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Abstract We establish the strong unique continuation property for differences of solutions
to the Navier–Stokes system with Gevrey forcing. For this purpose, we provide Carleman-
type inequalities with the same singular weight for the Laplacian and the heat operator.
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1 Introduction

This paper is devoted to the study of the local behavior of differences of solutions to the 3D
Navier–Stokes system

∂t u −�u + (u · ∇)u + ∇ p = f (NSE)

∇ · u = 0

with a general non-analytic forcing. Our goal is to provide a quantitative estimate of the
strong unique continuation for a difference of any two solutions (u1, p1) and (u2, p2) of the
system (NSE): If the velocity vector fields u1 and u2 are not identically equal, then their
difference u1 − u2 has finite order of vanishing at any point. We establish a polynomial
estimate on the rate of vanishing, provided the forcing f lies in the Gevrey class Gσ for
certain restricted range of the exponents σ > 1. The motivation for studying the strong
unique continuation problem for differences of solutions comes from a result of the second
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author and Robinson [32, Theorem 1], which states that the strong uniqueness leads to a
property regarding determination of solutions by a finite number of their point values.

The literature concerned with quantitative estimates of unique continuation (doubling
estimates) for second order elliptic and parabolic equations, based on Carleman methods,
is extensive. These type of estimates are used classically to prove weak unique continua-
tion results (c.f. [5,10,15,19,35]). Some strong unique continuation results, under different
assumptions on the coefficients, were obtained in [4,6,8,22,23,33]. For more extended his-
torical overview of unique continuation results, see the review papers by Kenig [24,25] and
Vessella [36]. On the other hand, there are very few works available on strong uniqueness
for systems. Recently, in [34], Lin, Uhlmann, and Wang provided an upper bound on the
order of vanishing of non-trivial solutions to the stationary Stokes system by deriving opti-
mal three-ball inequalities. Their proof rests upon delicate Carleman-type inequalities with
singular weights and interior estimates for the velocity vector field and vorticity, satisfying a
coupled system of second order elliptic equations.

For applications of the quantitative estimates of the strong unique continuation in estimat-
ing the Hausdorff measure of the nodal sets of solutions to elliptic and parabolic equations, we
refer to [7,14,16–18,28,33]. In [27], the second author obtained a polynomial upper bound
on the size of the vorticity nodal sets for the solutions of the 2D Navier–Stokes equations
written in the vorticity form. The proof relied on a modification of a unique continuation
method, due to Kurata [30], for the parabolic equation

∂t u −�u = w j (x, t)∂ j u + v(x, t)u

and a self-similar transformation of variables (c.f. [26]). We emphasize that this approach can
not be applied to the difference of solutions of the Navier–Stokes system. For other related
results on this subject see also [1,2,9,13,31].

The paper is organized as follows. In Sect. 2, we state our main results Theorem 2.1 and
2.2 for a coupled system of elliptic-parabolic type for a difference of two solutions of the
system (NSE) with the same Gevrey forcing. The following section is devoted to the poof of
certain Carleman estimates with singular weights for the Laplace and for the heat operator.
In Sect. 4, combining these results, we provide a quantitative estimate of unique continuation
(doubling estimate) for the coupled system, leading to an upper bound on the vanishing order
for the difference of two solutions (c.f. Theorem 2.2).

2 Notation and the Main Result

Let Br = {x ∈ R
3 : |x | < r} be a ball with radius r centered at the origin and let δ ∈ (0, 1)

be fixed. We consider the Navier–Stokes equation with forcing f in the Gevrey class Gσ

with σ ≥ 1

∂t u −�u + (u · ∇)u + ∇ p = f

∇ · u = 0

for (x, t) ∈ B2 × [t0 − δ2, t0 + δ2]. More precisely, we assume that the forcing f is an
infinitely smooth function in (x, t) and that there exist nonnegative constants M0 and δ0 such
that

||∂m
t ∂

α
x f (·, t)||L∞(B2) ≤ M0m!σ |α|!σ

δ
2m+|α|
0

, t0 − δ2 ≤ t ≤ t0 + δ2
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for all m ∈ N0 and α ∈ N
3
0. Let (u1, p1) and (u2, p2) be two solutions of the Navier–Stokes

system which are globally in the Gevrey class Gσ . We assume that u1(·, t0) �= u2(·, t0) and
that there exist nonnegative constants M j and δ0 such that

||∂m
t ∂

α
x u j (·, t)||L∞(B2) ≤ M j m!σ |α|!σ

δ
2m+|α|
0

, t0 − δ2 ≤ t ≤ t0 + δ2, j = 1, 2 (2.1)

for all m ∈ N0 and α ∈ N
3
0 (c.f. Remark 2.4 below). We define v = u1 −u2 and p = p1 − p2.

