain lower bounds for the dissipative and damping
terms on the left side of (3.12), while in the following subsection we estimate the
nonlinear terms on the right side of (3.12).

3.3. Bounds for the Dissipative and Damping Terms

Lemma 3.3. (Poincaré inequality with gaussian weights). Let g be such that
dy8ly=0 = 0 and gly—oc = 0. For a € [1/4,1/2], m 2 0, and t 2 0 it holds
that

[07
Hneaa;:’gni% < 16a9y07 81172 (3.13)

where 60,(t, y) = exp (f{<—y[2))
Proof of Lemma 3.3. The above inequality is classical, and it is a special case of

the Treves inequality which can be found in [20]. For simplicity, we give a short
proof for the case m = 0. Note that

ay
0u0yg = 0y(0ag) — meag
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as can be checked directly. Using that (a — b)? = (a + b)? — 4ab it then follows
that

2
/(9 dyg)*dy = (3 (Oug) — Gag) dy

2
( <eag>+ 9 g) dy — % / 29(00g)dy (Bug) dy

2
(a (0ug) + 5 eag) dy + % / (Bug)* dy

> = [ (B,9)%dy,
,(t)/< 7 dy

upon integrating by parts with respect to y in the third equality. No boundary terms
arise in this process. O

Using Lemma 3.3 we may bound the dissipation term in (3.11) from below as

2 7 2
160,07 8172 B 10udyOy'8l7, 2= B olf? 1642,0%5].
16e07gll,2 — 2 [6a07gll,2 2 (2T

B ll6L0y0mgl2, o128

> = > 1160,07" gl .2
2 10078l 2(n)Y

a(l —p)

+—— o ——— 6.9y gll .2 (3.14)

V

where B8 € (0, 1/2) is to be chosen precise later.
For the damping terms in (3.11) we have the lower bounds

1 a(l —2a) 2—«a
( 126097 g117 > + tneaa;"gniz)

600 g1l 7 2 4(t)

- ! 1-2 49)2049 Lmaf2may o ame)2
= m ()”(( —2a)7% +4y)/%0,9 g||Lz+T|| w0y gll72
1/2 1/2

S el —2w) |26, 0¥ glle ay /21 = 2a)l/ 163l 2
- 8(n 10007 gl 12 4(r) *
1 —a/2 —ay
plzep-oy 160y gl 2 (3.15)

(t)

In the last inequality above we used that

(1 =222 +4p)' /2 2 2p1/2
(A =202 +4)'2 > (1 —2a)'/?;

which holds for all z = 0, when o € [1/4,1/2] and y € [0, 1/2]. In summary, in
this subsection we have proven the following bounds.
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Lemma 3.4. (Lower bounds for the damping and dissipative terms). Fix
o € [1/4,1/2], and let B, y € [0, 1/2] be arbitrary. Then we have

2(5 Lo =205 +2__“X)
" 4y " 2y T

m=0
B a(l —2a) al/?p
> Pion= all —20) - a ' p
2 SNels,, + g 181z, + 57 lelon
17201 _ 1/2 oy —
ay'“(1 —2a) l+a(l/2—-y —p)
lgllz,, + (P4 (3.16)
4(r) ’ (1) '

independently of T > 0.

Proof. The lemma follows upon recasting (3.14) and (3.15) as

~ _ B= a'?B a(l —B)
> _ = - 7
Dy = sz + 2<r>1/2D’" + 0 X
2—« N a(l — 204)Zm > a(l = 2a) A ay/2(1 = 2a)1/? -
2(z) 4(1) 8(t) 4(1)
l—a/2—ay

and summing overm = 0. O

3.4. Bounds for the Nonlinear Terms

In this subsection we bound the nonlinear terms on the right side of (3.12) for
every m = 0, cf. estimates (3.20)—(3.22) below. When summed over m = 0 we
obtain the following tangentially analytic estimates for the nonlinear terms.

Lemma 3.5. (Estimates for the nonlinearity). There exits a universal constant
C 2= 1 such that the bounds

C(t)l/4
72 I18lx o I8lyeq (3.17)

Z [Up 1T M,y <

= ady gl = 1)

> Vil T" M C(0)*/*

= I&11De o 1811Y: (3.18)
= 1698l T(r)!/? ‘ '
> Tt M COlV 2 o2
el LTS (TR T()1/2 77 Xea 18 N ara 10 Hine
' n 12
+ O gy, Nglp N&ly.. (3.19)

hold for every t > 0 and o € [1/4,1/2].
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Proof. First, using (3.4) and (3.5), and the one dimensional Agmon inequality in
the x variable we obtain

[m/2]

[Un| . .
s o u O
100 gll2 = jZ: | 2z roo 109 ™ 8l o013
- +
+ 4 Z (j)lli);" /ulng?yIIGaa,{ g||L‘%1y
Jj=lm/2]+1

[m/2]
i+1 172 j+2 1/2
<cm't Z( )||9a oV gl 26wl gl ) 16wl el )

m
m 1/2 i+1 1/2 +1
NG (.)neaax L e A T TR
=[m/2]+1

where C > 0 is independent of o € [1/4, 1/2]. Upon multiplying by t™ M,, and
using the definitions (2.26)—(2.30), the above bound implies

