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1. Introduction

In this paper, we study the strong unique continuation problem for the higher order elliptic partial
differential operators

P (x, D)u =
∑

|α|�2s

aα(x)Dαu (1.1)

with Gevrey coefficients in two space dimensions. Even though, in general, for higher order operators
the strong unique continuation property does not hold (cf. [13,27] for counterexamples), we prove
it for (1.1) with Gevrey coefficients for ranges of the Gevrey exponents strictly including non-analytic
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classes. As an application, we provide a polynomial upper bound for the Hausdorff length of the nodal
sets of solutions in terms of the coefficients.

Recall that a function u ∈ C∞(Ω) vanishes of infinite order at a point x0 in the open set Ω ⊂ R
2

if Dαu(x0) = 0 for all multi-indices α ∈ N
2
0. We say that the operator (1.1) has the strong unique

continuation property if every solution u of the equation P (x, D)u = 0 which vanishes of infinite
order at x0 is identically zero in a neighborhood of x0.

By now the strong unique continuation problem for second order elliptic operators is well-
understood. The results for the elliptic equation

−�u = W · ∇u + V u

go back to the work of Carleman [1] in the case of the space dimension n = 2 and bounded coeffi-
cients, who used as a main tool a weighted L2 estimate. There is a large amount of work on strong
continuation, achieved by different estimates of Carleman type (cf. [2,3,8,12,16,17,24,28,29] and the
review papers by Kenig [18,19] and Vessella [30]).

There is a very limited number of results available regarding strong unique continuation for higher
order elliptic equations with non-analytic coefficients. In fact the only result we are aware of is given
by Colombini and Koch in [4] who proved the strong unique continuation for products of second
order elliptic operators with Gevrey coefficients for a certain range of the Gevrey exponent (cf. [4,
Theorem 1]). In this paper, we obtain a strong unique continuation result for higher order elliptic
operators (1.1) with simple complex characteristics and coefficients in the Gevrey class Gσ provided
the Gevrey exponent σ is less than a constant strictly grater than 1.

We note that the weak continuation for higher order equations is better understood. For instance,
a result of Hörmander [14] addresses solutions of differential inequalities

∣∣P (x, D)u
∣∣ � K

∑
|α|<m

∣∣Dαu
∣∣,

where P is a homogeneous elliptic operator of degree m with simple characteristics; it states that if
a solution u vanishes in the intersection of a neighborhood of 0 and the set x1 < x2

2 + · · · + x2
ν , then u

vanishes in a full neighborhood of 0.
A natural question to ask about a solution u is how large is the size of its nodal (zero, van-

ishing) set. In their seminal work [5–7], Donnelly and Fefferman provided upper and lower bounds
on the (n − 1)-dimensional measure of the nodal set for an eigenfunction of the Laplacian, con-
sidered on an analytic Riemannian n-manifold (see also [11,25]). For higher order analytic elliptic
equations, bounds were obtained in [23]; for estimates on nodal sets of solutions of parabolic equa-
tions cf. [10,20–22].

Most of the present paper is devoted to the proof of a Carleman-type inequality for the opera-
tor (1.1), which is needed to establish a quantitative estimate of unique continuation (observability
inequality) stated in Theorem 2.1. Hörmander established in [12] a necessary and sufficient condition
for a Carleman estimate to hold; thus, one of the key steps here is the choice of an appropriate ra-
dially decreasing weight function for which the pseudo-convexity condition is satisfied. Note that our
choice of weight puts a restriction on the space dimension; namely Lemma 3.2 below is valid only
for operators (1.1) defined on a subset of R

2. In higher dimensions, we obtain the main results of
this work (Theorems 2.1, 2.2, and 2.3) for classes of higher order elliptic operators satisfying a certain
condition (cf. Theorem 2.4). Another obstacle we face is that the weight |x|−m is singular at the origin
while the operator P is too general to investigate the validity of the Carleman-type estimate directly
(as it can be done for second order operators). We overcome this by establishing a uniform in x Car-
leman estimate for a family of operators, leading to a Carleman-type inequality on a torus B1 \ Bδ

with constants which can be computed explicitly in terms of δ (see Lemma 3.3 below).
In general, functions in the Gevrey class may not satisfy the strong unique continuation prop-

erty (see for instance [24]). However, in Theorem 2.2 below, we establish strong unique continua-
tion for the solutions of the equation P (x, D)u = 0, satisfying the Gevrey regularity condition (2.2)
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(cf. [26, Section VII.1.3]) and the observability estimate from Theorem 2.1. The proof relies on [15,
Theorem 2.4]. Another application of the latter theorem together with a result due to Han [9] is a
polynomial upper bound on the Hausdorff length of the nodal sets (see Theorem 2.3).

The paper is organized as follows. In Section 2 we state our main results, Theorems 2.1, 2.2, 2.3,
and 2.4. The next section is devoted to the Carleman-type inequality given in Theorem 3.1 and to
certain auxiliary results needed for its proof. In Section 4, we establish a propagation of smallness
result which leads to the proof of Theorem 2.2. In the last section, we give the proofs of Theorems 2.2,
2.3, and 2.4.

2. Notation and the main result

In this paper, we consider the elliptic partial differential operator with simple complex character-
istics and coefficients in the Gevrey class with σ � 1

P (x, D)u =
∑

|α|�2s

aα(x)Dαu (2.1)

defined on a domain Ω̃ in R
2 where s ∈ N. Let Ω be a subdomain of Ω̃ such that dist(Ω, ∂Ω̃) is

greater than a constant. By rescaling, we may assume that dist(Ω, ∂Ω̃) � 4. Let u be a solution of the
equation P (x, D)u = 0 in Ω̃ which is not identically zero. We assume that u is an infinitely smooth
function in Ω̃ and that there exist positive constants M and δ such that

∥∥Dαu
∥∥

L2(B2(x)) � M|α|!σ
δ|α| ‖u‖L2(B4(x)), x ∈ Ω (2.2)

for any α ∈ N
2
0 where σ � 1 is fixed. Also, we assume that the coefficients aα are infinitely smooth

functions and that there exist nonnegative constants Mα such that

∥∥Dβaα

∥∥
L∞(B2(x)) � Mα |β|!σ

δ|β| , x ∈ Ω (2.3)

for all α,β ∈ N
2
0 with |α| = 0, . . . ,2s. Assume u satisfies the doubling property

‖u‖L2(B4(x)) � K‖u‖L2(B2(x)), x ∈ Ω (2.4)

for some constant K � 1. Under the above hypotheses we establish a quantitative estimate of unique
continuation (an observability estimate) for the elliptic operator (2.1) with simple complex character-
istics and only Gevrey coefficients.