Then (v, p) solves the coupled elliptic-parabolic system

∂tv −�v + u1 · ∇v + v · ∇u2 + ∇ p = 0, (2.2)

−�p − ∂ j u1i∂iv j − ∂i u2 j∂ jvi = 0

with coefficients in Gσ .We assume that v and p are infinitely smooth functions in (x, t) and
that there exists a nonnegative constant M such that

||∂m
t ∂

α
x v(·, t)||L∞(B2) + ||∂m

t ∂
α
x p(·, t)||L∞(B2)

≤ Mm!σ |α|!σ
δ

2m+|α|
0

(||v(·, t)||L2(B2)
+ ||p(·, t)||L2(B2)

)
(2.3)

for all t0 − δ2 ≤ t ≤ t0 + δ2, m ∈ N0, and α ∈ N
3
0. Also, we assume that v satisfies the

doubling property

||v(·, t1)||L2(B2)
≤ K ||v(·, t2)||L2(B1)

, t0 − δ2 ≤ t1, t2 ≤ t0 + δ2 (2.4)

for some constant K ≥ 1.Note that in the case of periodic boundary conditions, the constant
K depends on the Dirichlet quotient ‖∇u(t0 − δ2)‖L2/‖u(t0 − δ2)‖L2 (c.f. Remark 2.5).

We remark that the natural condition (2.3) can be derived from (2.4) for the coupled
elliptic-parabolic system (2.1) with Gevrey coefficients and periodic boundary conditions.

The assumptions as stated above are local, but the aim of the theorems is to address
solutions to boundary value problems (c.f. Remark 2.4 below). For instance, it is easy to
show that the above assumptions hold in the case of periodic boundary conditions.

Here we state our main theorem which is proved in Section 4.

Theorem 2.1 Suppose that v and p satisfy (2.1)–(2.4). Then

||v(·, t)||L2(B2)
≤ exp(P(δ−1, K ,M,M1,M2))||v(·, t)||L∞(B4δ), t0 − δ2 ≤ t ≤ t0 + δ2

for a nonnegative polynomial P.

Using the above quantitative estimate of unique continuation for a fixed time t = t0, we
establish the following strong unique continuation result for the Navier–Stokes equation,
which, however, is valid only for a certain restricted range of the Gevrey exponents σ. Recall
that a difference of two solutions (u1, p1) and (u2, p2) satisfies the strong unique continuation
property at a fixed time t = t0 if u1(·, t0) �= u2(·, t0) in � implies that u1 − u2 has finite
order of vanishing for any x ∈ � and t = t0.

Theorem 2.2 Suppose that the above hypotheses (2.1)–(2.4) are satisfied and σ ≤ 1 + η,

where η > 0 is a universal constant. Then the Navier–Stokes equation has the strong unique
continuation property for differences of solutions at time t = t0.

This statement is a consequence of Theorem 2.1 and [20, Theorem 2.4]. The latter theorem
provides an estimate on the order of vanishing and the number of zeros for Gevrey functions.
We state it below for convenience.
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Theorem 2.3 [20, Theorem 2.4] Let f : R → R be an infinitely differentiable 1-periodic
function which is not identically zero. Let a, b ≥ 0 and 1 ≤ σ ≤ 1 + 1/b. If σ = 1 + 1/b,
we assume that 4b+1a/δb ≤ 1/2. Suppose that there exist constants M ≥ 1 and δ ∈ (0, 1/2]
such that

‖ f (n)‖L∞(�) ≤ Mn!σ
δn

‖ f ‖L∞(�) n ∈ N0, (2.5)

and

‖ f ‖L∞(�) ≤ exp
( a

ρb

)
‖ f ‖L∞[x0−ρ/2,x0+ρ/2] (2.6)

for all ρ ∈ (0, δ] and x0 ∈ �. Then for the number of zeros of f in �, we have

card {x ∈ � : f (x) = 0} ≤ C K 1+1/b, (2.7)

where

K =
(4b+1a

δb

)1/(1+b(1−σ)) + 4b+1a

δb
+ 2 log M + 2 (2.8)

and C = C(a, b). The first term in (2.8) is understood to be zero if σ = 1 + 1/b. Moreover,
we have an upper bound

ordx0 f ≤ K (2.9)

for the order of vanishing ordx0 f for every x0 ∈ �.
Remark 2.4 Note that the local Gevrey regularity of the solutions to (NSE), or the heat
equation, is at most G2 in time even in the case when f is analytic. However, the solutions
of the boundary value problems, such as (NSE), are as regular as the forcing f ; c.f. [11] for
the case of forcing which is analytic in space and time variables. To illustrate this, consider
the equation

∂t u −�u = f

u(·, 0) = 0 (2.10)

with periodic boundary conditions on [0, 1] and average zero condition for f. We assume
that f is Gevrey with exponent σ > 0 in t, i.e.,