/2] m
|Um|t" M _ Cinyl/4 " yl/2 12 12 1,2
< X + > x2xP v
m = 1/2 Z m—j ]+1 ]+2 m—jm—j+17J+t
160y gll 2 = (x(e)/ s i=im2le
(3.20)

Similarly, by appealing to (3.9) and (3.10) we have

|V | [m/2] "
_ttmt < ||8m—jv”L2Lx ”9 aajg”LocLZ
||9a3§"g||L2 - Jgo (_]) x LS o OyOx L2
m - ' '
+ z ( -)“a;"—]ﬂlllf‘, ||9aay3){g||L)2M’
Jj=lm/2]+1 J )

[m/2]
1 1/2 1 1/2
< o Z ( )ne 0 gl 2 1000y g, 1160 8y0] T g1

m
m —j+1 1/2 2 1/2
+owt > (.)neaa;" T el 1160 2 g ) 1608y g1l 2
j=[m/2]+1

where C > 0 is independent of o € [1/4, 1/2]. Upon multiplying by t™ M,, and
using the definitions (2.26)—(2.30), the above bound implies

(m/2]
[Vin [T My, C(r)*/* 12 1/2 1/2 12
< >y D/"D\ + z Y2 vV b,
m = /2 m—j+1 m—j+1 m—j+27
1007 gl ;2 — (T(1)) = Py

(3.21)
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For the last term on the right of (3.11) we appeal to (3.7)—(3.10) to obtain

|Tn 1 A
st S5 2 (1) Wdotos, 0t
Jj=0

m

1 m\ J—
+350 > (j)naivuwoneaaf Tullpor2
Jj=I[m/2]+1
ey 1,172 2 .1/2 1/2 1/2
<cw'? Z ( )ne e ] P K i D R

lm/2]
1,172 2 172 1/2 1/2
' Z ( )w o e L] D P B

m

1/4 am—j+1 1/4
+om'? ( )ue ol gl 2 108 g5 16a 0% gl
Jj=Im/2]+1

1/4 —Jj+1 1/4
116635 0y gll)s 1660 Bygll)s

m

1/4 1 1/4
+ont > ( )ne ol gl 2 1668 gll)5 I6a0x 7 gl s
Jj=[m/2]+1

x 12605 gl 126008 gl

where C > 0 is independent of o € [1/4, 1/2]. Upon multiplying by t™ M,, and
using the definitions (2.26)—(2.30), the above bound implies

[T |t M, cil/? mz 1/2 172 1/2 Dl/2‘
16c02 8l 2 = (z@)!/? Yiw¥jaXm D

A

m

1/4 1/4 1/4 1/4

+ Z YJ+ X Xm j+lD Dm Jj+1
Jj=Ilm/2]+

[m/2]

Z 1/2 1/2 1/2 Z1/2
Jj+1 j+2 m—j“m—j

C )1/4
T eoe

m
1/4 1/4 1/4 51/4
+ > YJ+X X Za ) B2
j=lm/21+

The proof of the lemma is completed upon summing (3.20)—(3.22) over m = 0
and using the bound

m
22 ajbnj £ 200 Db
m20j=0 j20 k=0

for positive sequences {a;} >0 and {b;} i>0-
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Remark 3.6. (Analytic product estimates). We note that the proof of Lemma 3.5
directly implies that the following bounds hold

1UGgM)a,gPx,, <

C
= T2 18V 15,4118 1y, .

(0] ()] <
”V(g )ayg ||X'[’(¥ = T(I)l/z

Co
— V(DU (@ <0 41g@ M
200 V(g HUEDIx,, = ()12 g 1B, N8 Iy,

for some universal constant C > 0, independent of T > O and « € [1/4, 1/2].

Ig® 1, 11gV ..,

3.5. Conclusion of the A Priori Estimates

At this stage we make a choice for the free parameters «, 8, and y. First, we
introduce

5 =8(e) € (e, 1/10)

which is to be chosen at the end of the proof, where without loss of generality
& < 1/200. We set

18

With this choice of «, 8, y, we sum estimate (3.12) form = 0, appeal to Lemmas 3.4
and 3.5, and arrive at

5/4 — 5 s
) lglx,. + —Cl(t)5/4( () 718l xe 0

+ (0 gl + O lIgllz,, + gl b, + (0 lIglp, )

allgllxw +

. C
< (r(t) + - (t)‘i () gllxe, + O gz, + (;)3/4||g||Dw))||g||ym

for some sufficiently large universal constants Cp, C; = 1 which are independent
of o and §. Upon recalling the notations (2.34) and (2.37), we can rewrite the above
in a more compact form as

el + 222 el + —2(lgla +liglz )
dt g Xr.a (t) g Xr,ot C1<t>5/4 g BT.O( g Br,ot
(f()+ (t)mllgllgw) lglly, (3.23)

with Co, C; = 1 are universal constants, that are in particular independent of the
choice of § € (g, 1/10).
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We next choose the function 7(¢) such that

d 32
E(T(t)) +3Collg® B,y =0- (3.24)