Theorem 2.1. Suppose that u is a nontrivial solution of P (x, D)u = 0 satisfying (2.2)–(2.4). Then

‖u‖L2(B2(x)) � exp
(

Q 1
(
δ−1, K , M, {Mα}|α|<2s

))‖u‖L2(B4δ(x)), x ∈ Ω

for some nonnegative polynomial Q 1 with coefficients depending on P2s and Ω .

This observability estimate is one of the hypotheses needed in Lemma 5.1 (see Section 5). Thus, it
enables us to establish the strong unique continuation property for the solutions of P (x, D)u = 0.

Theorem 2.2. Suppose that the assumptions in Theorem 2.1 are satisfied and σ � 1 +η, where η is a constant
depending on s. Then the operator (2.1) has the strong unique continuation property.
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Using a result due to Han [9] on the structure of the nodal sets of solutions, together with The-
orem 2.1 and Lemma 5.1, we obtain an upper bound for the 1-dimensional Hausdorff measure of
the zero sets of solutions of the equation P (x, D)u = 0 with a polynomial dependence on the coeffi-
cients.

Theorem 2.3. Suppose that the assumptions in Theorem 2.1 are satisfied. Then

H1{x ∈ Ω: u = 0} � Q 2
(
δ−1, K , M, {Mα}|α|<2s

)
,

where Q 2 is a nonnegative polynomial with coefficients depending on P2s and Ω .

As the next theorem shows, the restriction on the dimension n = 2 may be removed for symbols
satisfying an additional property.

Theorem 2.4. Let n � 3. Suppose that the assumptions in Theorem 2.2 are satisfied and σ � 1 + η, where η
is a constant depending on s. Additionally, assume that for 0 �= ζ = ξ + iτ∇ψx0 (x), we have

∣∣P2s(x, ζ )
∣∣2 + ∣∣(x − x0) · ∇ζ P2s(x, ζ )

∣∣2
> 0, x ∈ Āx0 , ξ ∈ R

n, and τ ∈ R, (2.5)

for all x0 ∈ Ω̄, where ψx0(x) = |x − x0|−m and Ax0 is the n-dimensional unit torus centered at x0 . Then the
operator (2.1) has the strong unique continuation property. Moreover, we obtain for the Hausdorff length of
the nodal sets

H1{x ∈ Ω: u = 0} � Q 3
(
δ−1, K , M, {Mα}|α|<2s

)
,

where Q 3 is a nonnegative polynomial with coefficients depending on P2s and Ω .

Theorem 2.1 is proven in Section 4 and Theorems 2.2, 2.3, and 2.4 in Section 5.

3. Carleman estimate

Let Ω̃ ⊂ R
2 be a domain, and let s ∈ N. We consider the elliptic partial differential operator

P (x, D)u =
∑

|α|�2s

aα(x)Dαu

with coefficients in the Gevrey class Gσ where σ � 1.
In this section, we denote the principal part of the operator P (x, D) by P2s(x, D) and the corre-

sponding principal symbol by P2s(x, ζ ). Also, we adopt the notation P ( j)
2s (x, ζ ) = (∂ P2s/∂ζ j)(x, ζ ) and

P2s, j(x, ζ ) = (∂ P2s/∂x j)(x, ζ ) for the first partial derivatives of P2s(x, ζ ).
Assume that the operator P (x, D) has simple complex characteristics, i.e., the principal symbol

P2s(x, ζ ), which is a homogeneous polynomial of degree 2s in the complex variable ζ ∈ C
2, has only

simple (with multiplicity 1) zeros. Our goal is to derive a Carleman-type estimate for such an operator
with a suitably chosen weight function ψ .

Theorem 3.1. There exist positive constants C , τ0 , and ρ0 such that

∑
|α|<2s

τ 4s−2|α|−1
∫

A(x ,δ,ρ )

∣∣Dα v
∣∣2

e2τψx0 � C

∫
A(x ,δ,ρ )

∣∣P2s(x, D)v
∣∣2

e2τψx0 (3.1)
0 0 0 0
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for any v ∈ C∞
0 (Ω̃) with support in the annulus A(x0, δ,ρ0) = {x ∈ Ω̃: δ < |x − x0| < ρ0}, x0 ∈ Ω̄ and

τ � τ0δ
−4s , provided m ∈ N is a large enough constant and ψx0 (x) = |x − x0|−m.

Above and in the sequel, the symbol C denotes a generic positive constant which is allowed to
depend only on s, σ , and P2s . Any additional dependence is indicated explicitly.

First, we prove a uniform Carleman estimate in the dyadic annuli Ar(x0) = {x ∈ Ω̃: 2−r−1 <

|x − x0| < 2−r+2} for all x0 ∈ Ω̄ and r ∈ N such that r � r0. Using a partition of unity, we then prove
a corresponding Carleman-type estimate on A(x0, δ,ρ0).

Let Ax0 = {x ∈ Ω̃: 1/2 < |x − x0| < 4} be the unit annulus centered at x0 ∈ Ω̄ . Clearly, we have
ψx0 ∈ C2( Āx0 ) and ∇ψx0 (x) = −m(x − x0)|x − x0|−(m+2) �= 0 on Āx0 . Also, we have that P2s(x, D) is
elliptic in Āx0 , that is, P2s(x, ξ) �= 0 if x ∈ Āx0 and ξ ∈ R

2 \ {0}. In the next lemma we establish the
pseudo-convexity condition for P2s(x, D) in Ax0 with a weight ψx0 for all x0 ∈ Ω̄ , needed in the proof
of Theorem 3.1.

Lemma 3.2. Let x0 ∈ Ω̄ and ψx0 (x) = |x − x0|−m. There exists a sufficiently large number m such that the
following is true. Assume that for 0 �= ζ = ξ + iτ∇ψx0 (x) the characteristic equation P2s(x, ζ ) = 0 is satisfied,
where x ∈ Āx0 , ξ ∈ R

2 , and τ ∈ R. Then

2∑
j,k=1

∂2ψx0/∂x j∂xk P ( j)
2s (x, ζ )P (k)

2s (x, ζ ) + 1

τ
Im

2∑
k=1

P2s,k(x, ζ )P (k)
2s (x, ζ ) > 0 (3.2)

for all x0 ∈ Ω̄ .

