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Abstract

We consider the Prandtl boundary layer equations on the half plane, with initial
datum that lies in a weighted H1 space with respect to the normal variable, and
is real-analytic with respect to the tangential variable. The boundary trace of the
horizontal Euler flow is taken to be a constant. We prove that if the Prandtl datum
lies within ε of a stable profile, then the unique solution of the Cauchy problem can
be extended at least up to time Tε � exp(ε−1/ log(ε−1)).

1. Introduction

We consider the two dimensional Prandtl boundary layer equations for the
velocity field (uP , vP )

∂t u
P − ∂2y u

P + uP∂xu
P + vP∂yu

P = −∂x p
E (1.1)

∂xu
P + ∂yv

P = 0 (1.2)

posed in the upper half plane H = {(x, y) ∈ R
2 : y > 0}. Here pE denotes the

trace at ∂H of the underlying Euler pressure. The boundary conditions

uP |y=0 = vP |y=0 = 0 (1.3)

uP |y=∞ = uE (1.4)

are obtained by matching the Navier–Stokes no-slip boundary condition uNS = 0
on ∂H, with the Euler slip boundary condition at y = ∞. The trace at ∂H of the
Euler tangential velocity uE , obeys Bernoulli’s law

∂t u
E + uE∂xu

E + ∂x p
E = 0.
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The Prandtl system (1.1)–(1.4) is supplemented with a compatible initial condition

uP |t=0 = uP
0 . (1.5)

Our main result states that if the Euler data (uE , pE ) is constant, and if the initial
datum uP

0 of the Prandtl equations lies within ε of the error function erf(y/2) (in
a suitable topology), then the Prandtl equations have a unique (classical in x weak
in y) solution on [0, Tε], where Tε � exp(ε−1/ log(ε−1)).

Theorem 1.1. (Almost global existence). Let the Euler data be given by uE = κ

and ∂x pE = 0. Define

u0(x, y) = uP
0 (x, y) − κ erf

( y

2

)

where erf is the Gauss error function. There exists a sufficiently large universal
constant C∗ > 0 and a sufficiently small universal constant ε∗ > 0 such that the
following holds. For any given ε ∈ (0, ε∗], assume that there exists an analyticity
radius τ0 > 0 such that

C∗
log 1

ε

� τ
3/2
0 � 1

C∗ε3
,

and such that the function

g0(x, y) = ∂yu0(x, y) + y

2
u0(x, y)

obeys

‖g0‖X2τ0,1/2 :=
∑

m�0

∥∥∥exp
(
y2

8

)
∂mx g0(x, y)

∥∥∥
L2(H)

(2τ0)
m

√
m + 1

m! � ε.

Then there exists a unique solution uP of the Prandtl boundary layer equations on
[0, Tε], where

Tε � exp

(
ε−1

log(ε−1)

)
.

The solution uP is real analytic in x, with analyticity radius larger than τ0/2, and
lies in a weighted H2 space with respect to y. We emphasize that ε and τ0 are
independent of κ .

The precise function spaces, in which the solution uP lies, are given in Theo-
rem 2.2 below. The condition relating ε and τ0 stated above roughly speaking says
that we think of 0 < ε � 1, and of τ0 = O(1). The stated condition is the sharp
version of this heuristic.
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Remark 1.2. (Initial vorticity may change sign). We note that the initial datum uP
0

is not necessarily monotonic in y, i.e. we do not necessarily have ωP
0 := ∂yuP

0 � 0
or � 0 on H. Thus, the initial data in Theorem 1.1 need not fit in the Oleinik
[33] sign-definite vorticity setting. To see this, one may, for example, consider
κ = ε > 0 sufficiently small and τ0 = 1/4. We then let

uP
0 (x, y) = ε(exp(−x2)η(y) + erf(y/2)),

with η(y) such that η(0) = 0 and exp(y2/4)η(y) ∈ L∞
y . Then

∂yu
P
0 (0, y) = ε(η′(y) + exp(−y2/4)/

√
π)

can be designed so that

∂yu
P
0 (0, 0) > 0 and ∂yu

P
0 (0, 1) < 0.

This indeed shows that the initial profiles considered in Theorem 1.1 need not be
monotonic in y.

1.1. The Local Well-Posedness of the Prandtl Equations

Before discussing the proof of ourmain result (cf. Section1.3 below),wepresent
the history of the problem. The Prandtl equations arise from matched asymptotic
expansions [35]meant to describe the boundary behavior of solutions to theNavier–
Stokes equations with Dirichlet boundary conditions

∂t u
(ν) − ν
u(ν) + u(ν) · ∇u(ν) + ∇ p(ν) = 0, ∇ · u(ν) = 0, in �,

u(ν) = 0, on ∂�

(1.6)

in the vanishing viscosity limit ν → 0. Here� ⊂ R
2 is a smooth domain. Formally,

as ν → 0, the Navier–Stokes equations reduce to the Euler equations, for which the
slip boundary condition uE ·n = 0 holds on ∂�. Due to this mismatch of boundary
conditions, uniform in ν bounds for ∇u(ν) in, e.g., the L1(�) norm, on an O(1)
time interval, remain an outstanding mathematical challenge.

One of the fundamental questions which arises is to either prove that the Prandtl
asymptotic expansion

(u(ν), v(ν))(t, x, y) = (uE , vE )(t, x, y) + (uP ,
√

νvP )(t, x, y/
√

ν) + o(
√

ν),

(1.7)

can be justified rigorously [12,30,38], or to show that it fails [8–11,13,16,18].
Naturally, the answer is expected to depend on the topology in which (1.7) is
considered, and this is intimately related to the question of the well-posedness of
the Prandtl system. By now, the local in time well-posedness of (1.1)–(1.5) has
been considered by many authors, see e.g. [1,4,5,7,14,15,17,19,23,26–30,32,33,
38,39] and references therein. However, the question of whether the inviscid limit
u(ν) → uE holds whenever the Prandtl equations are locally well-posed, and are
thus stable in some sense, remains open. See [3] for partial progress in this direction.
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In [33], Oleinik proved the existence of solutions for the unsteady Prandtl
system provided the prescribed horizontal velocities are positive and monotonic,
i.e. uE > 0 andωP = ∂yuP > 0. From the physical point of view, themonotonicity
assumption has a stabilizing effect since it prevents boundary layer separation.
The main ingredient of the proof is the Crocco transform which uses uP as an
independent variable instead of y and ωP as an unknown instead of uP . More
recently in [32], Masmoudi and Wong use solely energy methods and a new
change of variables to prove the local in time existence and uniqueness in weighted
Sobolev spaces, under Oleinik’s monotonicity assumption. The main idea of [32] is
to use a Sobolev energy in terms of the good unknown gP = ωP − uP∂y log(ωP ),
which may be done if ωP > 0. The equation obeyed by the top derivative in x of
gP is better behaved than that of the top derivative of either uP or ωP . Although
cf. Remark 1.2 this change of variables is unavailable to us, the idea of a good
unknown inspired by [32] plays a fundamental role in our proof. Recently, in [23],
the local existence and uniqueness for the Prandtl systemwas proven for initial data
with multiple monotonicity regions, as long as on the complement of these regions
the initial datum is tangentially real-analytic.

For real-analytic initial datum, Sammartino and Caflisch [5,38] established
the local well-posedness by using the abstract Cauchy–Kowalewski theorem. For
initial datum analytic only with respect to the tangential variable the local well-
posedness was obtained in [27]. In [26], the authors gave an energy-based proof
of this fact, and considered initial data with polynomial rather than exponential
matching at the top of the boundary layer uP (t, x, y) − uE (t, x) → 0 as y → ∞.
The tangentially-analytic norms introduced in [26] encode at L2 level a full one-
derivative gain from the decaying analyticity radius. These norms play an essential
role in our proof.

More recently, for data in the Gevrey class-7/4 in the tangential variable, which
has a single curve of non-degenerate critical points (i.e. ωP

0 = 0 iff y = a0(x) > 0
with ∂yω

P
0 (x, a0(x)) > 0 for all x), the local well-posedness of the Prandtl equa-

tions was proven byGerard-Varet andMasmoudi in [17]. Note that this Gevrey-
exponent is not in contradictionwith the ill-posedness in Sobloev spaces established
by Gerard-Varet and Dormy in [16] for the linearized Prandtl equation around
a non-monotonic shear flow. Here the authors show that some perturbations with
high tangential frequency, k � 1, grow in time as e

√
kt . At the nonlinear level this

strong ill-posedness was obtained by Gerard-Varet and Nguyen [18].

1.2. The Long Time Behavior of the Prandtl Equations

As pointed out by Grenier, Guo, and Nguyen [8–10] (see also [6]), in order
to make progress towards proving or disproving the inviscid limit of the Navier–
Stokes equations, a finer understanding of the Prandtl equations is required, and
in particular one must understand its behavior on a longer time interval than the
one which causes the instability used to prove ill-posedness. However, to the best
of our knowledge, the long-time existence of the Prandtl equations has only been
considered in [33,40], and [41].
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Oleinik shows in [33] that global regular solutions exist, when the horizontal
variable x belongs to a finite interval [0, L], with L sufficiently small. Xin and
Zhang prove in [40] that if the pressure gradient has a favorable sign, that is
∂x pE (t, x) � 0 for all t > 0 and x ∈ R, and the initial condition uP

0 of Prandtl
is monotone in y, the solutions are global. However these are weak solutions in
Crocco variables, which are not known to be unique or to be regular. The global
existence of smooth solutions in the monotonic case remains, to date, open. In the
case of large datum, the assumption of a monotone initial velocity is essential.
Indeed, E and Engquist [7] take uE = ∂x pE = 0 and construct an initial datum
uP
0 which is real-analytic in the tangential variable, but for which ωP

0 is not sign
definite, and prove that the resulting solution of Prandtl (known to exist for short
time in view of [26,27]) blows up in finite time. We emphasize that for this blowup
to occur, the initial datum must be at least O(1): indeed, for initial datum that is
sufficiently small, the conditions of Lemma 2.1 in [7] fail, and thus the proof does
not apply.

In fact, for initial datum that is tangentially real-analytic and small, in a recent
paper Zhang and Zhang [41] prove that the system (1.1)–(1.5) has a unique
solution on a time interval that is much longer than the one guaranteed by the local
existence theory. More precisely, for uE = ε and ∂x pE = 0 it is proven in [41] that
if uP

0 = O(ε) in a norm that encodes Gaussian decay as y → ∞ and tangential
analyticity in x , and if ε � 1, the time of existence of the resulting solution is at
least O(ε−4/3). The elegant proof relies on anisotropic Littlewood–Paley energy
estimates in tangentially analytic norms, inspired by the ones previously used by
Chemin, Gallagher, and Paicu [2] to treat the Navier–Stokes equations with
datum highly oscillating in one direction (see also [37] and references therein).

1.3. Almost Global Existence for the Prandtl Equations

In [41, Remark 1.1], the authors raise the question of “whether the lifespan
obtained in Theorem 1.1 is sharp”. That is, do the solutions of the Prandtl equations
with size ε initial datum live for a time interval longer than O(ε−4/3)? In this
paper we give a positive answer to this question, and prove (cf. Theorem 1.1 or
Theorem 2.2) that in two dimensional we have almost global existence (in the
sense of [22]). That is, the solution lives up to time O(exp(ε−1/ log ε−1)). Our
initial datum uP

0 consists of a stable O(κ) boundary layer lift profile, and an O(ε)

possibly unstable, but tangentially real-analytic profile. In particular, the total initial
vorticity is not necessarily positive (cf. Remark (1.2)). Whether solutions arising
from sufficiently small initial datum are in fact global in time remains open, and
this may depend on whether κ � ε or ε � κ .

The proof of Theorem 1.1 proceeds in several steps. In order to homogenize
the boundary condition at y = ∞, we write uP as a perturbation u of a stable
shear profile κϕ(t, y), with ∂yϕ(t, y) > 0. In order to capture the maximal time
decay from the heat equation, and to explore certain cancellations in the nonlinear
terms of Prandtl, we choose the boundary lift ϕ(t, y) to be the Gauss error function
erf(y/

√
4(t + 1)). The equation obeyed by u (cf. (2.5)) contains the usual terms

in the Prandtl equations, but also terms that are linear and quadratic in ϕ. The lift
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ϕ is chosen so that the quadratic terms in ϕ vanish, and we are left to understand
the linear ones in ϕ. We note that until this point a similar path is followed in [41],
and that energy estimates for the ensuing linear problem lead to the maximal time
of existence O(ε−4/3).

The main enemy to obtaining a longer time of existence is the term κv∂yϕ in
the velocity equation (2.5) (respectively κv∂2yϕ in the vorticity equation (2.7)). As
v = −∂−1

y ∂xu, this term loses one tangential derivative, and is merely linear in u,
so that it is not small with respect to ε.