The above ODE is meant to hold a.e. in time, since the time derivative of the
monotone decreasing absolutely continuous function (in fact Holder 1/2 continu-
ous) is only guaranteed to exist almost everywhere. With this choice of t in (3.24),
we infer from the a priori estimate (3.23) that

i(<z>5/“*‘3||g||x )+L<||g||3 +lglz. )
dr el ey Bra

C0<t>5/4—3

+ T(,)l/z

IglB. . lgly,, =0

which integrated on [0, ¢] yields

07 gl + - [ g5 + 18G5, s
8 Xe(t).a Cl 0 (S)S 8 Br(s).e 8 Br(s).a
t (s)5/4—5
+Co/0 WIIg(S)IIYI(wIlg(S)IIB,m,ads
é ”gOHXrOﬂ é ”gOHXrO,l/Z é €. (3.25)
From (3.25) it immediately follows that
! EC] Fy
”g(s)”Bf(@.ads § T<t>
0
which combined with (3.24) shows that we have the lower bound
C
T2 2 )% - ‘2—;@)5 (3.26)

for all ¥ = 0, where C; = 6CyC] is a universal constant that is independent of §.
From estimate (3.26) we see that the radius of tangential analyticity obeys

70
1) > —
() 2 >

on the time interval [0, T ], where

57"

eCh

(T.)" = (3.27)

and we recall that § = &(¢) € (e, 1/10) is yet to be chosen.
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In order to see that the monotone decreasing analyticity radius is a Holder 1/2
continuous function of time, we may use the bound (2.38), integrate (3.24) from #;
to 1o, where 0 < 11 < 1, < T, are arbitrary, and use the estimate (3.25), to obtain

2 1/2
©(11)*? —t()*? £ 6C / <r>1/8||g|| e ||/
1

12 , 12
<6C) sup ()34 Sngnxw)l/z(/ <r>—5||g||§mdr) (/ <t>25—1dt)
t€0,T:] 1 ' a1

6C()\/ 1€ 12
< = -
=45 (tr —11)

by using that 2§ — 1 < 0.
To conclude the proof, we let

1
6 =¢elog— (3.28)
&

which is a permissible choice if ¢ is sufficiently small. In that case, from (3.27) we
obtain

1
3/2 log slog ¢ 1 3/2 log
.= —— — 1 =exp T log —-1. (329
6)) elog ¢ (6))

Itis clear from (3.29) that as long as 1:0/ log < 1 >C »e2, which is ensured by (2.39),

then we have that
1
T, 2 exp 1
elog -

for all 0 < & < 1/200, which concludes the proof of the a priori estimates.

4. Uniqueness

Assume gg € X24,,o With ||g0||X2r0’a < e.Let g™ and g be two solutions to
the system (2.20)—(2.22) evolving from go, with tangential radii of analyticity 7!
and 7@ respectively, which obey the bounds in Theorem 2.2. We fix § as given by
(3.28).

Also, define 7 (¢) by

. T
10+ =18V Olla g, =0 TO) = . @.1)

2C
T(n)l/
In view of the estimate (2.43) for g() and the lower bounds (2.41) for t") and t®,
we have that

infrM_ @
— <1 < 1_0 < M 4.2)

forall t € [0, T¢].
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We consider the difference of solutions g = g — ¢ which obeys
_ 2 S
08 — 9,8 +Kkpdcg + 08

o ) ) 1 )
= W8, g + i g®) — (09,¢V +vPd,8) + M(vu(l) +0vPa) 4.3)

and has initial datum gy = 0. Here we also denote i = u¥ — u® = U(g) and
=0 —v®@ =v(p).

Using estimates for the nonlinear terms as in Remark 3.6, similarly to (3.23)
we arrive at

5/4 —
(r)

2C
< (r‘(z) T )1 7 ||g“>(z>||gr(,)) 1201y, +

d _ _
S IEOlx,, + 180, + =573 1801y,

)
Ci(r)

2C _
(t)f’/z 1§®Dlly,, 13015, )
4.4)

with Cg, C; 2 1 being universal constants. Since 7(¢) < 7D (¢) and the X¢,o DOrm
is increasing in 7, we obtain from (4.1) that

2Cy
r(z)1/2

(1) + g™ ®ls,, <0.

On the other hand, using (2.33), (2.42), and (4.2) we may bound

&
IgPOlly,e S —= 18P Ol x0rg, = —|| DDOlx ) S —eg—
8 ® 8 x0 = T 8 (W = (354 )

()

Combining the above two estimates with (4.4) we arrive at

4,z sia—s o
ar 18O + == le Wl + s le®llaa
28C0([)8 .
s W“g(l‘)”&(,). s

To conclude we note that by the definition of T, in (3.27) we have that

s elogl _ 32:Co() _ 2eCo(t)?
S _elogg 8302“ > 2 08 (4.6)
Cq Cy to/ T(1)3/

holds. From (4.5) and (4.6) we obtain

5/4—8 _
+ T”g(t)”X,(,) § Oa

which concludes the proof of uniqueness since gog = 0.

d _
a”g(t)lle(,)
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5. Existence

Throughout this section we fix « = 1/2 — §, where § = ¢log é We assume
the initial datum g( obeys ||g0||X210,1/2 < ¢, where the pair (19, ) obeys (2.39).