‖∂m
t f ‖L2 ≤ M0m!σ

δm
0

m ∈ N0 (2.11)

for some M0 > 0 and δ0 > 0. Then the standard energy inequality reads

d

dt
‖∂m

t u‖L2 ≤ C‖∂m
t f ‖L2 ≤ C M0m!σ

δm
0

(2.12)

which gives the Gevrey regularity in time with exponent σ for the solution. If f is jointly
space-time Gevrey with exponent σ > 0, the solution is also jointly Gevrey with the same
exponent as can be checked by writing the energy inequality for ‖∂m

t ∂
k
x u‖L2 . The similar

argument extends to semilinear equations, such as the Navier–Stokes equation, using an
argument from [11] (see also [12]) by considering the energy inequality for the quantity
‖∇eαt (−�)σ/2∂m

t u(t)‖L2 ; however, the presence of a nonlinearity requires σ ≥ 1.
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Remark 2.5 As mentioned above, the condition (2.4) can be obtained from the bounds on
the Dirichlet quotient in the case of periodic boundary conditions. In order to illustrate this,
we again consider the equation

vt −�v + b · ∇v + cv = 0 (2.13)

for t ∈ [0, T ] on a periodic domain �L = [−L , L]n with a period L ≤ 1/(2
√

n) so that
�L ⊆ B1. The adjustments for the Navier–Stokes equation are straight-forward (c.f. [3] for
instance). Denote by

Q(t) = ‖∇v(t)‖2
L2

‖v(t)‖2
L2

(2.14)

the Dirichlet quotient, where we abbreviate ‖ · ‖L2 = ‖ · ‖L2(�L )
and (·, ·)L2 = (·, ·)L2(�L )

.

Then we have (c.f. [29, Theorem 2.1])

1

2
Q′(t)+

∥
∥
∥
∥(−�−Q(t)I )

v

‖v‖L2

∥
∥
∥
∥

2

L2
≤

(
−b · ∇v

‖v‖L2
−c

v

‖v‖L2
, (−�−Q(t)I )

v

‖v‖L2

)

L2

(2.15)

which implies Q′(t) ≤ b2
T Q(t) + c2

T where bT = supt∈[0,T ] ‖b(t)‖L∞ and cT =
supt∈[0,T ] ‖c(t)‖L∞ . Hence,

Q(t) ≤ K (bT , cT , T, Q(0)) 0 ≤ t ≤ T, (2.16)

where the constant K can be evaluated using the Gronwall lemma. Now, in order to obtain
bounds on ‖v(t2)‖2

L2/‖v(t1)‖2
L2 , we multiply (2.13) by v and integrate:

1

2

d

dt
‖v‖2

L2 + ‖∇v‖2
L2 + (b · ∇v, v)L2 + (cv, v)L2 = 0. (2.17)

We observe that (2.17) implies

1

2

d

dt
‖v‖2

L2 + ‖∇v‖2
L2 ≥ −‖b‖L∞‖∇v‖L2‖v‖L2 − ‖c‖L∞‖v‖2

L2

≥ −‖∇v‖2
L2 − (b2

T + cT )‖v‖2
L2 (2.18)

or equivalently

1

2

d

dt
‖v‖2

L2 + (2Q + b2
T + cT )‖v‖2

L2 ≥ 0 (2.19)

which, by (2.16), leads to

‖v(t2)‖2
L2 ≥ exp(−2(2K + b2

T + cT )T )‖v(t1)‖2
L2 0 ≤ t1 ≤ t2 ≤ T . (2.20)

On the other hand, using (2.17) and the Cauchy–Schwarz inequality, we obtain

d

dt
‖v‖2

L2 ≤ C(‖b‖2
L∞ + ‖c‖L∞)‖v‖2

L2 ≤ C(b2
T + cT )‖v‖2

L2 (2.21)

whence

‖v(t2)‖2
L2 ≤ exp

(
C(b2

T + cT )T
) ‖v(t1)‖2

L2 0 ≤ t1 ≤ t2 ≤ T . (2.22)

Finally, (2.4) follows from the bounds (2.20) and (2.22) on �L ⊆ B1.
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3 Carleman Estimates

Without loss of generality, we assume, from here on, that t0 = 0.
First, we establish a Carleman type inequality for the Laplacian, defined in a torus centered

at the origin, with a weight ψ(x) = |x |−m, where m ∈ N.

Lemma 3.1 There exist positive constants C and τ0 such that

τ 3
∫

A(δ,1)

|v|2e2τψ + τ

∫

A(δ,1)

|∇v|2e2τψ ≤ C
∫

A(δ,1)

|�v|2e2τψ (3.1)

for any v ∈ C∞
0 (B1) with support in the annulus A(δ, 1) = {x ∈ R

3 : δ ≤ |x | ≤ 1} and
τ ≥ τ0δ

−4, provided m is a large enough constant.

Above and in the sequel, the symbol C denotes a generic positive constant which is allowed
to depend only on σ. Any additional dependence is indicated explicitly.

Lemma 3.1 is a consequence of [21, Theorem 2.4]. The latter assertion is obtained by first
establishing the pseudo-convexity condition with the singular weight ψ = |x |−m on the unit
annulus A(x0, 1/2, 4) for principal symbols P2s of elliptic operators of order 2s with simple
complex characteristics satisfying the additional assumption: For 0 �= ζ = ξ + iτ∇ψx0(x),
we have

|P2s(x, ζ )|2 + |(x − x0) · ∇ζ P2s(x, ζ )|2 > 0, x ∈ Āx0 , ξ ∈ R
n, and τ ∈ R, (3.2)

for all x0 ∈ �̄, where ψx0(x) = |x − x0|−m and Ax0 is the n-dimensional unit torus
centered at x0. Then we derived a uniform in x0 Carleman estimate on the dyadic annuli
A(x0, 2−r−1, 2−r+2) for r ∈ N and used a partition of unity to obtain the corresponding
Carleman-type estimate on A(x0, δ, 1) with explicit dependence of the constants C and τ
on δ.