Proof. Using that

∂2ψx0

∂x j∂xk
= (m + 2)m(x j − x0 j)(xk − x0k)

|x − x0|m+4
− mδ jk

|x − x0|m+2

for j,k = 1,2, we may rewrite the asserted pseudo-convexity condition (3.2) for ψx0 as

(m + 2)m

|x − x0|m+4

∣∣∣∣∣
2∑

j=1

(x j − x0 j)P ( j)
2s (x, ζ )

∣∣∣∣∣
2

− m

|x − x0|m+2

2∑
j=1

∣∣P ( j)
2s (x, ζ )

∣∣2

+ 1

τ
Im

2∑
k=1

P2s,k(x, ζ )P (k)
2s (x, ζ ) > 0. (3.3)

First, note that if P (x, ζ ) = 0 for ζ = ξ + iη, then there exists a positive constant C such that

|ζ |
C

� |ξ |, |η| � |ζ |. (3.4)

The second inequality in (3.4) is trivial. In order to prove the first inequality, we consider the compact
set K = {ζ = ξ + iη: |ζ | = 1, P2s(x, ζ ) = 0} in C

2. Since P2s(x, ζ ) is elliptic and homogeneous of order
2s in the second variable, we have that ξ �= 0 and η �= 0 on K . Thus, there exists a constant C > 0
such that |ξ | � 1/C and |η| � 1/C on K . Now, let ζ = ξ + iη be arbitrary in C

2. By the above property
of K , we have |ξ |/|ζ | � 1/C and |η|/|ζ | � 1/C . Hence the first inequality in (3.4) holds.
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Next, we claim that there exists a positive constant C such that for all x0 ∈ Ω̄

∣∣∣∣∣
2∑

j=1

(x j − x0 j)P ( j)
2s (x, ζ )

∣∣∣∣∣ � |ζ |2s−1

C
(3.5)

if x ∈ Āx0 and ζ = ξ + iη are satisfying P2s(x, ζ ) = 0, where ξ,η ∈ R
2 and η = τ y for y parallel to

x−x0 such that |y| = 1. It suffices to prove the claim for ζ ∈ K , where K = {ζ = ξ + iτ y: |ζ | = |y| = 1,

P2s(x, ζ ) = 0} is a compact set. (Note that by the previous claim, for any ζ ∈ K , we have
1/C � |ξ |, |τ | � 1.) For the sake of contradiction, suppose that there exist sequences {x(k)

0 } ∈ Ω̄ ,

{x(k) − x(k)
0 }k∈N ⊂ Ā0, and {ζ (k) = ξ (k) + iτ (k) y(k)}k∈N ⊂ K such that

∣∣∣∣∣
2∑

j=1

(
x(k)

j − x(k)
0 j

)
P ( j)

2s

(
x(k), ζ (k)

)∣∣∣∣∣ � 1

k
, (3.6)

where τ (k) ∈ R and y(k) is parallel to x(k) − x(k)
0 . By passing to subsequences, we may assume that

x(k)
0 → x0, x(k) → x, and ξ (k) + iτ (k) y(k) → ξ + iτ y in Ω̄ , Āx0 , and K , respectively, where x0 ∈ Ω̄ ,

x ∈ Āx0 , and ξ + iτ y ∈ K . Then the limits x0, x, and ζ = ξ + iτ y satisfy

2∑
j=1

(x j − x0 j)P ( j)
2s (x, ζ ) = 0 (3.7)

by continuity. Also, we have

2∑
j=1

ζ j P ( j)
2s (x, ζ ) = 0, (3.8)

which follows by the homogeneity of the polynomial P2s in the second variable. Indeed, we differen-
tiate P2s(x, λζ ) = λ2s P2s(x, ζ ) with respect to λ ∈ R and then set λ = 1. Since y is parallel to x − x0,
(3.7) and (3.8) imply

2∑
j=1

ξ j P ( j)
2s (x, ζ ) = 0. (3.9)

Also, since the operator P (x, D) has simple complex characteristics and the equalities (3.7) and (3.9)
hold for x, ξ ∈ R

2, we obtain that ξ is parallel to x − x0, or equivalently that ξ = λy for some λ ∈
R \ {0}. Then, for ζ = (λ + iτ )y ∈ K , we have 0 = P (x, ζ ) = (λ + iτ )2s P (x, y) which gives P (x, y) = 0
for y ∈ R

2 \ {0}. The last equality contradicts the ellipticity assumption on P (x, D). Therefore (3.5) is
established.

Now, for all x0 ∈ Ω̄ we prove that for a sufficiently large m ∈ N the first term on the left side of
(3.3) is dominant. By the claim proven above, we obtain the upper bound

(m + 2)m

|x − x0|m+4

∣∣∣∣∣
2∑

j=1

(x j − x0 j)P ( j)
2s (x, ζ )

∣∣∣∣∣
2

� (m + 2)m

C |x − x0|m+4
|ζ |4s−2 (3.10)

for x ∈ Āx0 . For the second and the third term on the left side of (3.3), we have respectively
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m

|x − x0|m+2

2∑
j=1

∣∣P ( j)
2s (x, ζ )

∣∣2 � Cm

|x − x0|m+2
|ζ |4s−2 (3.11)

and

1

τ

∣∣∣∣∣ Im
2∑

k=1

P2s,k(x, ζ )P (k)
2s (x, ζ )

∣∣∣∣∣ � C

τ
|ζ |4s−1 � C

∣∣∇ψx0(x)
∣∣|ζ |4s−2

� Cm

|x − x0|m+1
|ζ |4s−2 (3.12)

for x ∈ Āx0 , where we used that τ |∇ψx0 (x)| � 1/C |ζ | by (3.4). Choosing m ∈ N large enough, the
lemma follows. �

Let x0 ∈ Ω̄ . We consider a sequence of operators for r ∈ N0 defined by

P x0,r
2s (x, D) =

∑
|α|=2s

aα

(
x0 + 2−r(x − x0)

)
Dα, x ∈ Āx0

and the limiting operator with constant coefficients defined by

P x0
2s(D) =

∑
|α|=2s

aα(x0)Dα.