We first prove the existence of solutions g(*) to a parabolic approximation of
the Prandtl equations, with the term — vaﬁ g present on the left side of (2.20). These
solutions are shown to obey uniform in v bounds in L X ) ) o N L! B (g o for
a sequence of tangential analyticity radii (). These radii obey ") > 70/2 for all
t € [0, T¢] and are moreover uniformly equicontinuous on this time interval, where
T: is given by (3.27), i.e.

‘Cg /2 log %

s _
(T)" = X,

5.1)

for a sufficiently large universal constant K. Moreover, g(") and 7" are shown to
obey (3.24).

With these uniform in v bounds we then show that the () converge along a
subsequence to an analyticity radius 7(z) = 79/2 on [0, T¢], and along this subse-
quence, the g are shown to be a Cauchy sequence in the topology induced by
L®X,0 N L}B,O,O,. By the completeness of L (L%(0,(t, y)dydx)dr) the exis-
tence of solutions to Prandtl in the sense of Definition 2.1 is then completed.

5.1. A Dissipative Approximation
For v > 0 we consider the nonlinear parabolic equation

3fg(”) _ a}%g(v) _ vafg(”) + (u(V) + K(p)axg(‘)) + U(V)ayg(v)

1 1
i 0) RN %) BN ) R
+ i Y e = 0 (5.2)
38 ly=0 = £ y=0 (5.3)
4 (y) = Ug™) = 61 (y) /0 T g6 () (5.4)
v (y) = V(") = - / ’ a,u™ (3)dy. (5.5
0

Our goal is to construct solutions g with corresponding tangential analyticity
radii ", so that uniformly in v > 0 we have the estimate

s (T 1
5/4=8) ,(v) W)
sup ((t) g™ llx )+ / g’ (B, ds
1€[0.T:] ( )(t),oc K* 0 <S>5 z( >(S).Ct

T; (S)5/475
LK. /O SR Ol 18O, b Sde 50
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where K, > 0 is a sufficiently large universal constant, and the radii ") (r) obey
the ODE

j—tr(”(r) + ﬁngwkr)ngr(”)w =0, YO =n. 7
For v > 0, estimate (5.6) and the ODE (5.7), correspond to (3.25) respectively
(3.24) for the limiting Prandtl system v = 0. Although the system (5.2)—(5.5) is
parabolic, we detail the construction of g and (") since the first order ODE
(5.7) has a nonlinear term which convergences only once the radius 7(") has been
constructed already to satisfy this equation. The method of constructing g’ and
() draws from ideas employed [21,24] for the hydrostatic Euler equations.

At this stage it is convenient to introduce some notation. Let N = 1. Similarly
to (2.26)—(2.37), for h: H — R and 7 > 0 define the weighted Sobolev norms

N
Ihllxy = > Xm(h, ©), (5.8)
m=0
N N 2 N
Dy (h, 1) ~
Inlpy = 3" Dnth. o), lkllpy = D 2= > Db, ),
m=0 m=0 m( ’ t) m=0
N N 2 N
Zm(h, 1) ~
Willzy = D Zmh o), ke = 30 S0 = D Zn(h, 0),
m=0 m=0 m( ’ T) m=0
N N 2
Y (h, T)
hllyy =D Yulr,©),  lhllgy = D
N N _
gy = D" Bu(h, ), lhligy = D Bulh, ). (5.9)
m=0 m=0

We will use frequently that the bound
NGy < 300kl xy 171 5

holds independently of N = 1 and t > 0.

5.2. A Two-Step Picard Iteration for the Dissipative System
We define
S (1)ho = K™ (1)
to be the solution to the initial value problem to the linear part of (5.2)—(5.5), namely
1
h” — 2h™ —valh™ + k@dh™ + ah(”) =0 (5.10)

Wh)yzo=0=h"|_x (5.11)
h " |,—o = ho. (5.12)
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Solving (5.10)—(5.12) on H with the Neumann boundary condition (5.11) aty =0
may be done using an even extension across y = 0 and solving the problem (5.10)
on R? with vanishing boundary conditions as |y| — oo. As such, an explicit
solution formula for S¢) (1) may be obtained, though it will not be essentially used
here. We note that if 7o obeys the boundary condition (5.11), the solutions S W) ($)ho
automatically lie in H> 1 g for any B < 1 (cf. Definition 2.1).

Next, we set up a two-step Picard iteration scheme. For n = 0, 1 we let

g™ =g =5V 1g

while for n = 2 we define g("'”) to be the mild solution (obtained by the Duhamel
formula for the semigroup S()) of the linear initial value problem

atg(n,u) o 3)2,g(”’v) v32 (n,v) T kpdy g(n ) + T )g(n V)

- - - _ 1 _ _
= —U(g"2")g, g1V _v(g® l,v))ayg(n 2,v)+mv(g(n L))y (gn=2v))

(5.13)
38"V y—0 = 0=g""| o (5.14)
g0 = go- (5.15)

The pairing of g~ ") and g =2 in (5.13) is motivated by the bounds guaranteed
by Remark 3.6.