Proof of Lemma 3.1 Clearly, the Laplacian is an elliptic operator with simple complex char-
acteristics. By [21, Theorem 2.4], it suffices to prove that for 0 �= ζ = (ζ1, . . . , ζn) =
ξ + iτ∇ψ(x) the assumption on the principal symbol P2(ζ ) = −|ζ |2

|ζ |2 + |x · 2ζ | > 0

is satisfied for all x ∈ Ā0, ξ ∈ R
3, and τ ∈ R, where ψ(x) = |x |−m and

A0 = A(1/2, 4) =
{

x ∈ R
3 : 1

2
≤ |x | ≤ 4

}

is the 3-dimensional unit torus centered at 0. Assume that |ζ |2 = 0, we have |τ | ≥ 1/C and
|x · (ξ + iτ∇ψ(x))| ≥ |τ x · ∇ψ(x)| ≥ 1/C, and this implies the result. �

Using a Carleman estimates due to Isakov [19, Theorem 1.1] and a modification of argu-
ments as in the proof of [21, Theorem 3.1], we derive a Carleman-type inequality for parabolic
operators with a weight function ψ as in Lemma 3.1.

Lemma 3.2 There exist constants C and τ0 such that

τ 3

δ2∫

−δ2

∫

A(δ,1)

|u|2e2τψ + τ

δ2∫

−δ2

∫

A(δ,1)

|∇u|2e2τψ ≤ C

δ2∫

−δ2

∫

A(δ,1)

|∂t u −�u|2e2τψ (3.3)
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holds for any u ∈ C∞
0 (A(δ, 1) × (−δ2, δ2)) and τ ≥ τ0δ

−2, provided m ∈ N is a large
enough constant.

Proof of Lemma 3.2 Let m be a large enough number such that the pseudo-convexity con-
dition is satisfied for operators with the principal part ∂t − � and a weight function
ψ(x) = |x |−m, defined in Ā0 × [−1, 1]. Then, by [19, Theorem 1.1], there exist positive
constants C and τ0 such that

τ 3

1∫

−1

∫

A0

|u|2e2τψ + τ

1∫

−1

∫

A0

|∇u|2e2τψ ≤ C

1∫

−1

∫

A0

|∂t u −�u|2e2τψ (3.4)

holds for any u ∈ C∞
0 (A0 × (−1, 1)) and τ ≥ τ0. By rescaling the function u in the

estimate (3.4), we obtain a Carleman type inequality on the dyadic cylindrical shell Ar ×
(−2−2r , 2−2r ) for r ∈ N, where Ar = {x ∈ R

3 : 2−r−1 ≤ |x | ≤ 2−r+2}. Indeed, let
u(x, t) = v(2−r x, 2−2r t) and σ = 2−mr τ. Then we have

σ 323rm

2−2r∫

−2−2r

∫

Ar

|v|2e2σψ+σ2rm−2r

2−2r∫

−2−2r

∫

Ar

|∇v|2e2σψ≤C2−4r

2−2r∫

−2−2r

∫

Ar

|∂tv −�v|2e2σψ

(3.5)

which leads to

σ 3

2−2r∫

−2−2r

∫

Ar

|v|2e2σψ + σ

2−2r∫

−2−2r

∫

Ar

|∇v|2e2σψ ≤ C

2−2r∫

−2−2r

∫

Ar

|∂tv −�v|2e2σψ (3.6)

for all v ∈ C∞
0 (Ar × (−2−2r , 2−2r )) and σ ≥ τ0.

Let u ∈ C∞
0 (B1×(−δ2, δ2)) be a smooth function with the support in A(δ, 1)×(−δ2, δ2).

Denote by r1 the smallest integer such that 2−r1 ≤ δ. Then supp u ⊂ ⋃r1
r=1 Ar ×

(−2−2r , 2−2r ). Let φ be a smooth cut-off function with the support in A0 × [−δ2, δ2] such
that φ ≡ 1 in a neighborhood of the torus A(1, 2) for all t ∈ [−δ2, δ2]. Define φr (x, t) =
φ(2r x, t) for r ∈ N. Then, we have that φr is compactly supported in Ar × [−δ2, δ2] such
that φr ≡ 1 in a neighborhood of A(2−r , 2−r+1) and |Dαφr | ≤ C2r |α| (φr+1 + φr−1) for all
α ∈ N

3 with |α| = 0, 1 and t ∈ [−δ2, δ2].
Applying the Carleman inequality (3.6) to uφr and summing for r = 1, . . . , r1,we obtain

r1∑

r=1

σ 3

δ2∫

−δ2

∫

Ar

|uφr |2e2σψ + σ

δ2∫

−δ2

∫

Ar

|∇(uφr )|2e2σψ (3.7)

≤ C
r1∑

r=1

δ2∫

−δ2

∫

Ar

|(∂t −�)(uφr )|2e2σψ
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for σ ≥ τ0. First, for the left side of (3.7), we show that

r1∑

r=1

σ 3

δ2∫

−δ2

∫

Ar

|uφr |2e2σψ + σ

δ2∫

−δ2

∫

Ar

|∇(uφr )|2e2σψ (3.8)

≥ 1

C

r1∑

r=1

σ 3

δ2∫

−δ2

∫

Ar

|uφr |2e2σψ + σ

δ2∫

−δ2

∫

Ar

|φr∇u|2e2σψ .

