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Abstract. In this paper, we provide a quantitative estimate of unique
continuation (doubling property) for higher-order parabolic partial dif-
ferential equations with non-analytic Gevrey coefficients. Also, a new
upper bound is given on the number of zeros for the solutions with a
polynomial dependence on the coefficients.

1. Introduction

In this paper, we address the spatial complexity of solutions of 1D higher-
order parabolic partial differential equations with Gevrey coefficients in the
case of periodic boundary conditions

ut + (−1)s∂2s
x u+

2s−1∑
k=0

vk(x, t)∂kxu = 0 (1.1)

for (x, t) ∈ R× [−δ2s, δ2s], where s ∈ N and δ ∈ (0, 1/2]. Even though func-
tions from the Gevrey class may not satisfy the unique continuation property,
we prove that the solutions of (1.1) do, under a very mild assumption that
the Gevrey exponent is less than a universal constant. In particular, we ob-
tain a polynomial estimate on the size of the zero sets of solutions in terms
of the coefficients.

The study of complexity of solutions of elliptic and parabolic partial dif-
ferential equations, through estimating the size of their nodal (zero or van-
ishing) sets, has been initiated by Donnelly and Fefferman ([5, 6, 7]). In
the case of a real analytic compact, connected Riemannian n-manifold, they
proved that the (n − 1)-dimensional measure of the nodal set of an eigen-
function of the Laplacian with corresponding eigenvalue λ, is bounded from
above and below by a constant multiple of

√
λ. For a general second-order
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linear elliptic equation with only smooth coefficients, Hardt and Simon [14]
established that the volume of the zero set of a nontrivial solution is finite
in a neighborhood of any point for which the solution has finite order of
vanishing. In [27], considering the Laplace and the heat equation on a com-
pact real analytic manifold, F.-H. Lin revealed the relationship between the
volume of nodal sets of solutions and their frequency (see also [13] for linear
parabolic equations with non-analytic coefficients).

In the previous papers [18, 19], the second author provided estimates on
the spatial complexity of solutions of the second-order parabolic equations
of the type

∂tu−∆u = w · ∇u+ vu (1.2)

with analytic coefficients. Namely, for a complex-valued solution of the
Ginzburg-Landau equation

∂tu = (1 + iν)uxx − (1 + iµ)|u|2u+ au

with periodic boundary conditions, he obtained (in [18]) a polynomial bound
on its winding number in terms of the bifurcation parameters µ and a for
any fixed ν. In [19], a polynomial bound on the size of the vorticity nodal
sets {x ∈ Ω : ω(x, t) = 0}, depending on the initial condition, viscosity,
the size of Ω, and 1/t, was given for the solutions of the 2D Navier-Stokes
equations written in the vorticity form. The proofs employed a modification
of a unique continuation method for the equation (1.2) due to Kurata [25]
and a self-similar transformation of variables. Regarding the solutions u
of the higher-order equations with analytic coefficients (1.1), with spatial
periodicity L > 0, it is proven in [20] that the length of the level sets {x ∈
[0, L] : u(x, t) = λ} can be bounded by a polynomial function on L and the
coefficients for all λ ∈ R.

There is a close relationship between the study of nodal sets and the
unique continuation for solutions of elliptic and parabolic equations. To
obtain a bound on the volumes of the nodal set of a solution of such a PDE,
it must satisfy the strong unique continuation property; that is, if a solution
vanishes at the infinite order in a point, then it is the trivial solution. There
is a rich literature on this subject (cf. [8, 16, 22, 28] and the review papers
by Kenig [23, 24]).

We would like to mention a recent paper of Colombini and Koch [4], in
which the authors consider products of elliptic operators with coefficients
in the Gevrey class Gσ and prove a strong unique continuation property
provided σ < 1 + 1/α for some α > 0. Their result relies on an estimate,
obtained by iteration of a Carleman-type inequality (cf. [4, Proposition 3.1])
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for second-order elliptic operators (this approach does not apply to parabolic
equations).