The main idea of our paper is to introduce a new linearly-good unknown g =
ω − u∂y(log ∂yϕ), cf. (2.12) below. This change of variable is directly motivated
by the one in [31] for the case ωP > 0. The upshot is that g obeys an equation in
which the bad terms κv∂yϕ and κv∂2yϕ cancel out, cf. (2.20) below. The solution of
this new equation may be shown to be globally well-posed. Note here that we may
recover u = U(g) and v = V(g) via linear operators U and V that are nonlocal in
y, cf. (2.23)–(2.24). Thus g is the only prognostic variable in the problem, and the
system (2.20)–(2.22) is equivalent to (1.1)–(1.4).

In order to take advantage of the time decay in the heat equation, it is natural
to replace the y variable with the heat of a self-similar variable z = z(t, y) =
y/

√
t + 1, and to use L2 norms with gaussian weights in the normal direction. The

gaussian weights are useful when bounding u and v in terms of g, cf. Lemma 3.1.
Moreover, the gaussian weights allow us to deal with another technical obstacle;
namely, that in unbounded domains the Poincaré inequality does not hold. However,
with the gaussian weights defined in (2.25), we may use a special case of the Treves
inequality (cf. Lemma (3.3)) as a replacement of the Poincaré inequality. The need
for a Poincaré-type inequality in the y variable comes from the desire to work
with L2 norms, and still capture the full one-derivative gain from the decay of the
analyticity radius. As was shown in [25,26,34] this may be achieved by designing
norms based on 
1 rather than 
2 sums over the derivatives. The one derivative gain
inherent in these 
1-based norms allows for direct energy estimates.

The main ingredient of the proof is the a priori estimate (3.23) below. The idea
is to solve the PDE (2.20)–(2.22) for g simultaneously with a nonlinear ODE (3.24)
for the tangential analyticity radius τ . The fact that the analyticity radius τ does
not decrease to less than τ(0)/2 on the time interval considered follows from the
time integrability of the dissipative terms present on the left side of (3.23) (see also
[36]).

The proof of Theorem 1.1 is concluded once we establish the uniqueness of
solutions in this class, and show that there exists at least one solution to the coupled
system for g and τ . While uniqueness follows from the available a priori estimates,
the existence of solutions introduces a number of additional difficulties. One of
these is proving existence of solutions to (3.24). This is a first order ODE in τ , for
which the nonlinear forcing term is well defined (i.e., the infinite sum converges),
only if the solution g already is known to have analyticity radius τ . To overcome
this difficulty, we consider a dissipative approximation of (2.20)–(2.22) and for
ν > 0 add a −ν∂2x g term on the left side of (2.20). We prove that this regularized
equation has solutions g(ν) in a fixed order Sobolev space, and a posteriori show
that these solutions are tangentially real-analytic, with radii τ (ν) that obey an ODE
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similar to (3.24). Here we essentially use that the initial datum g0 is assumed to
have tangential analyticity radius 2τ0, while the solution is only shown to have a
radius that lies between τ0/2 and τ0. We prove that these radii τ (ν) are uniformly
equicontinuous in ν (in fact uniformly Hölder 1/2) so that they converge along a
subsequence on the compact time interval [0, Tε]. To conclude the proof, we show
that along this subsequence the g(ν) are a Cauchy sequence when measured in the
tangentially analytic norms, and that the limiting solution g and limiting radius τ

obey (3.24).

1.4. Organization of the Paper

The detailed reformulation of the Prandtl system is given in Section 2. Here we
also define the spaces in which the solutions lives, and reformulate Theorem 1.1 in
these terms. The a priori estimates are given in Section 3, the uniqueness of solutions
is proven in Section 4, and the details concerning the existence of solutions are given
in Section 5.

2. The Linearly-Good Unknown, Function Spaces, and the Main Result

Denote by

z = z(t, y) = y

〈t〉1/2 , where 〈t〉 = t + 1 (2.1)

the heat self-similar variable. We consider the lift

κϕ = κϕ(t, y)

of the boundary conditions (1.3) and (1.4), where

ϕ(t, y) = �(z(t, y)) (2.2)

and the function �(z) obeys

�(0) = 0, lim
z→∞ �(z) = 1, �′(z) > 0. (2.3)

We make a precise choice of � in (2.18) below. We already note that by design
∂yϕ(t, y) > 0 for y > 0, i.e., the vorticity of the shear flow ϕ is positive, and thus
stable (in the sense of [33]).

We write the solution of (1.1)–(1.4) as a perturbation u(t, x, y) of the lift
κϕ(t, y) via

uP (t, x, y) = κϕ(t, y) + u(t, x, y)

so that the perturbation u obeys the homogenous boundary conditions

u|y=0 = u|y=∞ = 0, (2.4)
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and satisfies the equation

∂t u − ∂2y u + κϕ∂xu + κv∂yϕ + u∂xu + v∂yu = −κ(∂tϕ − ∂2yϕ), (2.5)

where v is computed from u as

v(t, x, y) = −
∫ y

0
∂xu(t, x, ȳ)d ȳ. (2.6)

Using (2.5), we obtain the equation for the perturbed vorticity ω = ∂yu,

∂tω − ∂2yω + κϕ∂xω + κv∂2yϕ + u∂xω + v∂yω = −κ(∂t∂yϕ − ∂3yϕ), (2.7)

with the natural boundary condition

∂yω|y=0 = −κ∂2yϕ|y=0. (2.8)

As we work in weighted spaces, at y = ∞ we impose the condition

ω|y=∞ = 0. (2.9)

2.1. The Linearly-Good Unknown

As can already be seen in [41], the main obstruction for obtaining the global
in time existence of solutions comes from the linear problem for the velocity and
vorticity

∂t u − ∂2y u + κϕ∂xu + κv∂yϕ = −κ(∂tϕ − ∂2yϕ) + nonlinearity, (2.10)

∂tω − ∂2yω + κϕ∂xω + κv∂2yϕ = −κ(∂t∂yϕ − ∂3yϕ) + nonlinearity. (2.11)

Inspired by [31] (see also [17,23]), we tackle this issue by considering the linearly-
good unknown

g(t, x, y) = ω(t, x, y) − u(t, x, y)a(t, y) (2.12)

where

a(t, y) = ∂2yϕ(t, y)

∂yϕ(t, y)
. (2.13)

Note that one may solve the first order (in y) linear equation (2.12) to compute u
from g explicitly as

u(t, x, y) = ∂yϕ(t, y)
∫ y

0
g(t, x, ȳ)

1

∂yϕ(t, ȳ)
d ȳ

= �′(z(t, y))
∫ y

0
g(t, x, ȳ)

1

�′(z(t, ȳ))
d ȳ, (2.14)

where we have used the boundary condition of u at y = 0. Also, if g decays
sufficiently fast at infinity, this ensures the correct boundary conditions for u. The
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formula (2.14) is useful when performing weighted estimates for u in terms of
weighted norms of g.

The evolution equation obeyed by prognostic variable g is

∂t g − ∂2y g + (u + κϕ)∂x g + v∂yg − 2∂yag + uL + vu∂ya = κF, (2.15)

where the diagnostic variables u and v may be computed from g via (2.14) and
(2.6). The functions F and L are given by

F(t, y) = a(∂tϕ − ∂2yϕ) − (∂t∂yϕ − ∂3yϕ)

L(t, y) = ∂t a − ∂2ya − 2a∂ya,

and a is as defined in (2.13). Moreover, in view of (2.4), (2.8), and (2.9), the
linearly-good unknown obeys the boundary conditions

(∂yg + ag)|y=0 = ∂yω|y=0 = −κ∂2yϕ|y=0, (2.16)

and

g|y=∞ = 0, (2.17)

where the latter one comes from the convenience of vorticity that vanishes as
y → ∞.

2.2. A Gaussian Lift of the Boundary Conditions

At this stage we make a choice for the boundary condition lift �. Our choice
is determined by trying to eliminate the forcing term F on the right side of (2.15),
and the linear term uL on the left side of (2.15). For this purpose, let � be defined
via �(0) = 0 and

�′(z) = 1√
π
exp

(
− z2

4

)
(2.18)

where the normalization ensures that � → 1 as z → ∞. In the original variables,
this means that

ϕ(t, y) = 1√
π

∫ y/
√〈t〉

0
exp

(
− z2

4

)
dz = erf

(
y√
4〈t〉

)

where erf is the Gauss error function.With this choice of�, we immediately obtain

a(t, y) = − z

2〈t〉1/2 = − y

2〈t〉
F(z) = L(z) = 0

and the boundary values

�′′(0) = 0 and �′(0) = 1/
√

π > 0.
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The evolution equation (2.15) for the good unknown

g = ω + y

2〈t〉u (2.19)

thus becomes

∂t g − ∂2y g + (u + κϕ)∂x g + v∂yg + 1

〈t〉g − 1

2〈t〉vu = 0 (2.20)

∂yg|y=0 = g|y=∞ = 0 (2.21)

g|t=0 = g0. (2.22)

As noted before (cf. (2.14) and (2.6)), u and v may be computed from g explicitly

u(t, x, y) = U(g)(t, x, y) := exp

(
− y2

4〈t〉
)∫ y

0
g(t, x, ȳ) exp

(
ȳ2

4〈t〉
)
d ȳ

(2.23)

v(t, x, y) = V(g)(t, x, y) := −
∫ y

0
U(∂x g)(t, x, ȳ)d ȳ, (2.24)

and thus, solving (2.20)–(2.22) is equivalent to solving the Prandtl boundary layer
equations (1.1)–(1.5).

2.3. Tangentially Analytic Functions with Gaussian Normal Weights

Lastly, in view of (2.14) and the choice (2.18) of �, it is natural to use the
Gaussian weight defined by

θα(t, y) = exp

(
αz(t, y)2

4

)
= exp

(
αy2

4〈t〉
)

(2.25)

for some

α ∈ [1/4, 1/2]
to be chosen later (ε-close to 1/2).

In order to define the functional spaces in which the solution lies, motivated by
[26], it is convenient to define

Mm =
√
m + 1

m! ,

and introduce the Sobolev weighted semi-norms

Xm = Xm(g, τ ) = ‖θα∂mx g‖L2τmMm, (2.26)

Dm = Dm(g, τ ) = ‖θα∂y∂
m
x g‖L2τmMm = Xm(∂yg, τ ), (2.27)

Zm = Zm(g, τ ) = ‖zθα∂mx g‖L2τmMm = Xm(zg, τ ), (2.28)

Bm = Bm(g, τ ) = 〈t〉1/4Xm(g, τ ) + 〈t〉1/4Zm(g, τ ) + 〈t〉3/4Dm(g, τ ) (2.29)

Ym = Ym(g, τ ) = ‖θα∂mx g‖L2τm−1mMm . (2.30)
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As in [26], we consider the following space of function that are real-analytic in x
and lie in a weighted L2 space with respect to y

Xτ,α = {g(t, x, y) ∈ L2(H; θαdydx) : ‖g‖Xτ,α < ∞}
where for τ > 0 and α as above we define

‖g‖Xτ,α =
∑

m�0

Xm(g, τ ). (2.31)

We also define the semi-norm

‖g‖Yτ,α =
∑

m�1

Ym(g, τ ) (2.32)

which encodes the one-derivative gain in the analytic estimates, when the summa-
tion in m is considered in 
1 rather than in 
2, as is classical when using Fourier
analysis. Note that for β > 1, we have

‖g‖Yτ,α � τ−1‖g‖Xβτ,α sup
m�1

(mβ−m) � Cβτ−1‖g‖Xβτ,α . (2.33)

In particular, g ∈ X2τ,α implies that ‖g‖Yτ,α � τ−1‖g‖X2τ,α . The gain of a y
derivative shall be encoded in the dissipative semi-norm

‖g‖Dτ,α =
∑

m�0

Dm(g, τ ) = ‖∂yg‖Xτ,α ,

while the damping in the heat self-similar variable z is measured via

‖g‖Zτ,α =
∑

m�0

Zm(g, τ ) = ‖zg‖Xτ,α .