Using the inequality |∇(uφr )|2 ≥ (1/2)|φr∇u|2 − |u∇φr |2 and the assumptions on the
derivatives of φr , we have

r1∑

r=1

∑

|α|≤1

σ 3−2|α|
δ2∫

−δ2

∫

Ar

|Dα(uφr )|2e2σψ ≥
r1∑

r=1

(
1

2

∑

|α|≤1

σ 3−2|α|
δ2∫

−δ2

∫

Ar

|φr Dαu|2e2σψ

− C22rσ

δ2∫

−δ2

∫

Ar

(|φr+1u|2 + |φr−1u|2) e2σψ
)

and the two terms on the right side can be absorbed into the first term on the right side, since

C22rσ

δ2∫

−δ2

∫

Ar

(|φr+1u|2 + |φr−1u|2) e2σψ

≤ σ 3

δ2∫

−δ2

∫

Ar+1

|φr+1u|2e2σψ + σ 3

δ2∫

−δ2

∫

Ar−1

|φr−1u|2e2σψ

for r ∈ {1, . . . , r1} provided σ ≥ τ02r1 . Next, for the right side of (3.7), we have

C
r1∑

r=1

δ2∫

−δ2

∫

Ar

|(∂t −�)(uφr )|2e2σψ ≤ C
r1∑

r=1

δ2∫

−δ2

∫

Ar

|φr (∂t −�)u|2e2σψ

+ C
r1∑

r=1

δ2∫

−δ2

∫

Ar

(|u�φr |2 + |∇u∇φr |2
)

e2σψ . (3.9)

Note that also the lower order terms on the right side of (3.9) may be absorbed into the right
side of (3.8). Indeed,

C
r1∑

r=1

δ2∫

−δ2

∫

Ar

(|u�φr |2 + |∇u∇φr |2
)

e2σψ

≤ C
r1∑

r=1

δ2∫

−δ2

∫

Ar

(
24r (|φr+1u|2 + |φr−1u|2) + 22r (|φr+1∇u|2 + |φr−1∇u|2)) e2σψ
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≤ C
r1∑

r=1

∑

|α|≤1

σ 3−2|α|
δ2∫

−δ2

∫

Ar

|φr Dαu|2e2σψ

if σ ≥ τ022r1 . From (3.8) and (3.9), we conclude

r1∑

r=1

∑

|α|≤1

σ 3−2|α|
δ2∫

−δ2

∫

Ar

|φr Dαu|2e2σψ ≤ C
r1∑

r=1

δ2∫

−δ2

∫

Ar

|φr (∂t −�)u|2e2σψ

and hence

∑

|α|≤1

σ 3−2|α|
δ2∫

−δ2

∫

A(δ,1)

|Dαu|2e2σψ ≤ C

δ2∫

−δ2

∫

A(δ,1)

|∂t u −�u|2e2σψ (3.10)

for all u ∈ C∞
0 (B1 × (−δ2, δ2)) with the support in A(δ, 1) × (−δ2, δ2) and σ ≥ τ0δ

−2,

by taking τ0 sufficiently large. Note that the constant C does not depend on r1, since for
any x ∈ Ar , there are at most three functions from among {φr (x, t)}r1

r=1, which are different

from zero. Thus |Dαu| ≤ C
(∑r1

r=1 |φr Dαu|2)1/2
by the Cauchy–Schwartz inequality. �

4 Propagation of Smallness

In this section we establish a propagation of smallness lemma, which is used in the proof of
Theorem 2.1.

Let (v, p) be an infinitely smooth solution of the coupled elliptic-parabolic system

vt −�v + u1 · ∇v + v · ∇u2 + ∇ p = 0, (4.1)

−�p − ∂ j u1i∂iv j − ∂i u2 j∂ jvi = 0

for (x, t) ∈ B2 × [−δ2, δ2]. Assume that the coefficients are infinitely smooth and that there
exist nonnegative constants M j and δ such that

||∂αx u j (·, t)||L∞(B2) ≤ M j |α|!σ
δ|α| , −δ2 ≤ t ≤ δ2, j = 1, 2 (4.2)

for |α| = 0, 1. Also, assume that there exist a nonnegative constant M such that

||∂αx v(·, t)||L∞(B2) + ||∂αx p(·, t)||L∞(B2) ≤ M |α|!σ
δ|α| , −δ2 ≤ t ≤ δ2 (4.3)

for |α| = 0, 1 and additionally that

||∂αx v(·, t)||L∞(B2δ) + ||∂αx p(·, t)||L∞(B2δ) ≤ ε̃, −δ2 ≤ t ≤ δ2 (4.4)

for |α| = 0, 1 and some sufficiently small ε̃ ∈ (0, 1) such that ε̃ ≤ M.