In the present paper, we remove the restricting analyticity requirements
from a previous result of the second author (cf. [20]) on the complexity of
the solutions of the equation (1.1). If we follow the approach in [20], the
estimate on the derivatives [20, Lemma 6.1] does not close. We overcome
this difficulty by shrinking the time interval by a variable factor depending
on the size of the solution (cf. Lemma 3.1 below). Another obstacle we face
is that the solutions of (1.1) have only non-analytic Gevrey regularity and
the Gevrey class of functions may not have the unique continuation property.
Moreover, the classical approach (cf. [17, 5, 6]) relies on complex analysis
methods which do not apply here. To overcome this, we use an interpolation
technique (cf. Theorem 2.4). A result of independent interest is a strong
unique continuation property for the equation (1.1) with coefficients in Gσ

with 1 ≤ σ ≤ 1 + η for some η > 0, obtained by using a Carleman estimate,
which is used classically only for weak continuation results. We emphasize
that the polynomial upper bound on the number of zeros is new including
for the equations of second order (the papers [18, 19] require analyticity).

The paper is organized as follows. In Section 2, we state our main results,
Theorems 2.1 and 2.4. The following two sections contain auxiliary results
for the proof of Theorem 2.1. In Section 3, we prove smallness of all space
derivatives of the solution u(x, t) in a small space-time rectangle provided
the solution is small on an interval for a fixed time t = 0. To establish the
propagation of smallness on space-time rectangles in Section 4, our main
tool is a Carleman-type estimate for higher-order parabolic equations due
to Isakov [15] (cf. also [12, 28]), adopted to a certain region between two
parabolas. In Section 5, we give the proof of the quantitative property
stated in Theorem 2.1. We develop the techniques used in [20] to the case
of equations with Gevrey coefficients. Then, we prove Theorem 2.4, which
is an independent result addressing quantitative uniqueness and the number
of zeros for functions in a Gevrey class.

2. Notation and the main result

In this paper, we consider the 1D higher-order parabolic partial differential
equation with possibly non-analytic coefficients in the Gevrey class Gσ with
σ ≥ 1

ut + (−1)s∂2s
x u+

2s−1∑
k=0

vk(x, t)∂kxu = 0 (2.1)
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for (x, t) ∈ R × [−δ2s, δ2s], where s ∈ N and δ ∈ (0, 1/2]. Let u(x, t) be a
periodic solution, with period 1 in the x variable, of the equation (2.1), and
denote by Ω the spatial interval of periodicity 1 which we may, without loss
of generality, take to be Ω = (−1/2, 1/2). We assume that u is an infinitely
smooth function of (x, t) for which u(·, 0) is not identically zero and that
there exists a constant M > 0 such that

‖∂nt ∂mx u(·, t)‖L∞(Ω) ≤
Mn!σm!σ

δ2sn+m
‖u(·, t)‖L2(Ω) (2.2)

for −δ2s ≤ t ≤ δ2s and n,m ∈ N0 where σ ≥ 1 is fixed. Also, we assume
that the coefficients are infinitely smooth functions of (x, t) and that for all
k = 0, 1, . . . , 2s− 1 there exist constants Mk > 0 such that

‖∂nt ∂mx vk(·, t)‖L∞(Ω) ≤
Mkn!σm!σ

δ2sn+m
(2.3)

for −δ2s ≤ t ≤ δ2s and n,m ∈ N0. Assume

‖u(·, t1)‖L2(Ω) ≤ K‖u(·, t2)‖L2(Ω) (2.4)

for −δ2s ≤ t1, t2 ≤ δ2s and some constant K ≥ 1. Under the above assump-
tions we give the following quantitative estimate of unique continuation for
the parabolic equation (2.1) with only Gevrey coefficients.

Theorem 2.1. Suppose that u satisfies (2.1)–(2.4). If σ ≤ 1+η, where η > 0
is a universal constant, then

‖u(·, 0)‖L∞(Ω) ≤ exp(P (δ−1,M, {Mk}2s−1
k=0 ,K))‖u(·, 0)‖L∞(−δ,δ)

for some non-negative polynomial P of degree in δ−1 at most a constant.

Remark 2.2. The motivation for studying (2.1) is some pattern formation
equations, that is, the Kuramoto-Sivashinsky and Cahn-Hilliard equations
(cf. [29]).

Remark 2.3. The natural condition (2.4) prevents highly oscillating quickly
decaying solutions. Using this condition, together with (2.1) and (2.3), we
can obtain (2.2) with a certain explicit δ by first proving the Gevrey regu-
larity on x for small δ and then using the bounds on the mixed space-time
derivatives provided in [20, Lemma 4.1]. (For Gevrey class regularity and
analyticity of solutions of various nonlinear PDE cf. for instance [2, 3, 9, 10,
11, 21, 26].)