5.3. Sobolev Bounds and Convergence of the Picard Iteration

Let N be an integer such that N 2 % For the remainder of this subsection
we fix this value of N and we shall ignore the v and N indices for g and t. We
claim that there exists 7, y > 0, to be chosen later, and a sequence of absolutely
continuous monotone decreasing functions

S5ty 7
™ =0, T y] — | 22, 20 (5.16)
4 4
with ) (0) = 770/4 such that the bound
sup (042 1g™ @)l v )
[0,T¢ N1 (1)
+ / (ng(")(v)nBN . +1g™ )l TN%)ds
8V K Te.N _ _ _
+ 7 / A0V ®lgy 1"V @Iy g™ llyy  ds
7 0 (M () 1M (s) () (5)
v [Ten 5/4—8, (n)
b [T 6l a5 <20 5.17)
4 Jo LAY

holds for all n = 1, and some universal constant K = 1.
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We prove (5.17) inductively on n. For n = 1 this bound follows immediately
from the assumption || go || X1/ < &, and the dissipativity of S¢*). In order to prove

the induction step we proceed as follows. Since My, _1/2 < mM,, < 2M,,_; for

all m = 1, and there are no boundary terms when integrating by parts in x, for

all m 2 0 one may use Remark 3.6 to derive an estimate similar to (3.23) for the

system (5.13)—(5.15) which is
5/4

d -4
(n) (n)
ey + =gy +

Q) )
) e IIB;v(n)Jrllg IIB:v(n))

e (
K(t>5/4

(n—1) (n—1)) - () LRI
" ”B,N<n> +11g" IIBZN(H))IIg " ”Yffm + Z\Ig " IIYM

<(r<">+ 2(||g(” ”nBN +18" gy >)|g<">||YN
0

K

K
(n—2) (n—1) (n—2) (n—1) _(n)
+ a8 18Vl + ey Yaeas” )
12VK
<[+ (n—1) (n—=1)y ()
< (r R AR )) sl
2Nk 2Nk
(n—2) (n—1) (n—2) (n—1) _(n—1)
+ T(}/Z ”g HB?:”?]) ” ” (” n + Tol/z ”g ||anil)YN+1(g , T )

(5.18)

for all n = 2, where K is a sufficiently large universal constant (in particular
8, N, n, t-independent). In the second inequality in (5.18) we have used several
times that cf. (5.16) we have

Y

J
max { ——r- < max z < 2N/,
og)jlsn \ T 0=IjI=N \5

The main difficulty lies in obtaining a v-independent bound for the last term on the
right side of (5.18). First we notice that since

Xp(h,©)  Yu(h, )
T - m

and Nv 2 1 we may estimate
2N+2K
Ig" 2 lpy  Yypa(g" D,z D)
.[0 (n—1)
—1 —1)y2 N+3
oV Wy "D ) L K’ 18" PRy Xn(g® D, 2 D)
=8 Xy(gn D =Dy T D By ’
v 4N+4K2 _ 3 _
< gle®” ‘>||~N+1 R v [ 2>||§;N( ”yN(g“’ D, ¢=D)
v AN+S K24\ 1/4
= 318 Plgrn T LIV N T T P e
8 vN 1) (n n (n D
vV _ —
= gle" Plgya +8VEEEOV IS ey 18P gy, 18 Pl

(5.19)
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At this stage, for n = 1 we chose 7™ to solve the first order ODE

12N _ 1o
£ 4 2 g Pligs | 18" Plipy =0 W O=7 (520
0 T

The key point here is that by the induction step, the functions g~ and 7~ are
known, and due to the estimates (5.17) we have that

4 26K (1)®
/ gD ()l gn +1g" Vs)lgy ds < 2K o (521
0 (=15 r(n D (s) )

for all ¢ € [0, Tz, n]. Thus the existence of an absolutely continuous solution AL
to (5.20) is immediate. For n = 0 we may simply let (9 (r) = 779/4. Moreover,
from (5.21) we have that (5.16) holds at least on [0, 7¢ y], with T, y defined by

5,/ = ———(T.n)’. (5.22)

In fact we will a-posteriori show that the time interval can be chosen independently
of N > 1/v, as the factor 12V is superfluous. For the moment however, the bound
(5.22) is good enough since it is independent of n = 0 (recall that for now N is
fixed).