For compactness of notation, for a function g such that g, zg, ∂yg ∈ Xτ,α we use
the time-weighted norm

‖g‖Bτ,α =
∑

m�0

Bm(g, τ ) = 〈t〉1/4‖g‖Xτ,α + 〈t〉1/4‖g‖Zτ,α + 〈t〉3/4‖g‖Dτ,α

(2.34)

where as before τ > 0 and α ∈ [1/4, 1/2]. Lastly, in order to obtain time regularity
for the radius of analyticity τ(t), it will be convenient to use a hybrid of the 
2 and

1 tangentially analytic norms, given by

‖g‖D̃τ,α
:=

∑

m�0

D̃m, D̃m = D̃m(g, τ ) = Dm(g, τ )2

Xm(g, τ )
, (2.35)

‖g‖Z̃τ,α
:=

∑

m�0

Z̃m, Z̃m = Z̃m(g, τ ) = Zm(g, τ )2

Xm(g, τ )
, (2.36)

‖g‖B̃τ,α
:=

∑

m�0

B̃m B̃m = B̃m(g, τ ) = 〈t〉1/4Xm(g, τ )

+ 〈t〉1/4 Z̃m(g, τ ) + 〈t〉5/4 D̃m(g, τ ). (2.37)
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We note that the bound

‖g‖Bτ,α � 2〈t〉1/8‖g‖1/2Xτ,α
‖g‖1/2

B̃τ,α
(2.38)

is an immediate consequence of the Cauchy-Schwartz inequality.

2.4. The Main Result

Having introduced the functional setting of this paper we restate Theorem 1.1
in these terms. First, we give a definition of solutions to the reformulated Prandtl
equations (2.20)–(2.22).

Definition 2.1. (Classical in x weak in y solutions). For β > 0 defineH2,1,β to be
the closure under the norm

‖h‖2H2,1,β
=

2∑
m=0

1∑
j=0

∫

H

|∂mx ∂
j
y h(x, y)|2 exp

(
βy2

2

)
dydx

of the set of functions

D = {h(x, y) ∈ C∞
0 (R × [0,∞)) : ∂yh|y=0 = 0}.

Let α ∈ [1/4, 1/2], and θα(t, y) be defined by (2.25). For T > 0 we say that a
function

g ∈ L∞([0, T );H2,1,α/〈t〉)

is a classical in x weak in y solution of the initial value problem for the Prandtl
equations (2.20)–(2.22) on [0, T ), if (2.20) holds when tested against elements of
C∞
0 ([0, T ) × R × [0,∞)).

Theorem 2.2. (Main result). Assume the trace of the Euler flow is given by uE = κ

and ∂x pE = 0. For t � 0, define

u(t, x, y) = uP (t, x, y) − κ erf

(
y√
4〈t〉

)

and let

g(t, x, y) = ∂yu(t, x, y) + y

2〈t〉u(t, x, y).

There exists a sufficiently large universal constant C∗ > 0 and a sufficiently small
universal constant ε∗ > 0 such that the following holds. Assume that there exists
an analyticity radius τ0 > 0 and an ε ∈ (0, ε∗] such that

C∗
log 1

ε

� τ
3/2
0 � 1

C∗ε3
, (2.39)
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and such that the initial condition g0 = g(0, ·, ·) is small, in the sense that

‖g0‖X2τ0,1/2 � ε. (2.40)

Then there exists a unique classical in x weak in y solution g of thePrandtl boundary
layer equations (2.20)–(2.22) on [0, Tε]which is tangentially real-analytic, and the
maximal time of existence obeys

Tε � exp

(
ε−1

log(ε−1)

)
.

Moreover, letting δ = ε log 1
ε
and α = 1−δ

2 , the tangential analyticity radius τ(t)
of the solution g(t) satisfies

τ(t) �
(

τ
3/2
0 − C∗〈t〉δ

2 log 1
ε

)2/3

� τ0

2
(2.41)

and the solution g(t) obeys the bounds

‖g(t)‖Xτ (t),α � ε〈t〉−5/4+δ (2.42)
∫ t

0
(‖g(s)‖Bτ (s),α + ‖g(s)‖B̃τ (s),α

)ds � C∗〈t〉δ
log 1

ε

(2.43)

∫ t

0

〈s〉5/4−δ

τ (s)1/2
‖g(s)‖Yτ (s),α‖g(s)‖Bτ (s),αds � C∗ε (2.44)

for all t ∈ [0, Tε].

It follows from the estimates in the next section (cf. Lemmas 3.1 and 3.5)
that bounds on g, zg, and ∂yg in Xτ,α imply similar bounds on u and v in Xτ,α ,
and thus (2.42)–(2.44) directly translate into bounds for uP and vP . Moreover,
when g(t) ∈ H2,1,α/〈t〉, then u(t) lies in H2,2,α/〈t〉 and the Prandtl equations (1.1)
hold pointwise in x and in an L2 sense in y. We omit these details. The proof of
Theorem 2.2 consists of a priori estimates (cf. Section 3), the proof of uniqueness of
solutions in this class (cf. Section4), and the constructionof solutions (cf. Section5).

3. A Priori Estimates

In this section we give the a priori estimates needed to prove Theorem 2.2. We
start with a number of preliminary lemmas, which lead up to Section 3.5, where
we conclude the a priori bounds.
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3.1. Bounding the Diagnostic Variables in Terms of the Prognostic One

We may use (2.14) to write

θα(y)u(y) =
∫ y

0
g(ȳ)θα(ȳ) exp

(
(1 − α)

4〈t〉 (ȳ2 − y2)

)
d ȳ. (3.1)

On the one hand, it is immediately apparent from the above that

‖θαu‖L∞
y

� ‖θαg‖L1
y
. (3.2)

On the other hand, for p ∈ [1, 2] we may estimate

|θα(y)u(y)| � ‖θαg‖L p/(p−1)

(∫ y

0
exp

(
p(1 − α)

4〈t〉 (ȳ2 − y2)

)
d ȳ

)1/p

= ‖θαg‖L p/(p−1)〈t〉1/(2p)
(
DawsonF[z(t, y)Kp,α]

Kp,α

)1/p

where Kp,α = √
p(1 − α)/2 and

DawsonF[y] = exp(−y2)
∫ y

0
exp(ȳ2)d ȳ =

∫ y

0
exp(ȳ2 − y2)d ȳ.

It is not hard to check that

DawsonF[y] � 2

1 + y

for all y � 0. Because there exists a universal constant C > 0 such that 1/C �
Kp,α � C for p ∈ [1, 2] and α ∈ [1/4, 1/2], it follows that

|θα(t, y)u(t, x, y)| � C〈t〉1/(2p)‖θαg‖L p/(p−1)
y

1

(1 + z(t, y))1/p
(3.3)

for p ∈ [1, 2]. Using (3.3) and recalling the definition of v in (2.6) we may prove
the following estimates.

Lemma 3.1. (Bounds for the diagnostic variables). Let θα be given by (2.25) with
α ∈ [1/4, 1/2], Define u = U(g) and v = V(g) by (2.23) respectively (2.24). For
m � 0 we have
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‖∂mx u‖L2
x L

∞
y

� C〈t〉1/4‖θα∂mx g‖L2
x,y

(3.4)

‖∂mx u‖L∞
x,y

� C〈t〉1/4‖θα∂mx g‖1/2
L2
x,y

‖θα∂m+1
x g‖1/2

L2
x,y

(3.5)

‖θα∂mx g‖L1
y

� C〈t〉1/4‖θα∂mx g‖1/2
L2
y

‖zθα∂mx g‖1/2
L2
y

(3.6)

‖θα∂mx u‖L2
x,y

� C〈t〉3/4‖θα∂mx g‖1/2
L2
x,y

‖θα∂mx ∂yg‖1/2L2
x,y

+ C〈t〉1/2‖θα∂mx g‖1/2
L2
x,y

‖zθα∂mx g‖1/2
L2
x,y

(3.7)

‖θα∂mx u‖L∞
x L2

y
�C〈t〉3/4‖θα∂mx g‖1/4

L2
x,y

‖θα∂m+1
x g‖1/4

L2
x,y

‖θα∂mx ∂yg‖1/4L2
x,y

‖θα∂m+1
x ∂yg‖1/4L2

x,y

+ C〈t〉1/2‖θα∂mx g‖1/4
L2
x,y

‖θα∂m+1
x g‖1/4

L2
x,y

‖zθα∂mx g‖1/4
L2
x,y

‖zθα∂m+1
x g‖1/4

L2
x,y

(3.8)

‖∂mx v‖L2
x L

∞
y

� C〈t〉3/4‖θα∂m+1
x g‖L2

x,y
(3.9)

‖∂mx v‖L∞
x,y

� C〈t〉3/4‖θα∂m+1
x g‖1/2

L2
x,y

‖θα∂m+2
x g‖1/2

L2
x,y

(3.10)

for some universal constant C > 0, which is independent of α ∈ [1/4, 1/2].
Proof of Lemma 3.1. From identity (3.1) we have

|∂mx u(y)| � 1

θα(y)

∫ y

0
|θα(ȳ)∂mx g(ȳ)| exp

(
(1 − α)

4〈t〉 (ȳ2 − y2)

)
d ȳ

� ‖θα∂mx g‖L2
y

√
y

θα(y)
= 〈t〉1/4‖θα∂mx g‖L2

y

√
z exp

(
−αz2

4

)

� C〈t〉1/4‖θα∂mx g‖L2
y
.

The bound (3.4) follows by taking the L2 norm in x of the above, while the bound
(3.5) follows upon additionally applying the one dimensional Agmon inequality in
the x variable,

‖ f ‖L∞
x

� C‖ f ‖1/2
L2
x
‖∂x f ‖1/2L2

x
.

To bound θα∂mx u, we note that for R > 0 we have

‖θα∂mx g‖L1
y

=
∫ R

0
|θα(y)∂mx g(y)|dy +

∫ ∞

R
|yθα(y)∂mx g(y)||y|−1dy

� R1/2‖θα∂mx g‖L2
y
+ R−1/2‖yθα∂mx g‖L2

y

which upon optimizing in R yields

‖θα∂mx g‖L1
y

� C‖θα∂mx g‖1/2
L2
y
‖yθα∂mx g‖1/2

L2
y

� C〈t〉1/4‖θα∂mx g‖1/2
L2
y
‖zθα∂mx g‖1/2

L2
y
.
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Upon taking L2 norm in x , this proves (3.6). When combined with (3.2), we obtain
from the above that

‖θα∂mx u‖L∞
y

� C〈t〉1/4‖θα∂mx g‖1/2
L2
y
‖zθα∂mx g‖1/2

L2
y
.

In order to prove (3.7), we use (3.3) with p = 1 and the one dimensional Agmon
inequality in the y variable to obtain

‖θα∂mx u‖L2
y

� C〈t〉1/2‖θα∂mx g‖L∞
y

‖(1 + z(t, y))−1‖L2
y

� C〈t〉3/4‖θα∂mx g‖1/2
L2
y
(‖θα∂mx ∂yg‖L2

y
+ ‖∂yθα∂mx g‖L2

y
)1/2

� C〈t〉3/4‖θα∂mx g‖1/2
L2
y
‖θα∂mx ∂yg‖1/2L2

y

+ C〈t〉1/2‖θα∂mx g‖1/2
L2
y
‖zθα∂mx g‖1/2

L2
y
.

Taking the L2 norm in x of the above yields (3.7), while an application of the one
dimensional Agmon inequality in x gives (3.8). For the v bounds, we use (3.3) with
p = 2 and obtain

‖∂mx v‖L∞
y

� ‖∂m+1
x u‖L1

y
� ‖θα∂m+1

x u‖L∞
y

‖θ−1
α ‖L1

y

� C〈t〉1/2‖θα∂m+1
x u‖L∞

y

� C〈t〉3/4‖θα∂m+1
x g‖L2

y
.

Integrating in x the above implies (3.9). An extra use of the one dimensional Agmon
inequality yields (3.10). ��

Remark 3.2. The first two estimates in Lemma 3.1 also hold in the case when we
don’t use the weight (i.e., when θα = 1). Indeed, we use the relation

u(y) =
∫ y

0
g(ȳ) exp

(
ȳ2 − y2

4〈t〉
)

d ȳ,

which implies that

|u(y)| � C〈t〉1/2p‖g‖
L p/p−1
y

1

(1 + z)1/p

for 1 � p � ∞.
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3.2. Weighted Sobolev Energy Estimates for the Good Unknown

Let m � 0. We apply ∂mx to (2.20), multiply the resulting equation with θ2α∂mx g
and integrate over H to obtain

1

2

d

dt
‖θα∂mx g‖2L2 + ‖θα∂y∂

m
x g‖2L2 + α(1 − 2α)

4〈t〉 ‖zθα∂mx g‖2L2 + 2 − α

2〈t〉 ‖θα∂mx g‖2L2

= −
m∑
j=0

(
m

j

)∫
∂
m− j
x uθα∂

j+1
x gθα∂mx g −

m∑
j=0

(
m

j

)∫
∂
m− j
x vθα∂y∂

j
x gθα∂mx g

+ 1

2〈t〉
m∑
j=0

(
m

j

) ∫
∂
j
x vθα∂

m− j
x uθα∂mx g

= Um + Vm + Tm . (3.11)

Here we have used the boundary conditions (2.21) and (2.22) and the cancellation
∫

ϕ∂m+1
x gθ2α∂mx gdx = 0,

which follows upon integration by parts and the fact that ∂x (ϕθ2α) = 0. Dividing
(3.11) by ‖θα∂mx g‖L2 , multiplying by τmMm , and using the notations (2.26)–(2.30)
and (2.35)–(2.37), we arrive at

d

dt
Xm + D̃m + α(1 − 2α)

4〈t〉 Z̃m + 2 − α

2〈t〉 Xm = τmMm

‖θα∂mx g‖L2
(Um + Vm + Tm).