We need the following auxiliary assertion.

Lemma 3.3. There exist constants C, τ0 > 0, and r0 ∈ N such that for all x0 ∈ Ω̄

∑
|α|<2s

τ 4s−2|α|−1
∫

Ax0

∣∣Dαu
∣∣2

e2τψx0 � C

∫
Ax0

∣∣P x0,r
2s (x, D)u

∣∣2
e2τψx0 (3.13)

holds for any u ∈ C∞
0 (Ax0 ), τ � τ0 , and r � r0 , provided that m is a large enough constant and ψx0 (x) =

|x − x0|−m.

Proof. As a consequence of Lemma 3.2, we can find a large enough number m, so that the pseudo-
convexity condition (3.2) is satisfied for all x0 ∈ Ω̄ for the limiting operator P x0

2s(D) with a weight
function ψx0 (x) = |x − x0|−m in Āx0 . Using a nonlinear change of variables, we can straighten up the
weight ψx0 , so that ψx0 (x) = 〈x − x0, N〉 for x ∈ Āx0 , where N �= 0 is a constant. Now the new limiting
operator, which we denote by P x0

2s(x, D), depends on x. Also, we denote the sequence of operators
after the change of variable by P x0,r

2s (x, D). We follow the proof of [12, Theorem 8.3.1] for the limiting
operator P x0

2s(x, D) with adopting the notations therein to prove the estimate (3.13) for the sequence
P x0,r

2s (x, D) where r � r0. Setting v(x) = u(x)expτ 〈x − x0, N〉 and applying the integration by parts
formula from [12, Lemma 8.2.2], we obtain for all x0 ∈ Ω̄ and r ∈ N0∫ ∣∣P x0,r

2s (x, D)u
∣∣2

e2τ 〈x−x0,N〉 =
∫ ∣∣P x0,r

2s (x, D + iτ N)v
∣∣2

�
∫ ∣∣P x0,r

2s (x, D + iτ N)v
∣∣2 − ∣∣ P̄ x0,r

2s (x, D − iτ N)v
∣∣2

=
∫

Gx0,r
τ (x, D, D̄)v v̄, (3.14)
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where the quadratic differential form on the right-hand side satisfies

Gx0,r
τ (x, ξ, ξ) = 2 Im

2∑
k=1

P x0,r
2s,k(x, ξ + iτ N)P x0,r,(k)

2s (x, ξ + iτ N)

+ 2 Im

(
P x0,r

2s (x, ξ + iτ N)

2∑
k=1

P x0,r,(k)

2s,k (x, ξ + iτ N)

)
(3.15)

for x ∈ Āx0 and ξ ∈ R
2. Similar inequality as (3.14) also holds for the limiting operator P x0

2s(x, D)

(cf. the proof of [12, Theorem 8.3.1]) and the corresponding differential quadratic form reads

Gx0
τ (x, ξ, ξ) = 2 Im

2∑
k=1

P x0
2s,k(x, ξ + iτ N)P x0,(k)

2s (x, ξ + iτ N)

+ 2 Im

(
P x0

2s(x, ξ + iτ N)

2∑
k=1

P x0,(k)

2s,k (x, ξ + iτ N)

)
.

Moreover, there exist constants C1, C2 > 0 such that for all x0 ∈ Ω̄

|ξ + iτ N|4s � C1

2
τ Gx0

τ (x, ξ, ξ) + C2

2

∣∣P x0
2s(x, ξ + iτ N)

∣∣2
, x ∈ Āx0 (3.16)

if τ � 0 and ξ ∈ R
2. (Indeed, by the homogeneity of the polynomials on both sides of (3.16), we

restrict ourselves to the compact set M = {(ξ, τ ): |ξ + iτ N| = 1, τ � 0}. Consider the subset of M de-
fined by M0 = {(x0, x, ξ, τ ): P x0

2s(x, ξ + iτ N) = 0, x0 ∈ Ω̄, x ∈ Āx0 , (ξ, τ ) ∈ M}. Since the operator P x0
2s

satisfies the ellipticity estimate P x0
2s(x, ξ) � |ξ |2s/C and the pseudo-convexity condition (3.2) in Āx0 ,

we have that τ and Gx0
τ (x, ξ, ξ) are bounded from below on the compact M0. Thus, there exists a pos-

itive constant C1 such that 1 � (C1/2)τ Gx0
τ (x, ξ, ξ) in M0. The last inequality depends continuously

on all variables, so it holds in a small neighborhood V of M0. Also, the polynomial P x0
2s(x, ξ + iτ N)

has no zeros in the compact set M \ V , so it has a lower bound there. We conclude that (3.16) holds
on M .)

Let x̃0 ∈ Āx0 be arbitrary. By the continuity of the coefficients of P x0
2s and Gx0

τ , we can find r0 ∈ N

such that

|ξ + iτ N|4s � C1τ Gx0,r
τ (x̃0, ξ, ξ) + C2

∣∣P x0,r
2s (x̃0, ξ + iτ N)

∣∣2
, r � r0 (3.17)

for all τ � 0 and ξ ∈ R
2. (Indeed, on the compact set M , we have τ � 1/N and the polynomials P x0

2s
and Gx0

τ are smooth functions depending only on the x variable. Thus, given ε > 0, there exists r0 ∈ N,
depending only on the first and second order derivatives of the coefficients of P2s , such that for all
r � r0 we have |P x0

2s(x̃0) − P x0,r
2s (x̃0)| < ε and |Gx0

τ (x̃0) − Gx0,r
τ (x̃0)| < ε . Choosing ε = (C1/N + C2)

−1,
we get 1 � C1τ Gx0,r

τ (x̃0) + C2|P x0,r
2s (x̃0)|2.)