We now combine the bounds (5.18) and (5.19) with the choice for ) made in

(5.20), integrate on [0, ¢], and use the induction assumption (via the bounds (5.17))
to obtain that

§ 11
5/4-8) ) (1) +7/ (g™ s g™y )ds
WOyt [ U 18 Ol )
8V K 5/4—8 1 (n—1) (=1) p 11 )
+ 5 (S) (lg @lgy  +llg Ny g™ ®llyy  ds
/ () (5) () (5) () (5)
/> Jo

t
v 5/4—8 (n) B
+Z./o ()40 g™ <s>||y~+)1 ds

o
Sy, +5 [ 71Ol ds

8 =D (s)
+ 8N (sup ()47 g (sup ()27
[0.1] AN ()
t
o R P TV IO
0 7\ (s) =1 (s)
2N+2K t 3 3
+ = /<s>5/4 ey MgV Ollyx - ds
Ty 0 t=Ds) <" )(s)

v
§e+§/ ()4 1g D (5) [ower  ds
0 T("fl ()
SVK 1 s
/4=8 (n-2) (n—=2) _ (n—1)
e /0 R (T O P P IO T P ST PR

<2 (5.23)
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holds for all ¢ € [0, T¢ ny]. In the second to last inequality above we have used that
max{84Ksté/2, 4=N+2y <q,

which holds if N 2 2 and r(} / 28 is less than a small universal constant (which was
assumed in (2.39)). This concludes the proof of the n-independent bounds (5.16)
and (5.17) for the g™ = g(v),

In order to show that the Picard approximation converges, we next show that
the difference

g = g _ =D

contracts exponentially in a suitable weighted Sobolev space, of order N — 1 in x.
For this purpose, for n 2 1 define the decreasing function T M (1) by

d 8V K 70

=(n) (n—=1) - =D (V= 1) — =) (()) —

v ) + fol/z (lg (’)||BSN,0}4+ llg (’)”Bs”,o/&) 0, T(0) ,
(5.24)

which by the uniform in n estimate (5.17) obeys

—(n) 51’0

W) 2 T for 1 €0, Tz 1.
We measure the difference g by

TeN
An= sup (F21ED O g1 )+ 5 / (3421 () llgy  ds
[0,7¢, N] HOI0) 4 Jo () (5)

—/ 5<||g<”><s>|| v-1 18 ) gy-1 )ds
1(1)(5) r(")(s)

8V K TEN 5/4—8 1 (n—1) (n—1) )
+ﬁ (s) (g (S)||BN 1 +llg (S)||BN |)||g Iy 1\('>1 ds.
) (s)

We claim that the sequence A,, contracts, and prove that

A, A,
A, < % (5.25)

for all n > 2. In order to establish (5.25) we consider the equation obeyed by g

. . . 1 _
3g™ — 32g(n) — vafg(”) + kpdeg™ + (T>g(n)

U(g(" 2))8 5(n—1) U(g(”‘z))axg(”‘2>
_ V(g(nfl))ayg(n72) _ V(g(an))ayg(an)

1 1
_ y(an—D (n—=2) (n=2) 5(n—=2)
+ 2<t)V(g )U(g )+ 2<t)V(g )U(g ).
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Using estimates that are similar to those in Remark 3.6, the bounds (5.18)—(5.23),
and using the choice of 7™ in (5.24) it then follows that

S/A=5

)
0 5/4(||g<’“||BN L+ 1™ I + fug“ 78

)
— ot
IIg IIXN | K( >

8N
+ﬁ<ng<" Dy, + 18" ‘>||BN IE Iy

d 8V K
< L:m =1y =1y sy
:( gt sy, +ls ”B%)) 18y

2VK g 2) -2) Voi-(m—1)
+ﬁn gvor, 18Py, + 618" Vlgy

4N
+( 7 18" P gy, + 8V K20 g P 1" gy l)ug(" Uy

N2N+H g v
Ne R -m-2) (n—-2) =D~
< 13/2 g ”BQ{,712> lg IIX:v(nfz) + 16||g ||yf'{,,7”
1{8VK
1 -2y . (=2~ =Dy 5.26
+ 4 ( -[0]/2 (Il ‘lBSZ\;()/l4 +ls ”351\;0/14)) % ”Yf]\{"*]” ( )

fort € [0, T, n]. The proof of (5.25) now follows from (5.26) upon integrating in
time, recalling that § = ¢ log %, that (e, 79) obey (2.39), and that the bound

N2 K o) eN2TK 8 16eN2VKHT. )
——lg N > =
P Yoy = D320)5/4-5 = 4K (0)>* )
P
= 4K (1)

holds in view of the bound (5.17) and the definition of 7, y in (5.22). Thus, we
have proven (5.25), from which it follows that

n n
V17T =1 V1T +1
OSAniao(T) —i—al(T_l_) -0 as n—>

where ag, a; > 0 are determined from computing A and A;. This concludes the
proof of convergence for the Picard iteration scheme (5.13) and (5.14) on [0, T¢ 1.
The convergence holds in the norm defined by A,,. Moreover, the available bounds
are sufficient in order to show that the limiting function g(") obeys (5.2)—(5.5)
pointwise in x when integrated against H'(6,dy) functions of y.

5.4. A Posteriori Estimates for the Dissipative Approximation

Having constructed solutions g(”) of (5.2)—(5.5) with finite Sobolev regularity
in x (of order N = 1/v), we a posteriori show that these solutions obey better
bounds, and in particular, are real-analytic with respect to x.