(3.12)

In the next subsection we obtain lower bounds for the dissipative and damping
terms on the left side of (3.12), while in the following subsection we estimate the
nonlinear terms on the right side of (3.12).

3.3. Bounds for the Dissipative and Damping Terms

Lemma 3.3. (Poincaré inequality with gaussian weights). Let g be such that
∂yg|y=0 = 0 and g|y=∞ = 0. For α ∈ [1/4, 1/2], m � 0, and t � 0 it holds
that

α

〈t〉‖θα∂mx g‖2L2
y

� ‖θα∂y∂
m
x g‖2L2

y
(3.13)

where θα(t, y) = exp
(

αy2

4〈t〉
)
.

Proof of Lemma 3.3. The above inequality is classical, and it is a special case of
the Treves inequality which can be found in [20]. For simplicity, we give a short
proof for the case m = 0. Note that

θα∂yg = ∂y(θαg) − αy

2〈t〉θαg
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as can be checked directly. Using that (a − b)2 = (a + b)2 − 4ab it then follows
that

∫
(θα∂yg)

2 dy =
∫ (

∂y(θαg) − αy

2〈t〉θαg

)2

dy

=
∫ (

∂y(θαg) + αy

2〈t〉θαg

)2

dy − α

〈t〉
∫

2y(θαg)∂y(θαg) dy

=
∫ (

∂y(θαg) + αy

2〈t〉θαg

)2

dy + α

〈t〉
∫

(θαg)
2 dy

� α

〈t〉
∫

(θαg)
2 dy,

upon integrating by parts with respect to y in the third equality. No boundary terms
arise in this process. ��

Using Lemma 3.3 we may bound the dissipation term in (3.11) from below as

‖θα∂y∂
m
x g‖2

L2

‖θα∂mx g‖L2
� β

2

‖θα∂y∂
m
x g‖2

L2

‖θα∂mx g‖L2
+ 2 − β

2

α1/2

〈t〉1/2 ‖θα∂y∂
m
x g‖L2

� β

2

‖θα∂y∂
m
x g‖2

L2

‖θα∂mx g‖L2
+ α1/2β

2〈t〉1/2 ‖θα∂y∂
m
x g‖L2

+ α(1 − β)

〈t〉 ‖θα∂mx g‖L2 (3.14)

where β ∈ (0, 1/2) is to be chosen precise later.
For the damping terms in (3.11) we have the lower bounds

1

‖θα∂mx g‖L2

(
α(1 − 2α)

4〈t〉 ‖zθα∂mx g‖2L2 + 2 − α

2〈t〉 ‖θα∂mx g‖2L2

)

= 1

‖θα∂mx g‖L2

(
α

4〈t〉 ‖((1 − 2α)z2 + 4γ )1/2θα∂mx g‖2L2 + 1 − α/2 − αγ

〈t〉 ‖θα∂mx g‖2L2

)

� α(1 − 2α)

8〈t〉
‖zθα∂mx g‖2

L2

‖θα∂mx g‖L2
+ αγ 1/2(1 − 2α)1/2

4〈t〉 ‖zθα∂mx g‖L2

+ 1 − α/2 − αγ

〈t〉 ‖θα∂mx g‖L2 . (3.15)

In the last inequality above we used that

((1 − 2α)z2 + 4γ )1/2 � 2γ 1/2

((1 − 2α)z2 + 4γ )1/2 � (1 − 2α)1/2z

which holds for all z � 0, when α ∈ [1/4, 1/2] and γ ∈ [0, 1/2]. In summary, in
this subsection we have proven the following bounds.
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Lemma 3.4. (Lower bounds for the damping and dissipative terms). Fix
α ∈ [1/4, 1/2], and let β, γ ∈ [0, 1/2] be arbitrary. Then we have

∑

m�0

(
D̃m + α(1 − 2α)

4〈t〉 Z̃m + 2 − α

2〈t〉 Xm

)

� β

2
‖g‖D̃τ,α

+ α(1 − 2α)

8〈t〉 ‖g‖Z̃τ,α
+ α1/2β

2〈t〉1/2 ‖g‖Dτ,α

+ αγ 1/2(1 − 2α)1/2

4〈t〉 ‖g‖Zτ,α + 1 + α(1/2 − γ − β)

〈t〉 ‖g‖Xτ,α (3.16)

independently of τ > 0.

Proof. The lemma follows upon recasting (3.14) and (3.15) as

D̃m � β

2
D̃m + α1/2β

2〈t〉1/2 Dm + α(1 − β)

〈t〉 Xm

2 − α

2〈t〉 Xm + α(1 − 2α)

4〈t〉 Z̃m � α(1 − 2α)

8〈t〉 Z̃m + αγ 1/2(1 − 2α)1/2

4〈t〉 Zm

+ 1 − α/2 − αγ

〈t〉 Xm

and summing over m � 0. ��

3.4. Bounds for the Nonlinear Terms

In this subsection we bound the nonlinear terms on the right side of (3.12) for
every m � 0, cf. estimates (3.20)–(3.22) below. When summed over m � 0 we
obtain the following tangentially analytic estimates for the nonlinear terms.

Lemma 3.5. (Estimates for the nonlinearity). There exits a universal constant
C � 1 such that the bounds

∑

m�0

|Um |τmMm

‖θα∂mx g‖L2
� C〈t〉1/4

τ(t)1/2
‖g‖Xτ,α‖g‖Yτ,α (3.17)

∑

m�0

|Vm |τmMm

‖θα∂mx g‖L2
� C〈t〉3/4

τ(t)1/2
‖g‖Dτ,α‖g‖Yτ,α (3.18)

∑

m�0

|Tm |τmMm

‖θα∂mx g‖L2
� C0〈t〉1/4

τ(t)1/2
‖g‖1/2Xτ,α

‖g‖1/2Zτ,α
‖g‖Yτ,α

+ C〈t〉1/2
τ(t)1/2

‖g‖1/2Xτ,α
‖g‖1/2Dτ,α

‖g‖Yτ,α (3.19)

hold for every τ > 0 and α ∈ [1/4, 1/2].
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Proof. First, using (3.4) and (3.5), and the one dimensional Agmon inequality in
the x variable we obtain

|Um |
‖θα∂mx g‖L2

�
[m/2]∑
j=0

(
m

j

)
‖∂m− j

x u‖L2
x L

∞
y

‖θα∂
j+1
x g‖L∞

x L2
y

+
m∑

j=[m/2]+1

(
m

j

)
‖∂m− j

x u‖L∞
x,y

‖θα∂
j+1
x g‖L2

x,y

� C〈t〉1/4
[m/2]∑
j=0

(
m

j

)
‖θα∂

m− j
x g‖L2‖θα∂

j+1
x g‖1/2

L2 ‖θα∂
j+2
x g‖1/2

L2

+ C〈t〉1/4
m∑

j=[m/2]+1

(
m

j

)
‖θα∂

m− j
x g‖1/2

L2 ‖θα∂
m− j+1
x g‖1/2

L2 ‖θα∂
j+1
x g‖L2

where C > 0 is independent of α ∈ [1/4, 1/2]. Upon multiplying by τmMm and
using the definitions (2.26)–(2.30), the above bound implies

|Um |τmMm

‖θα∂mx g‖L2
� C〈t〉1/4

(τ (t))1/2

⎛
⎝

[m/2]∑
j=0

Xm− j Y
1/2
j+1Y

1/2
j+2 +

m∑
j=[m/2]+1

X1/2
m− j X

1/2
m− j+1Y j+1

⎞
⎠ .

(3.20)

Similarly, by appealing to (3.9) and (3.10) we have

|Vm |
‖θα∂mx g‖L2

�
[m/2]∑
j=0

(
m

j

)
‖∂m− j

x v‖L2
x L

∞
y

‖θα∂y∂
j
x g‖L∞

x L2
y

+
m∑

j=[m/2]+1

(
m

j

)
‖∂m− j

x v‖L∞
x,y

‖θα∂y∂
j
x g‖L2

x,y

� C〈t〉3/4
[m/2]∑
j=0

(
m

j

)
‖θα∂

m− j+1
x g‖L2‖θα∂y∂

j
x g‖1/2L2 ‖θα∂y∂

j+1
x g‖1/2

L2

+ C〈t〉3/4
m∑

j=[m/2]+1

(
m

j

)
‖θα∂

m− j+1
x g‖1/2

L2 ‖θα∂
m− j+2
x g‖1/2

L2 ‖θα∂y∂
j
x g‖L2

where C > 0 is independent of α ∈ [1/4, 1/2]. Upon multiplying by τmMm and
using the definitions (2.26)–(2.30), the above bound implies

|Vm |τmMm

‖θα∂mx g‖L2
� C〈t〉3/4

(τ (t))1/2

⎛
⎝

[m/2]∑
j=0

Ym− j+1D
1/2
j D1/2

j+1 +
m∑

j=[m/2]+1

Y 1/2
m− j+1Y

1/2
m− j+2Dj

⎞
⎠ .

(3.21)
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For the last term on the right of (3.11) we appeal to (3.7)–(3.10) to obtain

|Tm |
‖θα∂mx g‖L2

� 1

2〈t〉
[m/2]∑
j=0

(
m

j

)
‖∂ j

x v‖L∞
x,y

‖θα∂
m− j
x u‖L2

x,y

+ 1

2〈t〉
m∑

j=[m/2]+1

(
m

j

)
‖∂ j

x v‖L2
x L

∞
y

‖θα∂
m− j
x u‖L∞

x L2
y

� C〈t〉1/2
[m/2]∑
j=0

(
m

j

)
‖θα∂

j+1
x g‖1/2

L2
y
‖θα∂

j+2
x g‖1/2

L2
y
‖θα∂

m− j
x g‖1/2

L2 ‖θα∂y∂
m− j
x g‖1/2

L2

+ C〈t〉1/4
[m/2]∑
j=0

(
m

j

)
‖θα∂

j+1
x g‖1/2

L2
y
‖θα∂

j+2
x g‖1/2

L2
y
‖θα∂

m− j
x g‖1/2

L2 ‖zθα∂
m− j
x g‖1/2

L2

+ C〈t〉1/2
m∑

j=[m/2]+1

(
m

j

)
‖θα∂

j+1
x g‖L2‖θα∂

m− j
x g‖1/4

L2 ‖θα∂
m− j+1
x g‖1/4

L2

× ‖θα∂
m− j
x ∂yg‖1/4L2 ‖θα∂

m− j+1
x ∂yg‖1/4L2

+ C〈t〉1/4
m∑

j=[m/2]+1

(
m

j

)
‖θα∂

j+1
x g‖L2‖θα∂

m− j
x g‖1/4

L2 ‖θα∂
m− j+1
x g‖1/4

L2

× ‖zθα∂
m− j
x g‖1/4

L2 ‖zθα∂
m− j+1
x g‖1/4

L2

where C > 0 is independent of α ∈ [1/4, 1/2]. Upon multiplying by τmMm and
using the definitions (2.26)–(2.30), the above bound implies

|Tm |τmMm

‖θα∂mx g‖L2
� C〈t〉1/2

(τ (t))1/2

⎛
⎝

[m/2]∑
j=0

Y 1/2
j+1Y

1/2
j+2X

1/2
m− j D

1/2
m− j

+
m∑

j=[m/2]+1

Y j+1X
1/4
m− j X

1/4
m− j+1D

1/4
m− j D

1/4
m− j+1

⎞
⎠

+ C〈t〉1/4
(τ (t))1/2

⎛
⎝

[m/2]∑
j=0

Y 1/2
j+1Y

1/2
j+2X

1/2
m− j Z

1/2
m− j

+
m∑

j=[m/2]+1

Y j+1X
1/4
m− j X

1/4
m− j+1Z

1/4
m− j Z

1/4
m− j+1

⎞
⎠ . (3.22)

The proof of the lemma is completed upon summing (3.20)–(3.22) over m � 0
and using the bound

∑

m�0

m∑
j=0

a jbm− j �
∑

j�0

a j

∑

k�0

bk

for positive sequences {a j } j�0 and {b j } j�0.
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Remark 3.6. (Analytic product estimates). We note that the proof of Lemma 3.5
directly implies that the following bounds hold

‖U(g(1))∂x g
(2)‖Xτ,α � C

τ(t)1/2
‖g(1)‖Bτ,α‖g(2)‖Yτ,α

‖V(g(1))∂yg
(2)‖Xτ,α � C

τ(t)1/2
‖g(2)‖Bτ,α‖g(1)‖Yτ,α

1

2〈t〉‖V(g(1))U(g(2))‖Xτ,α � C0

τ(t)1/2
‖g(2)‖Bτ,α‖g(1)‖Yτ,α

for some universal constant C > 0, independent of τ > 0 and α ∈ [1/4, 1/2].