Hence, for all r � r0, we obtain

(2π)−2
∫ ∣∣v̂(ξ)

∣∣2|ξ + iτ N|4s dξ

� C1τ

∫
Gx0,r

τ (x̃0, D, D̄)v v̄ dx + C2

∫ ∣∣P x0,r
2s (x̃0, D + iτ N)v

∣∣2
dx (3.18)
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after multiplying (3.17) by |v̂(ξ)|2, integrating, and applying Parseval’s formula. Next, we express the
polynomials Gx0,r

τ in powers of τ as

Gx0,r
τ (x, D, D̄) =

4s−1∑
j=0

τ j Gx0,r,( j)(x, D, D̄),

where the quadratic form Gx0,r,( j) is of order (4s − j − 1;2s) and has smooth coefficients for all
j ∈ {0, . . . ,4s − 1}. Using a continuity argument, we can find δ0 > 0 such that for all x ∈ Ax0 with
|x − x̃0| < δ0, we have

C1
∣∣P x0,r

2s (x, D + iτ N)v
∣∣2 � C1

∣∣P x0,r
2s (x̃0, D + iτ N)v

∣∣2 + 1

4

∣∣(D + iτ N)2s v
∣∣2

and

C2
∣∣Gx0,r

τ (x, D, D̄)v v̄ − Gx0,r
τ (x̃0, D, D̄)v v̄

∣∣
� C2

4s−1∑
j=1

τ j
∣∣Gx0,r,( j)(x, D, D̄)v v̄ − Gx0,r,( j)(x̃0, D, D̄)v v̄

∣∣

� 1

4

4s−1∑
j=1

τ j
∑

|α|+|β|=4s− j−1

∣∣Dα v Dβ v
∣∣

for all r � r0. Thus, from (3.18) and the above inequalities

(2π)−2
∫ ∣∣v̂(ξ)

∣∣2|ξ + iτ N|4s dξ � C1τ

∫
Gx0,r

τ (x, D, D̄)v v̄ dx + C2

∫ ∣∣P x0,r
2s (x, D + iτ N)v

∣∣2
dx

+ 1

4
(2π)−2

∫ ∣∣v̂(ξ)
∣∣2∣∣(ξ + iτ N)

∣∣4s
dξ

+ 1

4

4s−1∑
j=1

τ j+1
∑

|α|+|β|=4s− j−1

∫ ∣∣Dα v Dβ v
∣∣dx

for v ∈ C∞
0 (Bδ0 (x̃0) ∩ Ax0 ) and r � r0. For each term in the last sum, we use the Cauchy–Schwartz

inequality and the estimate

(|N|2τ 2)2s−|α|
∫ ∣∣Dα v

∣∣2
dx � (2π)−2

∫ ∣∣v̂(ξ)
∣∣2|ξ + iτ N|4s dξ

for |α| � 2s. Also, in view of the inequality (3.14), we obtain

(|N|2τ 2)2s−|α|
∫ ∣∣Dαu

∣∣2
e2τ 〈x−x0,N〉 dx � (2π)−2

∫ ∣∣v̂(ξ)
∣∣2|ξ + iτ N|4s dξ

� 2(C1τ + C2)

∫ ∣∣P x0,r
2s (x, D + iτ N)v

∣∣2
dx

= 2(C1τ + C2)

∫ ∣∣P x0,r
2s (x, D)u

∣∣2
e2τ 〈x−x0,N〉 dx
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for all u ∈ C∞
0 (Bδ0 (x̃0) ∩ Ax0 ), |α| � 2s, and r � r0. Therefore, the estimate (3.13) holds for functions

supported in a small neighborhood of x̃0 in Ax0 . By [12, Lemma 8.3.1], the proof of Lemma 3.3 is
complete. �
Proof of Theorem 3.1. For simplicity of notation, we may assume that x0 = 0. In order to obtain a
Carleman estimate on the dyadic annuli Ar centered at 0 for r ∈ N such that r � r0, we perform a
change of variable y = 2−r x in (3.13) and write u(x) = v(2−r x). Denoting σ = 2−mrτ , we get

∑
|α|<2s

σ 4s−2|α|−12(4s−2|α|−1)mr2−2|α|r
∫
Ar

∣∣Dα v
∣∣2

e2σψ � C2−4sr
∫
Ar

∣∣P2s(x, D)v
∣∣2

e2σψ

which implies

∑
|α|<2s

σ 4s−2|α|−1
∫
Ar

∣∣Dα v
∣∣2

e2σψ � C

∫
Ar

∣∣P2s(x, D)v
∣∣2

e2σψ (3.19)

for all v ∈ C∞
0 (Ar) and σ � τ0.

Let ϕ ∈ C∞
0 (Ω̃, [0,1]) be a cutoff function with support in A0 such that ϕ ≡ 1 in a neighborhood

of {x ∈ Ω̃: 1 � |x| � 2} and suppϕ ⊂ {x ∈ Ω̃: 7/8 � |x| � 17/8}. Define ϕr = ϕ(2r ·). Clearly, ϕr ∈
C∞

0 (Ω̃, [0,1]) are compactly supported in Ar , and ϕr ≡ 1 in a neighborhood of Cr = {x ∈ Ω̃: 2−r �
|x| � 2−r+1}. Also, we have that |Dαϕr | � C2r|α|ϕr+1 in a neighborhood of Sr = {x ∈ Ω̃: 2−r−1 � |x| �
2−r} and |Dαϕr | � C2r|α|ϕr−1 in a neighborhood of Lr = {x ∈ Ω̃: 2−r+1 � |x| � 2−r+2} for all α ∈ N

2
0

with |α| = 0, . . . ,2s − 1.
Let u ∈ C∞

0 (Ω̃) be a smooth function with support in the annulus A(0, δ,ρ0), where ρ0 = 2−r0 . Let
r1 be the smallest integer such that 2−r1 � δ. Then we have supp u ⊂ ⋃r1

k=r0
Ar . Applying the Carleman

inequality (3.19) to uϕr and summing for r = r0, . . . , r1, we obtain

∑
|α|<2s

σ 4s−2|α|−1
r1∑

r=r0

∫
Ar

∣∣Dα(uϕr)
∣∣2

e2σψ � C
r1∑

r=r0

∫
Ar

∣∣P2s(x, D)(uϕr)
∣∣2

e2σψ (3.20)

for σ � τ0. For the left side of (3.20), we claim

∑
|α|<2s

σ 4s−2|α|−1
r1∑

r=r0

∫
Ar

∣∣Dα(uϕr)
∣∣2

e2σψ � 1

C

∑
|α|<2s

σ 4s−2|α|−1
r1∑

r=r0

∫
Ar

∣∣ϕr Dαu
∣∣2

e2σψ . (3.21)