The next theorem provides a new estimate for the order of vanishing
and for the number of zeros for Gevrey functions which is of independent
interest. Note that the Gevrey functions in general do not satisfy the unique



Unique continuation and complexity of solutions 957

continuation property (for instance, the function exp(−|x|1/(1−σ)) belongs to
Gσ(R) for σ > 1, is not identically zero, and has a zero of infinite order at
x = 0).

For any 1-periodic function f : R→ R and x ∈ R, we denote by ordxf the
order of vanishing (i.e., order of the zero) of f at the point x.

Theorem 2.4. Let f : R→ R be an infinitely differentiable 1-periodic func-
tion which is not identically zero. Let a, b ≥ 0 and 1 ≤ σ ≤ 1 + 1/b. If
σ = 1 + 1/b, we assume that 4b+1a/δb ≤ 1/2. Suppose that there exist
constants M ≥ 1 and δ ∈ (0, 1/2] such that

‖f (n)‖L∞(Ω) ≤
Mn!σ

δn
‖f‖L∞(Ω), n ∈ N0, (2.5)

and
‖f‖L∞(Ω) ≤ exp

( a
ρb

)
‖f‖L∞[x0−ρ/2,x0+ρ/2] (2.6)

for all ρ ∈ (0, δ] and x0 ∈ Ω. Then for the number of zeros of f in Ω, we
have

card {x ∈ Ω : f(x) = 0} ≤ CK1+1/b, (2.7)

where

K =
(4b+1a

δb

)1/(1+b(1−σ))
+

4b+1a

δb
+ 2 logM + 2 (2.8)

and C = C(a, b). The first term in (2.8) is understood to be zero if σ =
1 + 1/b. Moreover, we have an upper bound

ordx0f ≤ K (2.9)

for the order of vanishing ordx0f for every x0 ∈ Ω.

Above and in the sequel, the symbol C denotes a generic constant which
may depend on s.

Theorems 2.1 and 2.4 are proven in Section 5 below.

Remark 2.5. In the case σ = 1, the function f is analytic and using only
(2.5) we get

card {x ∈ Ω : f(x) = 0} ≤ C log(M + 1) exp(C/δ)

for the number of zeros of f in Ω (cf. [17]).

Combining Theorems 2.1 and 2.4, we obtain an upper bound for the num-
ber of zeros of the solutions of the equation (2.1) with a polynomial depen-
dence on the coefficients.
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Corollary 2.6. Let u be as above and 1 ≤ σ ≤ 1 + ζ, where ζ > 0 is a
constant depending on s. Then for the number of zeros of u(·, 0) in Ω we
have

card{x ∈ Ω : u(·, 0) = 0} ≤ Q(δ−1,M, {Mk}2s−1
k=0 ,K),

where Q is a nonnegative polynomial.

Proof of Corollary 2.6. By the assumption (2.2), we have

‖∂mx u(·, 0)‖L∞(Ω) ≤
Mm!σ

δm
‖u(·, 0)‖L2(Ω) ≤

Mm!σ

δm
‖u(·, 0)‖L∞(Ω).

Let ρ ∈ (0, δ] be fixed. Then Theorem 2.1 implies

‖u(·, 0)‖L∞(Ω) ≤ exp
(
P (2ρ−1,M, {Mk}2s−1

k=0 ,K)
)
‖u(·, 0)‖L∞(−ρ/2,ρ/2)

≤ exp
( a

ρCs

)
‖u(·, 0)‖L∞(−ρ/2,ρ/2),

where Cs is the highest power of the polynomial P (ρ−1,M, {Mk}2s−1
k=0 ,K)

with respect to ρ−1 and a is a constant depending on M, {Mk}2s−1
k=0 , and K.

The claim follows from Theorem 2.4. �

Remark 2.7. Note that (2.4) can be derived from (2.2), (2.3), and the
equation

1
2
d

dt
‖u‖2L2(Ω) + ‖∂sxu‖2L2(Ω) +

2s−1∑
k=0

(vk(·, t)∂kxu, u)L2(Ω) = 0, (2.10)

obtained by multiplying (2.1) by u and integrating. More precisely, the lower
bound on the rate of decay

‖u(·, t)‖L2(Ω) ≥ exp(−C1(δ−1,M, {Mk}2s−1
k=0 )(t− t1))‖u(·, t1)‖L2(Ω), t ≥ t1

follows directly from (2.10) and the bound

‖∂sxu‖2L2(Ω) +
2s−1∑
k=0

(vk(·, t)∂kxu, u)L2(Ω)

≤ M2s!2σ

δ2s
‖u‖2L2(Ω) +

2s−1∑
k=0

‖vk‖L∞(Ω)‖∂kxu‖L2(Ω)‖u‖L2(Ω)

≤ C1(δ−1,M, {Mk}2s−1
k=0 )‖u‖2L2(Ω).