Lemma 4.1 Suppose that the assumptions (4.1)–(4.4) are satisfied. If

ε̃ ≤ M exp(−P1(δ
−1,M1,M2))

then

||v||L2(B1×(−δ3,δ3)) + ||p||L2(B1×(−δ3,δ3)) ≤ P2(δ
−1,M,M1,M2)ε̃

θM1−θ

where P1 and P2 are nonnegative polynomials and the parameter θ ∈ (0, 1) is such that
θ ≤ Cδm .
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Proof of Lemma 4.1 We use a change of variable

x̃ = a(t)x, a(t) =
√

1 + t2

δ2η2

with the parameter η = δ2, which transforms the region A(δ, 2δ) × (−η, η) into a region
between the two hyperboloids |x̃ |2 − t2/η2 = δ2 and |x̃ |2 − t2/η2 = 4δ2. In the new
coordinates, we denote u j (x, t) = ũ j (x̃, t), v(x, t) = ṽ(x̃, t), and p(x, t) = p̃(x̃, t). Then,
we have that (ṽ, p̃) is a solution of the system

ṽt − a(t)2�ṽ + t x̃

δ2η2a(t)2
· ∇ṽ + a(t)ũ1 · ∇ṽ + a(t)ṽ · ∇ũ2 + a(t)∇ p̃ = 0,

−� p̃ − ∂ j ũ1i∂i ṽ j − ∂i ũ2 j∂ j ṽi = 0.

(4.5)

Using the hypothesis (4.4), we obtain

|∂αx ṽ(x̃, t)| + |∂αx p̃(x̃, t)| ≤ ε̃

a(t)|α| , (x̃, t) ∈ S (4.6)

for |α| = 0, 1, where the region S is defined by

S =
{
(x̃, t) : δ ≤ |x̃ |

a(t)
≤ 2δ, δ ≤ |x̃ | ≤ 2

}
.

For the regions enclosed by the two hyperboloids and the cylinder Br ×(−δ2, δ2)with radius
r ∈ (2δ, 3], we use, respectively, the notation

Ol(r) =
{
(x̃, t) : δ ≤ |x̃ | ≤ r,−η

√
|x̃ |2 − δ2 ≤ t ≤ η

√
|x̃ |2 − δ2

}

and

Os(r) =
{
(x̃, t) : 2δ ≤ |x̃ | ≤ r,−η

√
|x̃ |2 − 4δ2 ≤ t ≤ η

√
|x̃ |2 − 4δ2

}
.

Now, using Lemma 3.2, we establish a Carleman estimate for parabolic operators with the
principal part ∂t −a(t)2�.We change the time variable t̃ = A(t),where A(t) is the solution
of the equation A′(t) = a(A(t))−2 with an initial condition A(0) = 0; the solution is given
implicitly by A(t)+ (1/3)δ−2η−2 A(t)3 = t. Then, for v(x, t) = ṽ(x, t̃), we obtain

∂tv −�v = 1

a(t̃)2
(
∂t̃ ṽ − a(t̃)2�ṽ

)

provided −(1/C)t ≤ A(t) ≤ Ct for t ≤ δ3 and −(1/C)δ2/3η2/3t1/3 ≤ A(t) ≤ Cδ2/3η2/3

t1/3 for t ≥ δ3. By Lemma 3.2, we have

τ 3

A(δ2)∫

−A(δ2)

∫

A(δ,1)

|ṽ|2e2τψ + τ

A(δ2)∫

−A(δ2)

∫

A(δ,1)

|∇ṽ|2e2τψ (4.7)

≤ C

A(δ2)∫

−A(δ2)

∫

A(δ,1)

|∂t̃ ṽ − a(t̃)2�ṽ|2e2τψ

for all ṽ ∈ C∞
0 (A(δ, 1)× (−A(δ2), A(δ2))) and τ ≥ τ0δ

−2.
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Next, we determine η so that η ≤ A(δ2). More precisely, we choose the critical value
η = Cδ2. Let φ ∈ C∞

0 (B2 × (−δ2, δ2)) be a smooth cut-off function such that φ ≡ 1
in a neighborhood of Os(1.5) and φ ≡ 0 in a neighborhood of Ol(2)c. Additionally, for
(x̃, t) ∈ S we assume that |Dα

x φ(x̃, t)| ≤ Cδ−|α| if |α| = 0, 1 and |∂tφ(x̃, t)| ≤ Cδ−3. Then
ṽφ and p̃φ are infinitely smooth functions with compact supports in A(δ, 2) × (−δ2, δ2).