3.5. Conclusion of the A Priori Estimates

At this stage we make a choice for the free parameters α, β, and γ . First, we
introduce

δ = δ(ε) ∈ (ε, 1/10)

which is to be chosen at the end of the proof, where without loss of generality
ε � 1/200. We set

α = 1 − δ

2
, β = γ = δ

2
.

With this choice ofα, β, γ , we sumestimate (3.12) form � 0, appeal toLemmas 3.4
and 3.5, and arrive at

d

dt
‖g‖Xτ,α + 5/4 − δ

〈t〉 ‖g‖Xτ,α + δ

C1〈t〉5/4
(2〈t〉1/4‖g‖Xτ,α

+ 〈t〉1/4‖g‖Zτ,α + 〈t〉1/4‖g‖Z̃τ,α
+ 〈t〉3/4‖g‖Dτ,α + 〈t〉5/4‖g‖D̃τ,α

)

�
(

τ̇ (t) + C0

τ(t)1/2
(〈t〉1/4‖g‖Xτ,α + 〈t〉1/4‖g‖Zτ,α + 〈t〉3/4‖g‖Dτ,α )

)
‖g‖Yτ,α

for some sufficiently large universal constants C0,C1 � 1 which are independent
of α and δ. Upon recalling the notations (2.34) and (2.37), we can rewrite the above
in a more compact form as

d

dt
‖g‖Xτ,α + 5/4 − δ

〈t〉 ‖g‖Xτ,α + δ

C1〈t〉5/4
(‖g‖Bτ,α + ‖g‖B̃τ,α

)

�
(

τ̇ (t) + C0

τ(t)1/2
‖g‖Bτ,α

)
‖g‖Yτ,α (3.23)

with C0,C1 � 1 are universal constants, that are in particular independent of the
choice of δ ∈ (ε, 1/10).
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We next choose the function τ(t) such that

d

dt
(τ (t))3/2 + 3C0‖g(t)‖Bτ (t),α = 0. (3.24)

The above ODE is meant to hold a.e. in time, since the time derivative of the
monotone decreasing absolutely continuous function (in fact Hölder 1/2 continu-
ous) is only guaranteed to exist almost everywhere. With this choice of τ in (3.24),
we infer from the a priori estimate (3.23) that

d

dt
(〈t〉5/4−δ‖g‖Xτ,α ) + δ

C1〈t〉δ
(‖g‖Bτ,α + ‖g‖B̃τ,α

)

+ C0〈t〉5/4−δ

τ (t)1/2
‖g‖Bτ,α‖g‖Yτ,α � 0

which integrated on [0, t] yields

〈t〉5/4−δ‖g‖Xτ (t),α + δ

C1

∫ t

0

1

〈s〉δ (‖g(s)‖Bτ (s),α + ‖g(s)‖B̃τ (s),α
)ds

+ C0

∫ t

0

〈s〉5/4−δ

τ (s)1/2
‖g(s)‖Yτ (s),α‖g(s)‖Bτ (s),αds

� ‖g0‖Xτ0,α � ‖g0‖Xτ0,1/2 � ε. (3.25)

From (3.25) it immediately follows that

∫ t

0
‖g(s)‖Bτ (s),αds � εC1

δ
〈t〉δ

which combined with (3.24) shows that we have the lower bound

τ(t)3/2 � τ
3/2
0 − εC2

2δ
〈t〉δ (3.26)

for all t � 0, where C2 = 6C0C1 is a universal constant that is independent of δ.
From estimate (3.26) we see that the radius of tangential analyticity obeys

τ(t) � τ0

2

on the time interval [0, Tε], where

〈Tε〉δ = δτ
3/2
0

εC2
(3.27)

and we recall that δ = δ(ε) ∈ (ε, 1/10) is yet to be chosen.
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In order to see that the monotone decreasing analyticity radius is a Hölder 1/2
continuous function of time, we may use the bound (2.38), integrate (3.24) from t1
to t2, where 0 � t1 < t2 � Tε are arbitrary, and use the estimate (3.25), to obtain

τ(t1)
3/2 − τ(t2)

3/2 � 6C0

∫ t2

t1
〈t〉1/8‖g‖1/2

B̃τ,α
‖g‖1/2Xτ,α

� 6C0 sup
t∈[0,Tε]

(〈t〉5/4−δ‖g‖Xτ,α
)1/2

(∫ t2

t1
〈t〉−δ‖g‖B̃τ,α

dt

)1/2 (∫ t2

t1
〈t〉2δ−1dt

)1/2

� 6C0
√
C1ε√
δ

(t2 − t1)
1/2

by using that 2δ − 1 � 0.
To conclude the proof, we let

δ = ε log
1

ε
(3.28)

which is a permissible choice if ε is sufficiently small. In that case, from (3.27) we
obtain

Tε =
(

τ
3/2
0 log 1

ε

C2

) 1
ε log 1

ε − 1 = exp

(
1

ε log 1
ε

log

(
τ
3/2
0 log 1

ε

C2

))
− 1. (3.29)

It is clear from (3.29) that as long as τ
3/2
0 log 1

ε
� C2e2, which is ensured by (2.39),

then we have that

Tε � exp

(
1

ε log 1
ε

)

for all 0 < ε � 1/200, which concludes the proof of the a priori estimates.

4. Uniqueness

Assume g0 ∈ X2τ0,α with ‖g0‖X2τ0 ,α � ε. Let g(1) and g(2) be two solutions to

the system (2.20)–(2.22) evolving from g0, with tangential radii of analyticity τ (1)

and τ (2) respectively, which obey the bounds in Theorem 2.2. We fix δ as given by
(3.28).

Also, define τ(t) by

τ̇ (t) + 2C0

τ(t)1/2
‖g(1)(t)‖B

τ (1)(t)
= 0, τ (0) = τ0

4
. (4.1)

In view of the estimate (2.43) for g(1) and the lower bounds (2.41) for τ (1) and τ (2),
we have that

τ0

8
� τ(t) � τ0

4
� min{τ (1), τ (2)}

2
(4.2)

for all t ∈ [0, Tε].
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We consider the difference of solutions ḡ = g(1) − g(2) which obeys

∂t ḡ − ∂2y ḡ + κϕ∂x ḡ + 1

〈t〉 ḡ

= −(u(1)∂x ḡ + ū∂x g
(2)) − (v̄∂yg

(1) + v(2)∂y ḡ) + 1

2〈t〉 (v̄u
(1) + v(2)ū) (4.3)

and has initial datum ḡ0 = 0. Here we also denote ū = u(1) − u(2) = U(ḡ) and
v̄ = v(1) − v(2) = V(ḡ).

Using estimates for the nonlinear terms as in Remark 3.6, similarly to (3.23)
we arrive at

d

dt
‖ḡ(t)‖Xτ (t) + 5/4 − δ

〈t〉 ‖ḡ(t)‖Xτ (t) + δ

C1〈t〉5/4
‖ḡ(t)‖Bτ (t)

�
(

τ̇ (t) + 2C0

τ(t)1/2
‖g(1)(t)‖Bτ (t)

)
‖ḡ(t)‖Yτ (t) + 2C0

τ(t)1/2
‖g(2)(t)‖Yτ (t)‖ḡ(t)‖Bτ (t)

(4.4)

withC0,C1 � 1 being universal constants. Since τ(t) � τ (1)(t) and the Xτ,α norm
is increasing in τ , we obtain from (4.1) that

τ̇ (t) + 2C0

τ(t)1/2
‖g(1)(t)‖Bτ (t) � 0.

On the other hand, using (2.33), (2.42), and (4.2) we may bound

‖g(2)(t)‖Yτ (t) � 1

τ(t)
‖g(2)(t)‖X2τ (t) � 1

τ(t)
‖g(2)(t)‖X

τ (1)(t)
� ε

〈t〉5/4−δτ (t)
.

Combining the above two estimates with (4.4) we arrive at

d

dt
‖ḡ(t)‖Xτ (t) + 5/4 − δ

〈t〉 ‖ḡ(t)‖Xτ (t) + δ

C1〈t〉5/4
‖ḡ(t)‖Bτ (t)

� 2εC0〈t〉δ
〈t〉5/4τ(t)3/2

‖ḡ(t)‖Bτ (t). (4.5)

To conclude we note that by the definition of Tε in (3.27) we have that

δ

C1
= ε log 1

ε

C1
� 32εC0〈t〉δ

τ
3/2
0

� 2εC0〈t〉δ
τ (t)3/2

(4.6)

holds. From (4.5) and (4.6) we obtain

d

dt
‖ḡ(t)‖Xτ (t) + 5/4 − δ

〈t〉 ‖ḡ(t)‖Xτ (t) � 0,

which concludes the proof of uniqueness since ḡ0 = 0.
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5. Existence

Throughout this section we fix α = 1/2 − δ, where δ = ε log 1
ε
. We assume

the initial datum g0 obeys ‖g0‖X2τ0,1/2 � ε, where the pair (τ0, ε) obeys (2.39).

We first prove the existence of solutions g(ν) to a parabolic approximation of
the Prandtl equations, with the term−ν∂2x g present on the left side of (2.20). These
solutions are shown to obey uniform in ν bounds in L∞

t Xτ (ν)(t),α ∩ L1
t Bτ (ν)(t),α for

a sequence of tangential analyticity radii τ (ν). These radii obey τ (ν) � τ0/2 for all
t ∈ [0, Tε] and are moreover uniformly equicontinuous on this time interval, where
Tε is given by (3.27), i.e.

〈Tε〉δ = τ
3/2
0 log 1

ε

K∗
(5.1)

for a sufficiently large universal constant K∗. Moreover, g(ν) and τ (ν) are shown to
obey (3.24).

With these uniform in ν bounds we then show that the τ (ν) converge along a
subsequence to an analyticity radius τ(t) � τ0/2 on [0, Tε], and along this subse-
quence, the g(ν) are shown to be a Cauchy sequence in the topology induced by
L∞
t Xτ0,α ∩ L1

t Bτ0,α . By the completeness of L∞(L2(θα(t, y)dydx)dt) the exis-
tence of solutions to Prandtl in the sense of Definition 2.1 is then completed.

5.1. A Dissipative Approximation

For ν > 0 we consider the nonlinear parabolic equation

∂t g
(ν) − ∂2y g

(ν) − ν∂2x g
(ν) + (u(ν) + κϕ)∂x g

(ν) + v(ν)∂yg
(ν)

+ 1

〈t〉g
(ν) − 1

2〈t〉v
(ν)u(ν) = 0 (5.2)

∂yg
(ν)|y=0 = g(ν)|y=∞ (5.3)

u(ν)(y) = U(g(ν)) := θ−1(y)
∫ y

0
g(ν)(ȳ)θ1(ȳ)d ȳ (5.4)

v(ν)(y) = V(g(ν)) := −
∫ y

0
∂xu

(ν)(ȳ)d ȳ. (5.5)

Our goal is to construct solutions g(ν) with corresponding tangential analyticity
radii τ (ν), so that uniformly in ν > 0 we have the estimate

sup
t∈[0,Tε]

(
〈t〉5/4−δ‖g(ν)‖X

τ (ν)(t),α

)
+ δ

K∗

∫ Tε

0

1

〈s〉δ ‖g(ν)(s)‖B
τ (ν)(s),α

ds

+ K∗
∫ Tε

0

〈s〉5/4−δ

τ (s)1/2
‖g(ν)(s)‖Y

τ (ν)(s),α
‖g(ν)(s)‖B

τ (ν)(s),α
ds � 4ε, (5.6)
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where K∗ > 0 is a sufficiently large universal constant, and the radii τ (ν)(t) obey
the ODE

d

dt
τ (ν)(t) + 2K∗

τ (ν)(t)1/2
‖g(ν)(t)‖B

τ (ν)(t),α
= 0, τ (ν)(0) = τ0. (5.7)

For ν > 0, estimate (5.6) and the ODE (5.7), correspond to (3.25) respectively
(3.24) for the limiting Prandtl system ν = 0. Although the system (5.2)–(5.5) is
parabolic, we detail the construction of g(ν) and τ (ν) since the first order ODE
(5.7) has a nonlinear term which convergences only once the radius τ (ν) has been
constructed already to satisfy this equation. The method of constructing g(ν) and
τ (ν) draws from ideas employed [21,24] for the hydrostatic Euler equations.