For this purpose, we would like to perform estimates similar to those in the
previous subsection, and pass N — oo. The main obstruction to directly using the
bound (5.17) and passing N — oo is that the time of existence we have so far
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guaranteed for g*) is T: N defined by (5.22), and thus depends on N itself. Thus,
the first step is to show that g(*) obeys v-independent Sobolev bounds on a time
interval T that is independent of N (and v).

As before, let N be such that Nv = 1 with the caveat that we will in this
subsection look for bounds independent of N. Let K be the constant from (5.18),
and define 71(\;} >(t) by

d 4K
G s ey + 18 gy )+ 16K20 s e 18 gy =0
o N N N N
(5.27)

with initial value r(v)(O) = T719/4. For each N, this is a first order ODE, with a

degree N polynomial nonlinearity in r( ) Duetothea priori bounds (5.17) inherited

by g(”), at least on [0, T¢ ] the ODE (5.27) has an absolutely continuous solution.
We let 77, be the maximal time for which ‘L'IE;) ) stays above 57/4. On [0, Ty ]
all the estimates in the previous section are justified. We already have shown that
T;j v 2 Te.n, and we now claim that Te’f y = T for the T, > 0 defined in (5.1),
which is independent of N and v.

With TIEIV ) as defined above, and N > p~l arbitrary, we perform an estimate in

the spirit of (5.18) and (5.19), use the definition of rl(vv) in (5.27), and arrive at

d 5/4—6 8
() W) _ 9 fy.m W)~
” g IIXN(V) + ) g IIXN(V) + K (llg IIBN(V) +llg IIBN(V))

™

N

l/2(||g“>||BN + 18"z, >||g<”>||y~ +—||g<>||~~+)1
K0 ™N

d )
g(dt - 1/2<||g<“>||BN + 1™y ) ||g<“>||YN ——||g<>||~N+1
N

18 Yvar(s®™. Ty + 18 lgn ||g(”>||yw(v)
N N N

+ _— _
(T;E,V))l/z (T;E,V))l/z

d L0 3K ) ) VoW
<( R R L L [ e L

N N

v
+ g leWligver + 16K g™ w18 gy 18 My
‘[N T T

<0 (5.28)

where K 2 1is a universal constant. Integrating the above on [0, 7] and using that
Igoll x>, < &, forany N = 1/v we obtain

sup | (042 1g (@) v
1€[0,T] a0

s (T 1
+— / — 1O lpy  + 1P )lgy  )ds
K 0 (S)a ( Brl(\;))(s) Br}\}’>(.s)
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K [T B
+ =5 [ &7 1g )l gy
1/2 1)

7 0 Ty ()

£. (5.29)

+1g®lgzy  JIg™ ) lyn  ds
r(v)(x) r(v)(x)
N N

A

Estimate (5.29) above implies that

4K [ 4K2e(n)d  4K2(1)®
S [ 1oy e T - SR (5.30)
(v) S log =
7 0 0! 7 7o' " log ¢
! 16K3s2  16K3c _ 4KZ%(1)®
16K / O Ol Mg @y ds S = < 172
0 0] =) log 2 log 1

upon appealing to (2.39). Inserted in (5.27), the above bounds a posteriori show
that
Tro 8K2( >(S 579

(V)
®H2z2— = ——"— Z — (5.31)

for all r < T, as long as T, obeys
3/2

log
T,)0< b _—¢
(Te)” 2 161<2
It is clear that the 7 defined earlier in (5. 1) obeys the above estimate if K, is taken
sufficiently large. This shows that 7" > T, for each N > v~!. Moreover, the

bound (5.31) which combined with (5 29) yields

5 € 1
5/4=6,(v) / ( ) ) —~ )
su t t + K + s ds
te[OPg] (( ) “g ] ngfo/“) K o (S)8 ”g ( )”351\40/4 ”g ( )”851\:0/4

k [T _
+ 17 / AUV Ol gy + 18V Oy gl ds
Ty 0 5t/4 510/4 510/4
e, (5.32)

IIN

forany N = 1, where K = 1 is a fixed universal constant. Note that upon passing
N — o0 in (5.32), and using the Monotone Convergence Theorem, we also obtain
the bound

s (T 1
5/4—8, (v) 7/ LW W)
su t t + s + s ds
te[o};g](ﬁ 180l x5) % Jo e sy TV Ol5, )

K

T;
5/4—6 ~
o /0 YUY 85y + 18V O g, Y Ol s
0

< e, (5.33)

for the real-analytic norms of g). Due to the monotonicity of the norms with
respect to t, this proves (5.6).

In order to obtain a limiting analyticity radius z(*) in the limit as N — oo,
which obeys the nonlinear ODE (5.7), we may first try to show that the sequence
of absolutely continuous functions {‘L’IE;} )} N>,-1 1s in fact equicontinuous on the
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time interval [0, T¢]. This seems however not possible due to the third term on the
left side of (5.27). We instead define a new sequence of radii 91(\})), for which the
trick used to prove uniqueness in Section 4 applies, and we are able to prove that
{0](\})) }x>,-1 1s uniformly equicontinuous (in fact uniformly Holder-1/2 in time).
Let

d

o0+ ||g<>||BN =0, 60 = 1. (5.34)

(9("))1/2

The existence of solutions to (5.34) is immediate since the nonlinearity is a poly-
nomial of finite degree, with coefficients that are integrable in time by (5.33). We
next observe that in view of (5.30), by using a version of (5.31), we arrive at

91(\;))0) > 12—0 forall t € [0, T¢].