Indeed, we have |Dα(uϕr)|2 � (1/2)|ϕr Dαu|2 − C
∑

β<α |DβuDα−βϕr |2 by the Leibniz rule and the
triangle inequality; therefore, using the assumptions on the derivatives of ϕr

∑
|α|<2s

σ 4s−2|α|−1
r1∑

r=r0

∫
Ar

∣∣Dα(uϕr)
∣∣2

e2σψ

�
∑

|α|<2s

σ 4s−2|α|−1
r1∑

r=r0

(
1

2

∫
Ar

∣∣ϕr Dαu
∣∣2

e2σψ

− C
∑
β<α

22r(|α|−|β|)
( ∫

S

∣∣ϕr+1 Dβu
∣∣2

e2σψ +
∫
L

∣∣ϕr−1 Dβu
∣∣2

e2σψ

))

r r
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and the two negative terms on the right side can be absorbed into the first term on the right side,
since

Cσ 4s−2|α|−122r(|α|−|β|)
∫
Sr

∣∣ϕr+1 Dβu
∣∣2

e2σψ � Cσ 4s−2|α|−124sr1

∫
Sr

∣∣ϕr+1 Dβu
∣∣2

e2σψ

� σ 4s−2|β|−1
∫

Ar+1

∣∣ϕr+1 Dβu
∣∣2

e2σψ

and

Cσ 4s−2|α|−122r(|α|−|β|)
∫
Lr

∣∣ϕr−1 Dβu
∣∣2

e2σψ � σ 4s−2|β|−1
∫

Ar−1

∣∣ϕr−1 Dβu
∣∣2

e2σψ

for all β < α and r ∈ {r0, . . . , r1} provided σ � τ024sr1 . For the right side of (3.20), we have

C
r1∑

r=r0

∫
Ar

∣∣P2s(x, D)(uϕr)
∣∣2

e2σψ � C
r1∑

r=r0

∫
Ar

∣∣ϕr P2s(x, D)u
∣∣2

e2σψ

+ C
r1∑

r=r0

∫
Ar

∑
β>0

∣∣P (β)

2s (x, D)u
∣∣2

∣∣∣∣ Dβϕr

β!
∣∣∣∣
2

e2σψ (3.22)

by the Leibniz rule. The second term on the right side can be absorbed into the right side of (3.21),
since

C
r1∑

r=r0

∫
Ar

∑
β>0

∣∣P (β)

2s (x, D)u
∣∣2

∣∣∣∣ Dβϕr

β!
∣∣∣∣
2

e2σψ

� C
r1∑

r=r0

∑
|α|=2s

∑
0<β�α

22r|β|
( ∫

Sr

∣∣ϕr+1 Dα−βu
∣∣2

e2σψ +
∫
Lr

∣∣ϕr−1 Dα−βu
∣∣2

e2σψ

)

� Cσ 4s−2|α|−1
r1∑

r=r0

∫
Ar

∣∣ϕr Dαu
∣∣2

e2σψ

if σ � τ024sr1 . From (3.21) and (3.22), we conclude

∑
|α|<2s

σ 4s−2|α|−1
r1∑

r=r0

∫
Ar

∣∣ϕr Dαu
∣∣2

e2σψ � C
r1∑

r=r0

∫
Ar

∣∣ϕr P2s(x, D)u
∣∣2

e2σψ

and hence

∑
|α|<2s

σ 4s−2|α|−1
∫

A(0,δ,ρ )

∣∣Dαu
∣∣2

e2σψ � C

∫
A(0,δ,ρ )

∣∣P2s(x, D)u
∣∣2

e2σψ (3.23)
0 0
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for all u ∈ C∞
0 (Ω̃) with support in A(0, δ,ρ0) and σ � τ0δ

−4s , by taking τ0 sufficiently large. Note
that the constant C does not depend on r1, since for any x ∈ Ar , there are at most three functions
from {ϕr(x)}r1

r=r0 , which are different from zero. Thus, |Dαu| � C(
∑r1

r=r0
|ϕr Dαu|2)1/2 by the Cauchy–

Schwartz inequality. �
4. Propagation of smallness

In this section we suppose that the assumptions on the operator P2s(x, D) from Section 3 are
satisfied, so that Theorem 3.1 is applicable. Using a linear change of variable by a constant factor, we
may assume without loss of generality that ρ0 > 2.

Let u be an infinitely smooth solution of the equation

P (x, D)u =
∑

|α|�2s

aα(x)Dαu = 0 (4.1)

for x ∈ Ω̃ . Assume that there exist nonnegative constants M and δ such that

∥∥Dαu
∥∥

L2(B2(x)) � M|α|!σ
δ|α| (4.2)

for |α| = 0, . . . ,2s − 1. Assume that the coefficients aα are infinitely smooth and that there exist
nonnegative constants Mα such that

‖aα‖L∞(B2(x)) � Mα (4.3)

for |α| = 0, . . . ,2s. Assume additionally that

∥∥Dαu
∥∥

L2(B2δ(x)) � ε̃ (4.4)

for |α| = 0, . . . ,2s − 1 and some sufficiently small ε̃ ∈ (0,1) such that ε̃ � M .

Lemma 4.1. Suppose that the assumptions (4.1)–(4.4) are satisfied. If

ε̃ � M exp
(−P1

(
δ−1, {Mα}|α|<2s

))
then

‖u‖L2(B1) � P2
(
δ−1, {Mα}|α|<2s

)
ε̃θ M1−θ

where P1 and P2 are nonnegative polynomials and the parameter θ ∈ (0,1) is such that θ � Cδm.

Proof. Let ϕ ∈ C∞
0 (Ω̃, [0,1]) be a smooth cutoff function such that ϕ ≡ 1 in a neighborhood of the

annulus B1.5 \ B2δ and ϕ ≡ 0 in a neighborhood of Bδ ∪ Bc
2. Additionally, we assume that

∥∥Dαϕ
∥∥

L∞(B2δ\Bδ)
� C

δ|α|

for |α| = 0, . . . ,2s − 1. Consider uϕ ∈ C∞
0 (B2 \ Bδ). By Theorem 3.1, it follows
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∑
|α|<2s

τ 4s−2|α|−1
∫

B2\Bδ

∣∣Dα(uϕ)
∣∣2

e2τψ � C

∫
B2\Bδ

∣∣P2s(x, D)(uϕ)
∣∣2

e2τψ (4.5)

for τ � τ0δ
−4s . We estimate the right side of (4.5) from above by I1 + I2 + I3, where

I1 = C

∫
B2δ\Bδ

∣∣P2s(x, D)(uϕ)
∣∣2

e2τψ ,

I2 = C

∫
B1.5\B2δ

∣∣P2s(x, D)(uϕ)
∣∣2

e2τψ ,

I3 = C

∫
B2\B1.5

∣∣P2s(x, D)(uϕ)
∣∣2

e2τψ .