At this stage it is convenient to introduce some notation. Let N � 1. Similarly
to (2.26)–(2.37), for h : H → R and τ > 0 define the weighted Sobolev norms

‖h‖XN
τ

=
N∑

m=0

Xm(h, τ ), (5.8)

‖h‖DN
τ

=
N∑

m=0

Dm(h, τ ), ‖h‖D̃N
τ

=
N∑

m=0

Dm(h, τ )2

Xm(h, τ )
=

N∑
m=0

D̃m(h, τ ),

‖h‖ZN
τ

=
N∑

m=0

Zm(h, τ ), ‖h‖Z̃ N
τ

=
N∑

m=0

Zm(h, τ )2

Xm(h, τ )
=

N∑
m=0

Z̃m(h, τ ),

‖h‖Y N
τ

=
N∑

m=1

Ym(h, τ ), ‖h‖Ỹ N
τ

=
N∑

m=1

Ym(h, τ )2

Xm−1(h, τ )
,

‖h‖BN
τ

=
N∑

m=0

Bm(h, τ ), ‖h‖B̃N
τ

=
N∑

m=0

B̃m(h, τ ). (5.9)

We will use frequently that the bound

‖h‖2BN
τ

� 3〈t〉1/4‖h‖XN
τ
‖h‖B̃N

τ

holds independently of N � 1 and τ > 0.

5.2. A Two-Step Picard Iteration for the Dissipative System

We define

S(ν)(t)h0 = h(ν)(t)

to be the solution to the initial value problem to the linear part of (5.2)–(5.5), namely

∂t h
(ν) − ∂2y h

(ν) − ν∂2x h
(ν) + κϕ∂xh

(ν) + 1

〈t〉h
(ν) = 0 (5.10)

∂yh
(ν)|y=0 = 0 = h(ν)|y=∞ (5.11)

h(ν)|t=0 = h0. (5.12)
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Solving (5.10)–(5.12) onH with the Neumann boundary condition (5.11) at y = 0
may be done using an even extension across y = 0 and solving the problem (5.10)
on R

2 with vanishing boundary conditions as |y| → ∞. As such, an explicit
solution formula for S(ν)(t) may be obtained, though it will not be essentially used
here.We note that if h0 obeys the boundary condition (5.11), the solutions S(ν)(t)h0
automatically lie inH2,1,β for any β < 1 (cf. Definition 2.1).

Next, we set up a two-step Picard iteration scheme. For n = 0, 1 we let

g(0,ν)(t) = g(1,ν)(t) = S(ν)(t)g0

while for n � 2 we define g(n,ν) to be the mild solution (obtained by the Duhamel
formula for the semigroup S(ν)) of the linear initial value problem

∂t g
(n,ν) − ∂2y g

(n,ν) − ν∂2x g
(n,ν) + κϕ∂x g

(n,ν) + 1

〈t〉 g
(n,ν)

= −U(g(n−2,ν))∂x g
(n−1,ν) − V(g(n−1,ν))∂yg

(n−2,ν) + 1

2〈t〉V(g(n−1,ν))U(g(n−2,ν))

(5.13)

∂yg
(n,ν)|y=0 = 0 = g(n,ν)|y=∞ (5.14)

g(n,ν)|t=0 = g0. (5.15)

The pairing of g(n−1,ν) and g(n−2,ν) in (5.13) ismotivated by the bounds guaranteed
by Remark 3.6.

5.3. Sobolev Bounds and Convergence of the Picard Iteration

Let N be an integer such that N � 1
ν
. For the remainder of this subsection

we fix this value of N and we shall ignore the ν and N indices for g and τ . We
claim that there exists Tε,N > 0, to be chosen later, and a sequence of absolutely
continuous monotone decreasing functions

τ (n) = τ
(n)
N : [0, Tε,N ] →

[
5τ0
4

,
7τ0
4

]
(5.16)

with τ (n)(0) = 7τ0/4 such that the bound

sup
[0,Tε,N ]

(〈t〉5/4−δ‖g(n)(t)‖XN
τ (n)(t)

)

+ δ

K

∫ Tε,N

0

1

〈s〉δ
(

‖g(n)(s)‖BN
τ (n)(s)

+ ‖g(n)(s)‖B̃N
τ (n)(s)

)
ds

+ 8N K

τ
1/2
0

∫ Tε,N

0
〈s〉5/4−δ(‖g(n−1)(s)‖BN

τ (n)(s)
+ ‖g(n−1)(s)‖B̃N

τ (n)(s)
)‖g(n)‖Y N

τ (n)(s)
ds

+ ν

4

∫ Tε,N

0
〈s〉5/4−δ‖g(n)(s)‖Ỹ N+1

τ (n)(s)

ds � 2ε (5.17)

holds for all n � 1, and some universal constant K � 1.



Almost Global Existence for the Equations

We prove (5.17) inductively on n. For n = 1 this bound follows immediately
from the assumption ‖g0‖X2τ0,1/2 � ε, and the dissipativity of S(ν). In order to prove
the induction step we proceed as follows. Since Mm−1/2 � mMm � 2Mm−1 for
all m � 1, and there are no boundary terms when integrating by parts in x , for
all m � 0 one may use Remark 3.6 to derive an estimate similar to (3.23) for the
system (5.13)–(5.15) which is

d

dt
‖g(n)‖XN

τ(n)
+ 5/4 − δ

〈t〉 ‖g(n)‖XN
τ(n)

+ δ

K 〈t〉5/4
(

‖g(n)‖BN
τ(n)

+ ‖g(n)‖B̃N
τ(n)

)

+ 8N K

τ
1/2
0

(‖g(n−1)‖BN
τ(n)

+ ‖g(n−1)‖B̃N
τ(n)

)‖g(n)‖Y N
τ(n)

+ ν

4
‖g(n)‖Ỹ N+1

τ(n)

�
(

τ̇ (n) + 8N K

τ
1/2
0

(‖g(n−1)‖BN
τ(n)

+ ‖g(n−1)‖B̃N
τ(n)

)

)
‖g(n)‖Y N

τ(n)

+ K

(τ (n))1/2
‖g(n−2)‖BN

τ(n)
‖g(n−1)‖Y N

τ(n)
+ K

(τ (n))1/2
‖g(n−2)‖BN

τ(n)
YN+1(g

(n−1), τ (n))

�
(

τ̇ (n) + 12N K

τ
1/2
0

(‖g(n−1)‖BN
τ(n−1)

+ ‖g(n−1)‖B̃N
τ(n−1)

)

)
‖g(n)‖Y N

τ(n)

+ 2N K

τ
1/2
0

‖g(n−2)‖BN
τ(n−1)

‖g(n−1)‖Y N
τ(n−1)

+ 2N K

τ
1/2
0

‖g(n−2)‖BN
τ(n−1)

YN+1(g
(n−1), τ (n−1))

(5.18)

for all n � 2, where K is a sufficiently large universal constant (in particular
δ, N , n, τ -independent). In the second inequality in (5.18) we have used several
times that cf. (5.16) we have

max
0�| j |�N

(
τ (n)

τ (n−1)

) j

� max
0�| j |�N

(
7

5

) j

� 2N/2.

The main difficulty lies in obtaining a ν-independent bound for the last term on the
right side of (5.18). First we notice that since

Xm(h, τ )

τ
= Ym(h, τ )

m

and Nν � 1 we may estimate

2N+2K

τ
1/2
0

‖g(n−2)‖BN
τ(n−1)

YN+1(g
(n−1), τ (n−1))

� ν

8

(YN+1(g(n−1), τ (n−1))2

XN (g(n−1), τ (n−1))
+ 4N+3K 2

ντ (n−1)
‖g(n−2)‖2

BN
τ(n−1)

XN (g(n−1), τ (n−1))

� ν

8
‖g(n−1)‖Ỹ N+1

τ(n−1)
+ 4N+4K 2

νN
‖g(n−2)‖2

BN
τ(n−1)

YN (g(n−1), τ (n−1))

� ν

8
‖g(n−1)‖Ỹ N+1

τ(n−1)
+ 4N+5K 2〈t〉1/4

νN
‖g(n−2)‖XN

τ(n−1)
‖g(n−2)‖B̃N

τ(n−1)
‖g(n−1)‖Y N

τ(n−1)

� ν

8
‖g(n−1)‖Ỹ N+1

τ(n−1)
+ 8N+4K 2〈t〉1/4‖g(n−2)‖XN

τ(n−2)
‖g(n−2)‖B̃N

τ(n−1)
‖g(n−1)‖Y N

τ(n−1)
.

(5.19)
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At this stage, for n � 1 we chose τ (n) to solve the first order ODE

τ̇ (n) + 12N K

τ
1/2
0

(‖g(n−1)‖BN
τ (n−1)

+ ‖g(n−1)‖B̃N
τ (n−1)

)=0, τ (n)(0)= 7τ0
4

. (5.20)

The key point here is that by the induction step, the functions g(n−1) and τ (n−1) are
known, and due to the estimates (5.17) we have that

∫ t

0
‖g(n−1)(s)‖BN

τ (n−1)(s)
+ ‖g(n−1)(s)‖B̃N

τ (n−1)(s)
ds � 2εK 〈t〉δ

δ
< ∞ (5.21)

for all t ∈ [0, Tε,N ]. Thus the existence of an absolutely continuous solution τ (n)

to (5.20) is immediate. For n = 0 we may simply let τ (0)(t) = 7τ0/4. Moreover,
from (5.21) we have that (5.16) holds at least on [0, Tε,N ], with Tε,N defined by

τ
3/2
0 = 12N+1K 2

log 1
ε

〈Tε,N 〉δ. (5.22)

In fact we will a-posteriori show that the time interval can be chosen independently
of N � 1/ν, as the factor 12N is superfluous. For the moment however, the bound
(5.22) is good enough since it is independent of n � 0 (recall that for now N is
fixed).

We now combine the bounds (5.18) and (5.19) with the choice for τ (n) made in
(5.20), integrate on [0, t], and use the induction assumption (via the bounds (5.17))
to obtain that

〈t〉5/4−δ‖g(n)(t)‖XN
τ(n)(t)

+ δ

K

∫ t

0

1

〈s〉δ (‖g(n)(s)‖BN
τ(n)(s)

+ ‖g(n)(s)‖B̃N
τ(n)(s)

)ds

+ 8N K

τ
1/2
0

∫ t

0
〈s〉5/4−δ(‖g(n−1)(s)‖BN

τ(n)(s)
+ ‖g(n−1)(s)‖B̃N

τ(n)(s)
)‖g(n)(s)‖Y N

τ(n)(s)
ds

+ ν

4

∫ t

0
〈s〉5/4−δ‖g(n)(s)‖Ỹ N+1

τ(n)(s)
ds

� ‖g0‖XN
2τ0

+ ν

8

∫ t

0
〈s〉5/4−δ‖g(n−1)(s)‖Ỹ N+1

τ(n−1)(s)
ds

+ 8N+4K 2(sup
[0,t]

〈s〉5/4−δ‖g(n−2)(s)‖XN
τ(n−2)(s)

)(sup
[0,t]

〈s〉2δ−1)

×
∫ t

0
〈s〉5/4−δ‖g(n−2)(s)‖B̃N

τ(n−1)(s)
‖g(n−1)(s)‖Y N

τ(n−1)(s)
ds

+ 2N+2K

τ
1/2
0

∫ t

0
〈s〉5/4−δ‖g(n−2)(s)‖BN

τ(n−1)(s)
‖g(n−1)(s)‖Y N

τ(n−1)(s)
ds

� ε + ν

8

∫ t

0
〈s〉5/4−δ‖g(n−1)(s)‖Ỹ N+1

τ(n−1)(s)
ds

+ 8N K

2τ 1/20

∫ t

0
〈s〉5/4−δ(‖g(n−2)(s)‖BN

τ(n−1)(s)
+ ‖g(n−2)(s)‖B̃N

τ(n−1)(s)
)‖g(n−1)(s)‖Y N

τ(n−1)(s)
ds

� 2ε (5.23)
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holds for all t ∈ [0, Tε,N ]. In the second to last inequality above we have used that

max{84K ετ
1/2
0 , 4−N+2} � 1,

which holds if N � 2 and τ
1/2
0 ε is less than a small universal constant (which was

assumed in (2.39)). This concludes the proof of the n-independent bounds (5.16)
and (5.17) for the g(n) = g(n,ν).