In order to get an estimate

‖u(·, t)‖L2(Ω) ≤ exp(C2(δ−1,M, {Mk}2s−1
k=0 )(t− t1))‖u(·, t1)‖L2(Ω), t ≥ t1,
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we observe that the equation (2.10) implies

1
2
d

dt
‖u‖2L2(Ω) ≤

1
2
d

dt
‖u‖2L2(Ω) + ‖∂sxu‖2L2(Ω) ≤

2s−1∑
k=0

|(vk(·, t)∂kxu, u)L2(Ω)|

≤ C2(δ−1,M, {Mk}2s−1
k=0 )‖u‖2L2(Ω),

where we also used the assumptions (2.2) and (2.3).

Remark 2.8. We note that, under the assumptions (2.2)–(2.4), the main
results in this paper (in particular Theorem 2.1 and Corollary 2.6) also apply
to the equation

ut + ∂2s+1
x u+

2s∑
k=0

vk(x, t)∂kxu = 0

which has odd highest-order derivatives in the x variable, for some fixed
s ∈ N.

3. Smallness of space derivatives

Under the assumptions from Section 2, we first prove smallness of all space
derivatives of the solution u(x, t) in a small space-time rectangle provided
the solution is small on an interval for a fixed time t = 0. Namely, we have
the following statement.

Lemma 3.1. Assume

|u(x, 0)| ≤ ε‖u(·, 0)‖L2(Ω), x ∈ (−δ, δ) (3.1)

for some ε ∈ (0, 1/4]. Then for all j0 ∈ {0, 1, . . . , 2s− 1}, we have

|∂j0x u(x, t)| ≤ Fj0
(
| log ε|, δ−1,M, {Mk}2s−1

k=0

)
‖u(·, 0)‖L2(Ω) (3.2)

for x ∈ (−δ/2, δ/2) and t ∈ (−δ2s/| log ε|θ, δ2s/| log ε|θ), where

Fj0
(
| log ε|, δ−1,M, {Mk}2s−1

k=0

)
=
M1/2

δj0
exp

(
− 1

4
| log ε|+ C

(
log
(
1 +

2s−1∑
k=0

Mk

))1/(1−ω))
+
CMK

δj0
exp

(
− 1
C
| log ε|ω log | log ε|

)
and θ, ω ∈ (0, 1) are such that σ ≤ 1 + θ/16ω and ε ∈ (0, 1/C) with the
constant C depending on θ and ω.



960 Mihaela Ignatova and Igor Kukavica

Proof. Using (2.2), we have

‖∂jxu(·, 0)‖L2(−δ,δ) ≤
M(2δ)1/2j!σ

δj
‖u(·, 0)‖L2(Ω) ≤

CjMj!σ

(2δ)j−1/2
‖u(·, 0)‖L2(Ω)

and the hypothesis (3.1) gives

‖u(·, 0)‖L2(−δ,δ) ≤ ε(2δ)1/2‖u(·, 0)‖L2(Ω).

Then, by the proof of [20, Lemma 3.1], it follows that

‖∂jxu(·, 0)‖L∞(−δ/2,δ/2) ≤
Cj+1M1/2ε1/2j!σ+1

δj
‖u(·, 0)‖L2(Ω), j ∈ N0.

Let n0 ≥ 8s− 2 be fixed. Then the above inequality implies

|∂jxu(x, 0)| ≤ CM1/2ε1/2j!σn0!
(δ/C)j

‖u(·, 0)‖L2(Ω),

for x ∈ (−δ/2, δ/2) and j = 0, 1, . . . , n0. Now, by the property (2.3) and by
the proof of [20, Lemma 4.1], we have

|∂nt ∂mx u(x, 0)| (3.3)

≤
C2sn+m+1M1/2ε1/2n0!

(
1 +

∑2s−1
k=0 Mk

)n
(2sn+m)!σ

δ2sn+m
‖u(·, 0)‖L2(Ω)

for x ∈ (−δ/2, δ/2) and n,m ∈ N0 such that 2sn + m ≤ n0. Next, we fix
j0 ∈ {0, 1, . . . , 2s− 1}. By (2.2) and (2.4), we obtain∣∣∂nt ∂j0x u(x, t)

∣∣ ≤ CMKn!σ

δ2sn+j0
‖u(·, 0)‖L2(Ω), (3.4)

for (x, t) ∈ R× (−δ2s, δ2s) and n ∈ N0. Also, (3.3) gives∣∣∂it∂j0x u(x, 0)
∣∣ (3.5)

≤
C2si+j0+1M1/2ε1/2n0!