Using the Leibniz formula and Eq. (4.1), we have

P2s(x, D)(uϕ) =
∑

|α|=2s

aα(x)
(

Dαu
)
ϕ +

∑
β>0

(
P (β)

2s (x, D)u
) Dβϕ

β!

= −
∑

|α|<2s

aα(x)
(

Dαu
)
ϕ +

∑
β>0

(
P (β)

2s (x, D)u
) Dβϕ

β! . (4.6)

By the equality (4.6), the assumptions on the derivatives of ϕ , and the hypotheses (4.3) and (4.4), we
obtain

I1 � C
∑

|α|<2s

M2
α

∫
B2δ\Bδ

∣∣Dαu
∣∣2

e2τψ + C
∑
β>0

δ−2|β|
∫

B2δ\Bδ

∣∣P (β)

2s (x, D)u
∣∣2

e2τψ

� C ε̃2e2τψ(δ)
∑

|α|<2s

M2
α + C

∑
β>0

δ−2|β|ε̃2e2τψ(δ) sup
|α|=2s

M2
α

� C
(

sup
|α|<2s

M2
α + δ−4s sup

|α|=2s
M2

α

)
ε̃2e2τδ−m � Cδ−4sε̃2e2τδ−m

sup
|α|�2s

M2
α

for the first integral. Above, we denoted ψ(δ) = ψ(x) where |x| = δ. Next, using that ϕ ≡ 1 in a
neighborhood of B1.5 \ B2δ , the estimate on the coefficients (4.3), and the equality (4.6), we have the
estimate for the second integral

I2 � C
∑

|α|<2s

M2
α

∫
B1.5\B2δ

∣∣Dαu
∣∣2

e2τψ ,

which can be absorbed in the half of the left side of (4.5) provided that

τ � max

{
sup

|α|<2s
M2/(4s−2|α|−1)

α ,
τ0

δ4s

}
. (4.7)

Finally, the assumptions (4.2), (4.3), and the equality (4.6) imply
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I3 � C
∑

|α|<2s

M2
α

∫
B2\B1.5

∣∣Dαu
∣∣2

e2τψ + C
∑

|α|=2s

M2
α

∑
β>0

∫
B2\B1.5

∣∣Dα−βu
∣∣2∣∣Dβϕ

∣∣2
e2τψ

� C M2
∑

|α|<2s

M2
α

|α|!2σ

δ2|α| e2τψ(1.5) + C M2
∑

|α|=2s

M2
α

∑
β>0

|α − β|!2σ

δ2|α−β| δ−2|β|e2τψ(1.5)

� C M2
∑

|α|�2s

M2
α

δ2|α| e2τ1.5−m � C M2

δ−4s
e2τ1.5−m

sup
|α|�2s

M2
α

for the third integral. Hence,

τ 4s−1
∫

B1\B2δ

|u|2e2τψ � C ε̃2

δ4s
e2τδ−m

sup
|α|�2s

M2
α + C M2

δ4s
e2τ1.5−m

sup
|α|�2s

M2
α

provided (4.7) holds. Note that ψ � 1 on B1 \ B2δ . Dividing both sides of the above inequality by
τ 4s−1 exp(2τ ), we get∫

B1\B2δ

|u|2 � C

τ 4s−1δ4s

(
ε̃2e2τ (δ−m−1) + M2e2τ (1.5−m−1)

)
sup

|α|�2s
M2

α.

Now, we choose τ such that ε̃ = M exp(τ (1.5−m − δ−m)) and this τ satisfies (4.7) if ε̃ is sufficiently
small. Then

1

ε̃2θ

∫
B1\B2δ

|u|2 � C M2−2θ

δ−4s
sup

|α|�2s
M2

α = P2
(
δ−1, {Mα}|α|<2s

)
M2−2θ

for θ = (1 − 1.5−m)/(δ−m − 1.5−m) provided

log
M

ε̃
� max

{
sup

|α|<2s
M2/(4s−2|α|−1)

α ,
τ0

δ4s

}(
δ−m − 1.5−m) = P1

(
δ−1, {Mα}|α|<2s

)
.

Therefore, the lemma is proven. �
We shall need the following result on the smallness of the derivatives of u.

Lemma 4.2. Suppose

∥∥Dαu
∥∥

L2(B4δ)
� C |α|M|α|!σ

δ|α|−1

for α ∈ N
n
0 and

‖u‖L2(B4δ)
� εδ.

Then

∥∥Dαu
∥∥

L2(B2δ)
� C |α|+1ε1/2M1/2|α|!σ

δ|α|−1

for all α ∈ N
n
0 .
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This interpolation-type lemma is proven in [22] for real analytic functions when σ = 1. Using
analogous arguments for functions u in the Gevrey class Gσ with σ > 1, one obtains the more general
assertion stated above.

Proof of Theorem 2.1. Denote

ε = ‖u‖L2(B4δ)

‖u‖L2(B2)

.

We shall prove that ε � exp(−Q 1(δ
−1, K , M, {Mα}|α|<2s)) for some nonnegative polynomial Q 1. By

the definition of ε , in particular, we have

‖u‖L2(B4δ)
� ε‖u‖L2(B2).