In order to show that the Picard approximation converges, we next show that
the difference

ḡ(n) = g(n) − g(n−1)

contracts exponentially in a suitable weighted Sobolev space, of order N − 1 in x .
For this purpose, for n � 1 define the decreasing function τ̄ (n)(t) by

d

dt
τ̄ (n)(t) + 8N K

τ
1/2
0

(‖g(n−1)(t)‖BN−1
5τ0/4

+ ‖g(n−1)(t)‖B̃N−1
5τ0/4

) = 0, τ̄ (n)(0) = 7τ0
4

,

(5.24)

which by the uniform in n estimate (5.17) obeys

τ̄ (n)(t) � 5τ0
4

for t ∈ [0, Tε,N ].

We measure the difference ḡ(n) by

An := sup
[0,Tε,N ]

(〈t〉5/4−δ‖ḡ(n)(t)‖XN−1
τ̄ (n)(t)

) + ν

4

∫ Tε,N

0
〈s〉5/4−δ‖ḡ(n)(s)‖Ỹ N

τ̄ (n)(s)
ds

+ δ

K

∫ Tε,N

0

1

〈s〉δ (‖ḡ(n)(s)‖BN−1
τ̄ (n)(s)

+ ‖ḡ(n)(s)‖B̃N−1
τ̄ (n)(s)

)ds

+ 8N K

τ
1/2
0

∫ Tε,N

0
〈s〉5/4−δ(‖g(n−1)(s)‖BN−1

5τ0/4
+ ‖g(n−1)(s)‖B̃N−1

5τ0/4
)‖ḡ(n)‖Y N−1

τ̄ (n)(s)

ds.

We claim that the sequence An contracts, and prove that

An � An−1 + An−2

4
(5.25)

for all n � 2. In order to establish (5.25) we consider the equation obeyed by ḡ(n)

∂t ḡ
(n) − ∂2y ḡ

(n) − ν∂2x ḡ
(n) + κϕ∂x ḡ

(n) + 1

〈t〉 ḡ
(n)

= −U(g(n−2))∂x ḡ
(n−1) − U(ḡ(n−2))∂x g

(n−2)

− V(ḡ(n−1))∂yg
(n−2) − V(g(n−2))∂y ḡ

(n−2)

+ 1

2〈t〉V(ḡ(n−1))U(g(n−2)) + 1

2〈t〉V(g(n−2))U(ḡ(n−2)).
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Using estimates that are similar to those in Remark 3.6, the bounds (5.18)–(5.23),
and using the choice of τ̄ (n) in (5.24) it then follows that

d

dt
‖ḡ(n)‖XN−1

τ̄ (n)
+ 5/4 − δ

〈t〉 ‖ḡ(n)‖XN−1
τ̄ (n)

+ δ

K 〈t〉5/4 (‖ḡ(n)‖BN−1
τ̄ (n)

+ ‖ḡ(n)‖B̃N−1
τ̄ (n)

) + ν

4
‖ḡ(n)‖Ỹ N

τ̄ (n)

+ 8N K

τ
1/2
0

(‖g(n−1)‖BN−1
5τ0/4

+ ‖g(n−1)‖B̃N−1
5τ0/4

)‖ḡ(n)‖Y N−1
τ̄ (n)

�
(

d

dt
τ̄ (n) + 8N K

τ
1/2
0

(‖g(n−1)‖BN−1
5τ0/4

+ ‖g(n−1)‖B̃N−1
5τ0/4

)

)
‖ḡ(n)‖Y N−1

τ̄ (n)

+ 2N K

τ
1/2
0

‖ḡ(n−2)‖BN−1
τ̄ (n−2)

‖g(n−2)‖Y N
τ(n−2)

+ ν

16
‖ḡ(n−1)‖Ỹ N

τ̄ (n−1)

+
(
4N K

τ
1/2
0

‖g(n−2)‖BN−1
5τ0/4

+ 8N K 2〈t〉1/4‖g(n−2)‖XN−1
5τ0/4

‖g(n−2)‖B̃N−1
5τ0/4

)
‖ḡ(n−1)‖Y N−1

τ̄ (n−1)

� N2N+1K

τ
3/2
0

‖ḡ(n−2)‖BN−1
τ̄ (n−2)

‖g(n−2)‖XN
τ(n−2)

+ ν

16
‖ḡ(n−1)‖Ỹ N

τ̄ (n−1)

+ 1

4

(
8N K

τ
1/2
0

(‖g(n−2)‖BN−1
5τ0/4

+ ‖g(n−2)‖B̃N−1
5τ0/4

)

)
‖ḡ(n−1)‖Y N−1

τ̄ (n−1)
(5.26)

for t ∈ [0, Tε,N ]. The proof of (5.25) now follows from (5.26) upon integrating in
time, recalling that δ = ε log 1

ε
, that (ε, τ0) obey (2.39), and that the bound

N2N+1K

τ
3/2
0

‖g(n−2)‖XN
τ (n−2)

� 4εN2N K

τ
3/2
0 〈t〉5/4−δ

� δ

4K 〈t〉5/4
16εN2N K 2〈Tε,N 〉δ

τ
3/2
0 δ

� δ

4K 〈t〉5/4
holds in view of the bound (5.17) and the definition of Tε,N in (5.22). Thus, we
have proven (5.25), from which it follows that

0 � An � a0

(√
17 − 1

8

)n

+ a1

(√
17 + 1

8

)n

→ 0 as n → ∞

where a0, a1 > 0 are determined from computing A1 and A2. This concludes the
proof of convergence for the Picard iteration scheme (5.13) and (5.14) on [0, Tε,N ].
The convergence holds in the norm defined by An . Moreover, the available bounds
are sufficient in order to show that the limiting function g(ν) obeys (5.2)–(5.5)
pointwise in x when integrated against H1(θαdy) functions of y.

5.4. A Posteriori Estimates for the Dissipative Approximation

Having constructed solutions g(ν) of (5.2)–(5.5) with finite Sobolev regularity
in x (of order N � 1/ν), we a posteriori show that these solutions obey better
bounds, and in particular, are real-analytic with respect to x .

For this purpose, we would like to perform estimates similar to those in the
previous subsection, and pass N → ∞. The main obstruction to directly using the
bound (5.17) and passing N → ∞ is that the time of existence we have so far
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guaranteed for g(ν) is Tε,N defined by (5.22), and thus depends on N itself. Thus,
the first step is to show that g(ν) obeys ν-independent Sobolev bounds on a time
interval Tε that is independent of N (and ν).

As before, let N be such that Nν � 1 with the caveat that we will in this
subsection look for bounds independent of N . Let K be the constant from (5.18),
and define τ

(ν)
N (t) by

d

dt
τ

(ν)
N + 4K

τ
1/2
0

(‖g(ν)‖BN

τ
(ν)
N

+ ‖g(ν)‖B̃N

τ
(ν)
N

) + 16K 2〈t〉1/4‖g(ν)‖XN

τ
(ν)
N

‖g(ν)‖B̃N

τ
(ν)
N

=0,

(5.27)

with initial value τ
(ν)
N (0) = 7τ0/4. For each N , this is a first order ODE, with a

degree N polynomial nonlinearity in τ
(ν)
N . Due to the a priori bounds (5.17) inherited

by g(ν), at least on [0, Tε,N ] the ODE (5.27) has an absolutely continuous solution.
We let T ∗

ε,N be the maximal time for which τ
(ν)
N stays above 5τ0/4. On [0, T ∗

ε,N ]
all the estimates in the previous section are justified. We already have shown that
T ∗

ε,N � Tε,N , and we now claim that T ∗
ε,N � Tε for the Tε > 0 defined in (5.1),

which is independent of N and ν.
With τ

(ν)
N as defined above, and N � ν−1 arbitrary, we perform an estimate in

the spirit of (5.18) and (5.19), use the definition of τ
(ν)
N in (5.27), and arrive at

d

dt
‖g(ν)‖XN

τ
(ν)
N

+ 5/4 − δ

〈t〉 ‖g(ν)‖XN

τ
(ν)
N

+ δ

K 〈t〉5/4
(

‖g(ν)‖BN

τ
(ν)
N

+ ‖g(ν)‖B̃N

τ
(ν)
N

)

+ K

τ
1/2
0

(‖g(ν)‖BN

τ
(ν)
N

+ ‖g(ν)‖B̃N

τ
(ν)
N

)‖g(ν)‖Y N

τ
(ν)
N

+ ν

8
‖g(ν)‖Ỹ N+1

τ
(ν)
N

�
(
d

dt
τ

(ν)
N + K

τ
1/2
0

(‖g(ν)‖BN

τ
(ν)
N

+ ‖g(ν)‖B̃N

τ
(ν)
N

)

)
‖g(ν)‖Y N

τ
(ν)
N

− ν

8
‖g(ν)‖Ỹ N+1

τ
(ν)
N

+ K

(τ
(ν)
N )1/2

‖g(ν)‖BN

τ
(ν)
N

YN+1(g
(ν), τ

(ν)
N ) + K

(τ
(ν)
N )1/2

‖g(ν)‖BN

τ
(ν)
N

‖g(ν)‖Y N

τ
(ν)
N

�
(
d

dt
τ

(ν)
N + 3K

τ
1/2
0

(‖g(ν)‖BN

τ
(ν)
N

+ ‖g(ν)‖B̃N

τ
(ν)
N

)

)
‖g(ν)‖Y N

τ
(ν)
N

− ν

8
‖g(ν)‖Ỹ N+1

τ
(ν)
N

+ ν

8
‖g(ν)‖Ỹ N+1

τ
(ν)
N

+ 16K 2〈t〉1/4‖g(ν)‖XN

τ
(ν)
N

‖g(ν)‖B̃N

τ
(ν)
N

‖g(ν)‖Y N

τ
(ν)
N

� 0 (5.28)

where K � 1 is a universal constant. Integrating the above on [0, T ] and using that
‖g0‖X2τ0

� ε, for any N � 1/ν we obtain

sup
t∈[0,T ]

(
〈t〉5/4−δ‖g(ν)(t)‖XN

τ
(ν)
N (t)

)

+ δ

K

∫ T

0

1

〈s〉δ
(

‖g(ν)(s)‖BN

τ
(ν)
N (s)

+ ‖g(ν)(s)‖B̃N

τ
(ν)
N (s)

)
ds
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+ K

τ
1/2
0

∫ T

0
〈s〉5/4−δ

(
‖g(ν)(s)‖BN

τ
(ν)
N (s)

+ ‖g(ν)(s)‖B̃N

τ
(ν)
N (s)

)
‖g(ν)(s)‖Y N

τ
(ν)
N (s)

ds

� ε. (5.29)

Estimate (5.29) above implies that

4K

τ
1/2
0

∫ t

0
‖g(ν)(s)‖BN

τ
(ν)
N (s)

ds � 4K 2ε〈t〉δ
δτ

1/2
0

= 4K 2〈t〉δ
τ
1/2
0 log 1

ε

(5.30)

16K 2
∫ t

0
〈s〉1/4‖g(ν)(s)‖XN

τ
(ν)
N (s)

‖g(ν)(s)‖B̃N

τ
(ν)
N (s)

ds � 16K 3ε2

δ
= 16K 3ε

log 1
ε

� 4K 2〈t〉δ
τ
1/2
0 log 1

ε

upon appealing to (2.39). Inserted in (5.27), the above bounds a posteriori show
that

τ
(ν)
N (t) � 7τ0

4
− 8K 2〈t〉δ

τ
1/2
0 log 1

ε

� 5τ0
4

(5.31)

for all t � Tε, as long as Tε obeys

〈Tε〉δ �
τ
3/2
0 log 1

ε

16K 2 .

It is clear that the Tε defined earlier in (5.1) obeys the above estimate if K∗ is taken
sufficiently large. This shows that T ∗

ε,N � Tε for each N � ν−1. Moreover, the
bound (5.31) which combined with (5.29) yields

sup
t∈[0,Tε]

(
〈t〉5/4−δ‖g(ν)(t)‖XN

5τ0/4

)
+ δ

K

∫ Tε

0

1

〈s〉δ
(

‖g(ν)(s)‖BN
5τ0/4

+ ‖g(ν)(s)‖B̃N
5τ0/4

)
ds

+ K

τ
1/2
0

∫ Tε

0
〈s〉5/4−δ(‖g(ν)(s)‖BN

5τ0/4
+ ‖g(ν)(s)‖B̃N

5τ0/4
)‖g(ν)(s)‖Y N

5τ0/4
ds

� ε, (5.32)

for any N � 1, where K � 1 is a fixed universal constant. Note that upon passing
N → ∞ in (5.32), and using the Monotone Convergence Theorem, we also obtain
the bound

sup
t∈[0,Tε]

(
〈t〉5/4−δ‖g(ν)(t)‖X5τ0/4

)
+ δ

K

∫ Tε

0

1

〈s〉δ (‖g(ν)(s)‖B5τ0/4 + ‖g(ν)(s)‖B̃5τ0/4
)ds

+ K

τ
1/2
0

∫ Tε

0
〈s〉5/4−δ(‖g(ν)(s)‖B5τ0/4 + ‖g(ν)(s)‖B̃5τ0/4

)‖g(ν)(s)‖Y5τ0/4ds

� 4ε, (5.33)

for the real-analytic norms of g(ν). Due to the monotonicity of the norms with
respect to τ , this proves (5.6).