(
1 +

∑2s−1
k=0 Mk

)i
(2si+ j0)!σ

δ2si+j0
‖u(·, 0)‖L2(Ω)

for x ∈ (−δ/2, δ/2) provided that 2si + j0 ≤ n0. From (3.4) we have that,
for any fixed x, the function ∂j0x u(x, ·) is in the Gevrey class of order σ for
t ∈ (−δ2s, δ2s). The Taylor’s formula for ∂j0x u(x, ·) with remainder gives

|∂j0x u(x, t)| ≤
n∑
i=0

|∂it∂
j0
x u(x, 0)|
i!

|t|i +
|∂n+1
t ∂j0x u(x, ξ)|

(n+ 1)!
|t|n+1 (3.6)



Unique continuation and complexity of solutions 961

for all x ∈ (−δ/2, δ/2), t ∈ (−δ2s/| log ε|θ, δ2s/| log ε|θ), and some number
ξ ∈ (−δ2s/| log ε|θ, δ2s/| log ε|θ), where θ ∈ (0, 1) is arbitrary. Using (3.4),
(3.5), and (3.6), we obtain

|∂j0x u(x, t)| ≤
n∑
i=0

C2si+j0+1M1/2ε1/2n0!
(

1 +
∑2s−1

k=0 Mk

)i
(2si+ j0)!σ

i! δ2si+j0

×
( δ2s

| log ε|θ
)i
‖u(·, 0)‖L2(Ω) (3.7)

+
CMK(n+ 1)!σ

(n+ 1)! δ2s(n+1)+j0

( δ2s

| log ε|θ
)n+1

‖u(·, 0)‖L2(Ω)

for x ∈ (−δ/2, δ/2), t ∈ (−δ2s/| log ε|θ, δ2s/| log ε|θ), and n0 ∈ N such that
n0 ≥ 8s − 2. Let n1 be the largest integer such that 2sn1 + j0 ≤ n0. Since
n0 ≥ 8s− 2 and j0 ≤ 2s− 1, we have

n0

4s
≤ n1 ≤

n0

2s
. (3.8)

After simplifying the right-hand side of (3.7) and replacing n with n1, we
obtain

|∂j0x u(x, t)| ≤
Cn0M1/2ε1/2n0!σ+1

(
1 +

∑2s−1
k=0 Mk

)n1

δj0
‖u(·, 0)‖L2(Ω)

+
CMK(n1 + 1)!σ−1

| log ε|θ(n1+1)δj0
‖u(·, 0)‖L2(Ω) (3.9)

for x ∈ (−δ/2, δ/2), t ∈ (−δ2s/| log ε|θ, δ2s/| log ε|θ), and n0 ∈ N such that
n0 ≥ 8s− 2. Hence, by (3.8) and (3.9),

|∂j0x u(x, t)| ≤ Cn0M1/2

δj0
ε1/2n

(σ+1)n0

0

(
1 +

2s−1∑
k=0

Mk

)n0/2s
‖u(·, 0)‖L2(Ω)

+
CMK

| log ε|θ(n0/4s+1)δj0

(n0

2s
+ 1
)(σ−1)(n0/2s+1)

‖u(·, 0)‖L2(Ω) (3.10)

for x ∈ (−δ/2, δ/2), t ∈ (−δ2s/| log ε|θ, δ2s/| log ε|θ), and all n0 ∈ N such that
n0 ≥ 8s− 2.

Now, choose n0 ∈ N such that

1
2
| log ε|ω ≤ n0 ≤ | log ε|ω (3.11)
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for some ω ∈ (0, 1) to be determined. For the first term on the right-hand
side of (3.10), we obtain

Cn0M1/2

δj0
ε1/2n

(σ+1)n0

0

(
1 +

2s−1∑
k=0

Mk

)n0/2s
(3.12)

=
M1/2

δj0
exp

(
− 1

2
| log ε|+ (σ + 1)n0 log n0 + n0 logC

+
n0

2s
log
(

1 +
2s−1∑
k=0

Mk

))
≤ M1/2

δj0
exp

(
− 1

2
| log ε|+ ω(σ + 1)| log ε|ω log | log ε|+ | log ε|ω logC

+
1
2s
| log ε|ω log

(
1 +

2s−1∑
k=0

Mk

))
.