Then Lemma 4.2 implies

∥∥Dαu
∥∥

L2(B2δ)
� C |α|+1ε1/2M1/2|α|!σ

δ|α| ‖u‖L2(B2)

for |α| = 0, . . . ,2s − 1. Denote

K0 = max
|α|�2s−1

δ|α|‖Dαu‖L2(B2)

|α|!σ

and set ũ(x) = K −1
0 u(x). Clearly, the function ũ also solves Eq. (4.1) and

∥∥Dα ũ
∥∥

L2(B2)
� |α|!σ

δ|α|

for |α| = 0, . . . ,2s − 1. Next, we denote

ε̃ = max|α|<2s

C |α|+1ε1/2M1/2|α|!σ
δ|α| . (4.8)

Then

∥∥Dα ũ
∥∥

L2(B2δ)
� 1

K0

∥∥Dαu
∥∥

L2(B2δ)
� ε̃

for |α| = 0, . . . ,2s − 1. Since the hypotheses of Lemma 3.1 are satisfied, we have

‖ũ‖L2(B1) � P2
(
δ−1, {Mα}|α|<2s

)
ε̃θ

provided that

ε̃ � exp
(−P1

(
δ−1, {Mα}|α|<2s

))
, (4.9)

where P1 and P2 are the nonnegative polynomials obtained explicitly in the proof of the lemma.
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Using the hypotheses (2.2) and (2.4), we get

K0 � M‖u‖L2(B4) � M K‖u‖L2(B2).

Thus, we obtain the estimate

‖u‖L2(B2) � K‖u‖L2(B1) � K K0‖ũ‖L2(B1) � K K0 P2
(
δ−1, {Mα}|α|<2s

)
ε̃θ

� M K 2 P2
(
δ−1, {Mα}|α|<2s

)
ε̃θ‖u‖L2(B2),

which holds only if

ε̃ � 1

M1/θ K 2/θ
P2

(
δ−1, {Mα}|α|<2s

)−1/θ
. (4.10)

Therefore, by (4.9) and (4.10)

ε̃ � min

{
exp

(−P1
(
δ−1, {Mα}|α|<2s

))
,

1

M1/θ K 2/θ
P2

(
δ−1, {Mα}|α|<2s

)−1/θ
}
.

Using (4.8), we solve the last inequality for ε . We conclude that ε � exp(−Q 1(δ
−1, K , M, {Mα}|α|<2s))

for a nonnegative polynomial Q 1 of degree in δ−1 depending only on s and m. �
5. Nodal sets

First, we recall a result from our paper [15] which addresses the order of vanishing and the size
of the nodal sets for any 1-periodic Gevrey function in one real variable.

Lemma 5.1. (See [15].) Let f : R → R be an infinitely differentiable 1-periodic function which is not identically
zero. Let a,b � 0 and 1 � σ � 1 + 1/b. If σ = 1 + 1/b, we assume that 4b+1a/δb � 1/2. Suppose that there
exist constants M � 1 and δ ∈ (0,1/2] such that

∥∥ f (n)
∥∥

L∞(Ω)
� Mn!σ

δn
‖ f ‖L∞(Ω), n ∈ N0, (5.1)

and

‖ f ‖L∞(Ω) � exp

(
a

ρb

)
‖ f ‖L∞[x0−ρ/2,x0+ρ/2] (5.2)

for all ρ ∈ (0, δ] and x0 ∈ Ω . Then for the number of zeros of f in Ω , we have

card
{

x ∈ Ω: f (x) = 0
}

� C K 1+1/b, (5.3)

where

K =
(

4b+1a

δb

)1/(1+b(1−σ ))

+ 4b+1a

δb
+ 2 log M + 2 (5.4)

and C = C(a,b). The first term in (5.4) is understood to be zero if σ = 1 + 1/b. Moreover, we have an upper
bound
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ordx0 f � K (5.5)

for the order of vanishing ordx0 f for every x0 ∈ Ω .

Proof of Theorem 2.2. Let u be a solution of the elliptic equation with Gevrey coefficients
P (x, D)u = 0 for x ∈ Ω , which satisfies the condition (2.2) and the quantitative estimate of
unique continuation from Theorem 2.1. Applying the 1-dimensional result from Lemma 5.1 on rays
through x0, we obtain a polynomial upper bound on the order of vanishing of u at any point x0 in the
2-dimensional unit ball B1 provided the Gevrey exponent σ � 1 + η, where η is a constant multiple
of s. �

To give an upper bound on the 1-dimensional Hausdorff measure of the nodal sets of solutions, we
rely on an argument depending on their geometric structure. We recall a result, due to Han [9], on
the structure of the nodal and singular sets of solutions to higher order elliptic equations in R

n with
Hölder continuous leading coefficients. It turns out that under the assumption that the solutions van-
ish at finite order, the singular and nodal sets are countable unions of subsets of (n − 2)-dimensional
and (n − 1)-dimensional submanifolds, respectively. Define

N (u) = {
x ∈ B1: u(x) = 0

}
and

S(u) = {
x ∈ B1: Dβu = 0, |β| = 0, . . . ,2s − 1

}
,

where 2s is the order of the elliptic equation.

Theorem 5.2. (See [9].) The set N (u) is countably (n − 1)-rectifiable and the set S(u) is countably (n − 2)-
rectifiable. In fact there exist decompositions

N (u) =
n−1⋃
j=0

N j(u),

S(u) =
n−2⋃
j=0

S j(u)

where (i) each N j(u) is on a countable union of j-dimensional C1 graphs for 0 � j � n − 2 and N n−1(u) is
on a countable union of (n − 1)-dimensional C1,α manifolds and (ii) each S j(u) is on a countable union of
j-dimensional C1 graphs for 0 � j � n − 3 and S n−2(u) is on a countable union of (n − 2)-dimensional C1,α

manifolds for some 0 < α < 1.

In our case the space dimension is n = 2 and the coefficients of the elliptic equation P (x, D)u = 0
are infinitely smooth.

Proof of Theorem 2.3. By Theorem 5.2, we conclude that the nodal set N (u) of a solution is a union
of a set with Hausdorff length zero and a countable union of 1-dimensional manifolds. Let Γ be a
1-dimensional manifold. Since, at any point z of Γ the corresponding tangent line makes an angle of
at most 45◦ with one of the coordinate axes (cf. [5]), we have
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H1{Γ ∩ {|z| < ρ
}}

� C

( ∫
|s|<ρ

H0{Γ ∩ {x = s} ∩ {|y| < ρ
}}

ds

+
∫

|s|<ρ

H0{Γ ∩ {y = s} ∩ {|x| < ρ
}}

ds

)

for ρ > 0 sufficiently small. An application of Lemma 5.1 gives the result. �
Proof of Theorem 2.4. Note that by the proof of Lemma 3.2, the pseudo-convexity condition (3.2) for
the operator (2.1) is satisfied provided (2.5) holds. The assertion follows as in the 2-dimensional case
treated above. �
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