In order to obtain a limiting analyticity radius τ (ν) in the limit as N → ∞,
which obeys the nonlinear ODE (5.7), we may first try to show that the sequence
of absolutely continuous functions {τ (ν)

N }N�ν−1 is in fact equicontinuous on the
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time interval [0, Tε]. This seems however not possible due to the third term on the
left side of (5.27). We instead define a new sequence of radii θ

(ν)
N , for which the

trick used to prove uniqueness in Section 4 applies, and we are able to prove that
{θ(ν)

N }N�ν−1 is uniformly equicontinuous (in fact uniformly Hölder-1/2 in time).
Let

d

dt
θ

(ν)
N + 2K

(θ
(ν)
N )1/2

‖g(ν)‖BN

θ
(ν)
N

= 0, θ
(ν)
N (0) = τ0. (5.34)

The existence of solutions to (5.34) is immediate since the nonlinearity is a poly-
nomial of finite degree, with coefficients that are integrable in time by (5.33). We
next observe that in view of (5.30), by using a version of (5.31), we arrive at

θ
(ν)
N (t) � τ0

2
for all t ∈ [0, Tε].

Now, similarly to (5.28) we have that

d

dt
‖g(ν)‖XN

θ
(ν)
N

+ 5/4 − δ

〈t〉 ‖g(ν)‖XN

θ
(ν)
N

+ δ

K 〈t〉5/4 ‖g(ν)‖BN

θ
(ν)
N

+ δ

2K 〈t〉5/4 ‖g(ν)‖B̃N

θ
(ν)
N

+ K

(θ
(ν)
N )1/2

‖g(ν)‖BN

θ
(ν)
N

‖g(ν)‖Y N

θ
(ν)
N

+ ν

8
‖g(ν)‖Ỹ N+1

θ
(ν)
N

�
(
d

dt
θ

(ν)
N + K

(θ
(ν)
N )1/2

‖g(ν)‖BN

θ
(ν)
N

)
‖g(ν)‖Y N

θ
(ν)
N

− ν

8
‖g(ν)‖Ỹ N+1

θ
(ν)
N

− δ

2K 〈t〉5/4 ‖g(ν)‖B̃N

θ
(ν)
N

+ K

(θ
(ν)
N )1/2

‖g(ν)‖BN

θ
(ν)
N

YN+1

(
g(ν), θ

(ν)
N

)
+ K

(θ
(ν)
N )1/2

‖g(ν)‖BN

θ
(ν)
N

‖g(ν)‖Y N

θ
(ν)
N

�
(
d

dt
θ

(ν)
N + 2K

(θ
(ν)
N )1/2

(‖g(ν)‖BN

θ
(ν)
N

+ ‖g(ν)‖B̃N

θ
(ν)
N

)

)
‖g(ν)‖Y N

θ
(ν)
N

− δ

2K 〈t〉5/4 ‖g(ν)‖B̃N

θ
(ν)
N

+ 16K 2〈t〉1/4
νN

‖g(ν)‖XN
τ0

‖g(ν)‖B̃N

θ
(ν)
N

‖g(ν)‖Y N
τ0

�
(
16K 3〈t〉1/4

νNτ0
‖g(ν)‖2

XN
5τ0/4

− δ

2K 〈t〉5/4
)

‖g(ν)‖B̃N

θ
(ν)
N

� 0. (5.35)

In the last inequality of (5.35) we have used the same trick as in Section 4: that by
(5.32) we have

sup
t∈[0,Tε]

(
32K 4

τ0
〈t〉3/2‖g(ν)‖2X5τ0/4

)
� 32K 4ε2

τ0
� ε log

1

ε
= δ

upon appealing to assumption (2.39).
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Using the bound (5.35), we show that the sequence of absolutely continuous
functions {θ(ν)

N }N�ν−1 , is in fact uniformly bounded in C1/2([0, Tε]), and thus
uniformly equicontinuous. For this purpose, let t1, t2 ∈ [0, Tε] be such that |t1 −
t2| � ζ . Using the mean value theorem, the definition of θ

(ν)
N in (5.34), and the

definitions (5.8) and (5.9) we arrive at

|θ(ν)
N (t1) − θ

(ν)
N (t2)| � 4K

τ
1/2
0

∫ t2

t1
‖g(ν)(s)‖BN

θ
(ν)
N (s)

ds

� 4K

τ
1/2
0

∫ t2

t1
〈s〉1/8‖g(ν)(s)‖1/2

XN

θ
(ν)
N (s)

‖g(ν)(s)‖1/2
B̃N

θ
(ν)
N (s)

ds

� 16K 2|t1 − t2|
ζ 1/2τ0

+ ζ 1/2
∫ t2

t1
〈s〉1/4‖g(ν)(s)‖XN

θ
(ν)
N (s)

‖g(ν)(s)‖B̃N

θ
(ν)
N (s)

ds

�
(
16K 2

τ0
+ 16K ε2

δ

)
ζ 1/2 (5.36)

Since ζ ∈ (0, 1) was arbitrary, it follows from (5.36) that the θ
(ν)
N are uniformly

equicontinous. The Arzela–Ascoli theorem guarantees the existence of a subse-
quence θ

(ν)
Nk

with Nk → ∞ as k → ∞, and of a function τ (ν) such that

θ
(ν)
Nk

→ τ (ν) uniformly on [0, Tε] as k → ∞.

Moreover, we have that τ (ν) � τ0/2 on [0, Tε]. By passing N = Nk → ∞ in
(5.34) we obtain

d

dt
τ (ν) + 2K

(τ (ν))1/2
‖g(ν)‖B

τ (ν)
= 0, τ (ν)(0) = τ0. (5.37)

Inorder to justify (5.37)weuse that by (5.33)wehave that‖g(ν)‖B5τ0/4 ∈ L1([0, Tε]),
and that the convergence of τ

(ν)
Nk

→ τ (ν) is uniform. Moreover, using (5.33) and a
bound similar to (5.36), it follows from (5.37) that

|τ (ν)(t1) − τ (ν)(t2)| �
(
16K 2

τ0
+ 16K ε2

δ

)
|t1 − t2|1/2

uniformly for t1, t2 ∈ [0, Tε]. That is, the radii τ (ν) are uniformly (with respect to
ν) Hölder 1/2 continuous. This concludes the proof of (5.6) and (5.7).

5.5. Existence of Solutions to the Prandtl System

It remains to pass ν → 0 and obtain a limiting solution g of the Prandtl equations
(2.20)–(2.22), in the sense of Definition 2.1, of a tangential analyticity radius τ

which solves (3.24), such that the pair (g, τ ) obeys the bounds (2.41)–(2.44).
We have shown in the previous subsection that the sequence τ (ν) is uniformly

equicontinuous, and thus by the Arzela–Ascoli theorem we know that along a
subsequence νk → 0, we have that τ (νk ) → τ uniformly on [0, Tε], with τ(0) = τ0,
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and τ(t) � τ0/2 on this interval. Note that from the bound (5.33) it follows that
(5.6) holds with τ (ν) replaced by the limiting function τ .

Without loss of generality, the above subsequence {νk}k�1 obeys

0 <
1

νk+1
− 1

νk
� 1

k2
.

We next show that the subsequence g(νk) is Cauchy in the norm induced by the left
side of (5.6). For this purpose, let

ḡk = g(νk) − g(νk+1)

and define

Gk := sup
[0,Tε]

(
〈t〉5/4−δ‖ḡk(t)‖X τ̄k (t)

)
+ δ

2K

∫ Tε

0

1

〈s〉δ ‖ḡk(s)‖Bτ̄k (s)ds

+ K
∫ Tε

0

〈s〉5/4−δ

τ̄k(s)1/2
‖g(νk)(s)‖B5τ0/4‖ḡk‖Yτ̄k (s)ds

where

d

dt
τ̄k + 2K

τ̄
1/2
k

‖g(νk)‖B5τ0/4 = 0, τ̄k(0) = 6τ0
5

. (5.38)

Note that from the bound (5.33), upon choosing K∗ sufficiently large, we obtain
that

τ̄k(t) � τ0 for all t ∈ [0, Tε].
We claim that

Gk � 1

k2τ 20
. (5.39)

To prove (5.39), we consider the equation obeyed by ḡk

∂t ḡk − ∂2y ḡk + κϕ∂x ḡk + 1

〈t〉 ḡk − νk∂
2
x ḡk

= (νk − νk+1)∂
2
x g

(νk+1) − U(g(νk ))∂x ḡk − U(ḡk)∂x g
(νk+1)

− V(g(νk+1))∂y ḡk − V(ḡk)∂yg
(νk ) + 1

2〈t〉U(g(νk ))V(ḡk) + 1

2〈t〉U(ḡk)V(g(νk+1)).

Similarly to (4.4) we obtain that

d

dt
‖ḡk‖X τ̄k (t) + 5/4 − δ

〈t〉 ‖ḡk‖X τ̄k (t) + δ

K 〈t〉5/4 ‖ḡk‖Bτ̄k (t) + νk

4
‖ḡk‖Ỹτ̄k (t)

+ K

τ̄
1/2
k

‖g(νk)‖Bτ̄k
‖ḡk‖Yτ̄k (t)

�
(
d

dt
τ̄k + 2K

τ̄
1/2
k

‖g(νk)‖Bτ̄k

)
‖ḡk‖Yτ̄k (t) + |νk − νk+1|‖∂2x g(νk+1)‖X τ̄k
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+ K

τ̄
1/2
k

‖ḡk‖Bτ̄k
‖g(νk+1)‖Yτ̄k

�
(
d

dt
τ̄k + 2K

τ̄
1/2
k

‖g(νk)‖B5τ0/4

)
‖ḡk‖Yτ̄k (t) + K

k2τ̄ 2k
‖g(νk+1)‖X5τ0/4

+ K 2

τ̄
3/2
k

‖ḡk‖Bτ̄k
‖g(νk+1)‖X5τ0/4 . (5.40)

In the last inequality above we used that (5.38) implies that τ̄k � 6τ0/5 < 5τ0/4,
and thus

(
sup
m�0

(
τ̄k

5τ0/4

)m+2 Mm

Mm+2

)
+

(
sup
m�0

(
τ̄k

5τ0/4

)m

m

)
� K

upon possibly increasing the value of K . Using the definition of τ̄k we obtain from
(5.40) that

d

dt
‖ḡk‖X τ̄k (t) + 5/4 − δ

〈t〉 ‖ḡk‖X τ̄k (t) + δ

2K 〈t〉5/4 ‖ḡk‖Bτ̄k (t) + K

τ̄
1/2
k

‖g(νk )‖Bτ̄k
‖ḡk‖Yτ̄k (t)

+ δ

2K 〈t〉5/4
(
1 − 2K 3

δτ
3/2
0

〈t〉5/4‖g(νk+1)‖X5τ0/4

)
‖ḡk‖Bτ̄k (t)

� K

k2τ20
‖g(νk+1)‖X5τ0/4 . (5.41)

At this stage, we use (5.33) and (5.1) which imply that

sup
t∈[0,Tε]

(
2K 3

δτ
3/2
0

〈t〉5/4‖g(νk+1)(t)‖X5τ0/4

)
� 4K 3

δτ
3/2
0

ε〈Tε〉δ = 4K 3

τ
3/2
0 log 1

ε

〈Tε〉δ � 1

if K∗ is sufficiently large. Then, again appealing to (5.33), upon integrating (5.41)
in time we obtain

Gk � εK

k2τ 20
� 1

k2τ 20
.

From here it follows that g(νk) is a Cauchy sequence in the topology induced by
Gk .

Thus, there exists a limiting function g ∈ L∞([0, Tε]; Xτ0)∩ L1([0, Tε]; Bτ0 ∩
B̃τ0) such that g(νk) → g in this norm. In particular, it immediately follows that
g ∈ L∞([0, Tε];H2,1,α/〈t〉) and thus g is a solution of the Prandtl equations (2.20)–
(2.22) in the sense of Definition 2.1.

Finally, using these bounds one may show that upon passing ν = νk → 0
in (5.37), the limiting analyticity radius τ(t) and the solution g(t) obey the ODE
(3.24). This concludes the proof of the existence of solutions to (2.20)–(2.22).
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