Using a linear change of variable, we have that (3.1) and (4.7) are valid for functions in
C∞

0 (B2 × (−δ2, δ2)). Adding the two Carleman-type estimates (3.1) and (4.7) for p̃φ and
ṽφ, respectively, we obtain

τ 3

δ2∫

−δ2

∫

A(δ,2δ)

(|ṽφ|2 + | p̃φ|2)e2τψ + τ

δ2∫

−δ2

∫

A(δ,2δ)

(|∇(ṽφ)|2 + |∇( p̃φ)|2)e2τψ (4.8)

≤ C

δ2∫

−δ2

∫

A(δ,2δ)

(|∂t (ṽφ)− a(t)2�(ṽφ)|2 + |�( p̃φ)|2)e2τψ

for τ ≥ τ0δ
−4. We estimate the right side of (4.8) from above by I1 + I2 + I3, where

I1 = C
∫

Os (1.5)

(|∂t (ṽφ)− a(t)2�(ṽφ)|2 + |�( p̃φ)|2) e2τψ ,

I2 = C
∫

S

(|∂t (ṽφ)− a(t)2�(ṽφ)|2 + |�( p̃φ)|2) e2τψ ,

I3 = C
∫

Os (2)\Os (1.5)

(|∂t (ṽφ)− a(t)2�(ṽφ)|2 + |�( p̃φ)|2) e2τψ .

Using the hypotheses (4.2) and (4.4), and that φ ≡ 1 in a neighborhood of Os(1.5),we obtain

I1 = C
∫

Os (1.5)

(|ṽt − a(t)2�ṽ|2 + |� p̃|2)e2τψ

≤ C
∫

Os (1.5)

(∣∣∣
t x̃

δ4a(t)2

∣∣∣
2|∇ṽ|2 + a(t)2|ũ1|2|∇ṽ|2 + a(t)2|∇ũ2|2|ṽ|2 + a(t)2|∇ p̃|2

+ |∇ũ1|2|∇ṽ|2 + |∇ũ2|2|∇ṽ|2
)

e2τψ

≤ (Cδ−4 + C(M2
1 + M2

2 )δ
−2)

∫

Os (1.5)

|∇ṽ|2e2τψ + C M2
2 δ

−2
∫

Os (1.5)

|ṽ|2e2τψ

+ C
∫

Os (1.5)

|∇ p̃|2e2τψ

which can be absorbed in the half of the left side of (4.8) provided

τ ≥ max
{
C(M2

1 + M2
2 )δ

−2, τ0δ
−4} . (4.9)

123



12 J Dyn Diff Equat (2013) 25:1–15

For the second integral, we have

I2 ≤ C
∫

S

(|ṽt − a(t)2�ṽ|2 + |∂tφ|2|ṽ|2 + |a(t)2�φ|2|ṽ|2 + |(a(t)2∇φ)|2|∇ṽ|2) e2τψ

+ C
∫

S

(|� p̃|2 + |∇φ|2|∇ p̃|2 + |�φ|2| p̃|2) e2τψ

≤ C
∫

S

(∣
∣
∣

t x̃

δ4a(t)2

∣
∣
∣
2|∇ṽ|2 + a(t)2|ũ1|2|∇ṽ|2 + a(t)2|∇ũ2|2|ṽ|2 + a(t)2|∇ p̃|2

)
e2τψ

+ Cδ−6ε̃2e2τδ−m |S| + C
∫

S

(|∇ũ1|2|∇ṽ|2 + |∇ũ2|2|∇ṽ|2
)

e2τψ

≤ C(δ−4 + M2
1 + M2

2 )ε̃
2e2τδ−m

,

where we used the estimates on the coefficients (4.2) and (4.6), ψ(x̃) ≤ δ−m for (x̃, t) ∈ S,
and |S| ≤ δ2. Finally, the assumptions (4.2), (4.3), ψ(x̃) ≤ 1.5−m for (x̃, t) ∈ Os(2) \
Os(1.5), and |Os(2) \ Os(1.5)| ≤ δ2 imply

I3 ≤ C
∫

Os (2)\Os (1.5)

(|ṽt−a(t)2�ṽ|2+|∂tφ|2|ṽ|2+|a(t)2�φ|2|ṽ|2+|(a(t)2∇φ)|2|∇ṽ|2) e2τψ

+ C
∫

Os (2)\Os (1.5)

(|� p̃|2 + |∇φ|2|∇ p̃|2 + |�φ|2| p̃|2) e2τψ

≤ C
(
δ−4 + M2

1 + M2
2

)
M2e2τ1.5−m

for the third integral. Hence,

τ 3

δ3∫

−δ3

∫

A(2δ,1)

(|ṽ|2 + | p̃|2) e2τψ ≤ P2(δ
−1,M1,M2)

(
ε̃2e2τδ−m + M2e2τ1.5−m

)

provided (4.9) holds. Note thatψ ≥ 1 on A(2δ, 1).Dividing both sides of the above inequality
by τ 3 exp(2τ), we get

δ3∫

−δ3

∫

A(2δ,1)

(|ṽ|2 + | p̃|2) ≤ P2(δ
−1,M1,M2)

(
ε̃2e2τ(δ−m−1) + M2e2τ(1.5−m−1)

)
.

Now, we choose τ such that ε̃ = M exp(τ (1.5−m − δ−m)) and this τ satisfies (4.9) if ε̃ is
sufficiently small. Then

δ3∫

−δ3

∫

A(2δ,1)

(|ṽ|2 + | p̃|2) ≤ P2(δ
−1,M1,M2)ε̃

2θM2−2θ

for θ = (1 − 1.5−m)/(δ−m − 1.5−m) provided

log
M

ε̃
≥ max

{
C(M2

1 + M2
2 )δ

−2, τ0δ
−4} (δ−m − 1.5−m) = P1(δ

−1,M1,M2).