Now, similarly to (5.28) we have that

5/4

%||g(1))||x2’;vu> + T_(S”g(V)HX;V](\y) + K(f}5/4 ”g(U)”Bé\;\y) + W”g(v)”%?\;)
gyl e, Is s, + §1e Iz
= (f—ﬁfv”) + wﬁ%ng“)u%)) Il
- el - e,
+ Wllgmu%) Yv4i (gm’ 91(\/”) + W”g@)”%) ”g(v)”%)

d 2K
< —G(U) T (e v) )
_(dt N +(9<v>)1/2(llg IIBN +1g ||BNN) g ”N<N

T oMy~
16[(2( 0l
+— ||g(“>||xg le™ gy g™ lyy
0 01(\})) 0
16K3(t) 8
< ( iy Dy = —5/4) 1™l
X 2K(1) o
<0. (5.35)

In the last inequality of (5.35) we have used the same trick as in Section 4: that by
(5.32) we have

32K%¢?

/211, ()12 < < _
su t = <c¢lo =4
te[OI;"g]( 70 e ”X5’0/4) I R g 3

upon appealing to assumption (2.39).
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Using the bound (5.35), we show that the sequence of absolutely continuous
functions {9,(\}})}1\,2‘)_1, is in fact uniformly bounded in Cl/z([O, T:]), and thus
uniformly equicontinuous. For this purpose, let 71, r, € [0, T;] be such that |t] —

] £ ¢. Using the mean value theorem, the definition of 91(\})) in (5.34), and the
definitions (5.8) and (5.9) we arrive at

4K ("
08 (1) = 0" @] £ —75 / 18 @) lIpy, ds

0 oy’
4K [P
< [ @IV 1gV @Il ds
T / t X ) B (v)
0 1 oy () Oy ()
16K2|t; — 1] f
S —— +;‘/2/ O Ny g @ lgy - ds
[t f o\ s) o (s)
16K>  16Ke?\ )
< + ) (5.36)
T0 )

Since ¢ € (0, 1) was arbitrary, it follows from (5.36) that the 91(\}}) are uniformly
equicontinous. The Arzela—Ascoli theorem guarantees the existence of a subse-
quence 01(\,‘; ) with N — oo as k — 00, and of a function 7™ such that

91(\};{) - ™ uniformly on [0, T.] as k — oo.

Moreover, we have that t(") > 79/2 on [0, T¢]. By passing N = Ny — 00 in
(5.34) we obtain

d 2K
i) O Ry P4 () — ) =
i + EOE g llB,., =0, T7(0) = 1. (5.37)

In order to justify (5.37) we use that by (5.33) we have that ||g(”)||1_:35r0/4 e L0, T.]),

and that the convergence of r,(\,‘;() — 1t is uniform. Moreover, using (5.33) and a
bound similar to (5.36), it follows from (5.37) that

16K?2 16K¢?
+ == )lﬁ—tzll/2

h”@»—ﬂwmng( ;

uniformly for t1, , € [0, T¢]. That is, the radii 7™ are uniformly (with respect to
v) Holder 1/2 continuous. This concludes the proof of (5.6) and (5.7).

5.5. Existence of Solutions to the Prandtl System

Itremains to pass v — 0 and obtain a limiting solution g of the Prandtl equations
(2.20)—(2.22), in the sense of Definition 2.1, of a tangential analyticity radius t
which solves (3.24), such that the pair (g, t) obeys the bounds (2.41)—(2.44).

We have shown in the previous subsection that the sequence ") is uniformly
equicontinuous, and thus by the Arzela—Ascoli theorem we know that along a
subsequence vy — 0, we have that 70 5 ¢ uniformly on [0, 7;], with (0) = 1o,
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and t(f) = 10/2 on this interval. Note that from the bound (5.33) it follows that
(5.6) holds with (") replaced by the limiting function .
Without loss of generality, the above subsequence {vi},>; obeys

We next show that the subsequence g+ is Cauchy in the norm induced by the left
side of (5.6). For this purpose, let

gr = g(Vk) _ g(Vk+1)

and define

Gii= sup (0 z ()] )+fL/n—Lw‘<m d
= su _ S - S
k- [0 ]P 8k er(l) 2K 0 (s)5 8k Bfk(-Y)

T: <S>5/4—5 )
Vi o
+KA ST O gl d

where

d _ 679
am+lﬂw Nige =0, &0 = 22 (5.38)

Note that from the bound (5.33), upon choosing K, sufficiently large, we obtain
that
(1) = 19 forall t € [0, T;].

We claim that

(5.39)

To prove (5.39), we consider the equation obeyed by g

_ _ _ 1 _ _
08k — 078k + K QOB + — &8k