Therefore, the lemma is proven. �
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Proof of Theorem 2.1 Suppose that the hypotheses of Theorem 2.1 are satisfied. Define

ε = sup
t∈[−δ2,δ2]

||v(·, t)||L∞(B4δ)

||v(·, t)||L2(B2)

. (4.10)

To establish the statement, it suffices to prove that ε ≥ P(δ−1, K ,M,M1,M2) for a non-
negative polynomial P. By (4.10), we have

||v(·, t)||L∞(B4δ) ≤ ε||v(·, t)||L2(B2)
, −δ2 ≤ t ≤ δ2

for some ε ∈ (0, 1]. Then, as in the proof of [28, Lemma 3.1], we obtain

|∂αx v(x, t)| ≤ C |α|+1ε1/2 M1/2|α|!σ
δ|α| ||v(·, t)||L2(B2)

, x ∈ B2δ, −δ2 ≤ t ≤ δ2

and

|∂m
t v(x, t)| ≤ Cm+1ε1/2 M1/2m!σ

δ2m
||v(·, t)||L2(B2)

, x ∈ B4δ, −δ2/2 ≤ t ≤ δ2/2.

Without loss of generality, we assume that p(0, t) = 0 for all t ∈ [−δ2, δ2]. Now, using the
parabolic equation from the system (2.2), we get

||∇ p(·, t)||L∞(B2δ)

≤ ||∂tv(·, t)||L∞(B2δ)+||�v(·, t)||L∞(B2δ)+||u1·∇v(·, t)||L∞(B2δ)+||v·∇u2(·, t)||L∞(B2δ)

≤ Cε1/2 M1/2

δ2 max{1,M1,M2}||v(·, t)||L2(B2)

for t ∈ [−δ2/2, δ2/2]. Thus, we obtain

||∂αx v(·, t)||L∞(B2δ) + ||∂αx p(·, t)||L∞(B2δ) ≤ ε̃||v(·, t)||L2(B2)

for all t ∈ [−δ2/2, δ2/2], where

ε̃ = max|α|=0,1

{
ε,

C |α|+1ε1/2 M1/2(|α| + 1)!σ
δ|α|+1 max{1,M1,M2}

}
(4.11)

Denote

K0 = max|α|=0,1
max

t∈[−δ2/2,δ2/2]
δ|α|

|α|!σ
(||∂αx v(·, t)||L∞(B2) + ||∂αx p(·, t)||L∞(B2)

)

and set (ṽ, p̃) = K −1
0 (v, p). Clearly, (ṽ, p̃) also solves the system (2.1) and

||∂αx ṽ(·, t)||L∞(B2) + ||∂αx p̃(·, t)||L∞(B2) ≤ |α|!σ
δ|α| , −δ2/2 ≤ t ≤ δ2/2, |α| = 0, 1.

Then

||∂αx ṽ(·, t)||L∞(B2δ) + ||∂αx p̃(·, t)||L∞(B2δ)

≤ 1

K0

(||∂αx v(·, t)||L∞(B2δ) + ||∂αx p(·, t)||L∞(B2δ)

) ≤ ε̃

for t ∈ [−δ2/2, δ2/2] and |α| = 0, 1. Now, Lemma 4.1 implies

||ṽ||L2(B1)×(−δ3,δ3) ≤ P2(δ
−1,M1,M2)ε̃

θ
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provided

ε̃ ≤ exp(−P1(δ
−1,M1,M2)). (4.12)

Also, by the hypothesis (2.3), we get

K0 ≤ M
(||v(·, t)||L2(B2)

+ ||p(·, t)||L2(B2)

)
, −δ2/2 ≤ t ≤ δ2/2.

Hence, we obtain the estimate

||v(·, t)||L2(B2)
≤ K ||v(·, t)||L2(B1)

≤ K K0||ṽ(·, t)||L2(B1)
≤ C K K0

δ3/2 ||ṽ||L2(B1×(−δ3,δ3))

≤ C K K0

δ3/2 P2(δ
−1,M1,M2)ε̃

θ ≤ C K M

δ3/2 P2(δ
−1,M1,M2)ε̃

θ
(||v(·, t)||L2(B2)

+ ||p(·, t)||L2(B2)

)

for all −δ2/2 ≤ t ≤ δ2/2, which holds only if

ε̃ ≥ δ3/2θ

(C M K )1/θ
P2(δ

−1,M1,M2)
−1/θ . (4.13)

Therefore, by (4.12) and (4.13)

ε̃ ≥ min

{
exp(−P1(δ

−1,M1,M2)),
δ3/2θ

(C M K )1/θ
P2(δ

−1,M1,M2)
−1/θ

}
.

Using (4.11), we solve the last inequality for ε. We conclude that ε ≥ exp(−P(δ−1, K ,M,
M1,M2)) for a non-negative polynomial P of degree in δ−1 depending only on m. �
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