Note that for ε ∈ (0, 1/4] all the terms in the exponent can be controlled by
−1/4| log ε|. Indeed, using the ε-Cauchy inequality, we have

ω(σ + 1)| log ε|ω log | log ε| ≤ 1
12
| log ε|+ C

for a constant C depending on ω. Also

| log ε|ω logC ≤ 1
12
| log ε|+ C,

and

1
2s
| log ε|ω log

(
1 +

2s−1∑
k=0

Mk

)
≤ 1

12
| log ε|+ C

(
log
(

1 +
2s−1∑
k=0

Mk

))1/(1−ω)
.

Thus, using the above inequalities in (3.12), we get

Cn0M1/2

δj0
ε1/2n

(σ+1)n0

0

(
1 +

2s−1∑
k=0

Mk

)n0/2s
(3.13)

≤ M1/2

δj0
exp

(
− 1

4
| log ε|+ C

(
log
(

1 +
2s−1∑
k=0

Mk

))1/(1−ω))
.

For the second term on the right-hand side of (3.10), we have

CMK

δj0
| log ε|−θ(n0/4s+1)

(n0

2s
+ 1
)(σ−1)(n0/2s+1)
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≤ CMK

δj0
exp

(
− θ

(n0

4s
+ 1
)

log | log ε|

+ (σ − 1)
(n0

2s
+ 1
)

log
(n0

2s
+ 1
))

≤ CMK

δj0
exp

(
− θn0

4s
log | log ε|+ (σ − 1)

(n0

2s
+ 1
)

log n0

)
.

Now, by (3.11), we obtain

CMK

δj0
| log ε|−θ(n0/4s+1)

(n0

2s
+ 1
)(σ−1)(n0/2s+1)

(3.14)

≤ CMK

δj0
exp

(
− θ

8s
| log ε|ω log | log ε|

+ ω(σ − 1)
( 1

2s
| log ε|ω + 1

)
log | log ε|

)
≤ CMK

δj0
exp

(
− 1
C
| log ε|ω log | log ε|

)
provided σ ≤ 1+θ/16ω. Therefore, for all j0 ∈ {0, 1, . . . , 2s−1}, we conclude
from (3.13) and (3.14) that

|∂j0x u(x, t)| ≤
(M1/2

δj0
exp

(
− 1

4
| log ε|+ C

(
log
(

1 +
2s−1∑
k=0

Mk

))1/(1−ω))
+
CMK

δj0
exp

(
− 1
C
| log ε|ω log | log ε|

))
‖u(·, 0)‖L2(Ω)

for x ∈ (−δ/2, δ/2) and t ∈ (−δ2s/| log ε|θ, δ2s/| log ε|θ) provided that σ ≤
1 + θ/16ω for arbitrary θ, ω ∈ (0, 1) and ε ∈ (0, 1/4].

4. Propagation of smallness on space-time rectangles

Let u(x, t) be a periodic solution, with period 1 in the x variable, of the
equation

ut + (−1)s∂2s
x u+

2s−1∑
k=0

vk(x, t)∂kxu = 0 (4.1)

for (x, t) ∈ R × (−δ2s/| log ε|θ, δ2s/| log ε|θ), where ε, θ ∈ (0, 1) and δ ∈
(0, 1/4]. As in Section 2, we suppose that u and vk are infinitely smooth
functions in (x, t). Also, assume there exist non-negative constants M and
Mj for j ∈ {0, 1, . . . , 2s− 1} such that

|∂jxu(x, t)| ≤ Mj!σ

δj
(4.2)
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and
|vj(x, t)| ≤Mj (4.3)

for (x, t) ∈ R× (−δ2s/| log ε|θ, δ2s/| log ε|θ). Assume additionally that

|∂jxu(x, t)| ≤ ε̃ (4.4)

for (x, t) ∈ (−δ, δ)× (−δ2s/| log ε|θ, δ2s/| log ε|θ) and some ε̃ ∈ (0, 1).

Lemma 4.1. Suppose that the assumptions (4.1)–(4.4) are satisfied. If ε̃ ≤
exp

(
−P1

(
| log ε|, δ−1, {Mk}2s−1

k=0

))
, then∫ δ2s/4| log ε|θ

−δ2s/4| log ε|θ

∫ 1

0
u(x, t)2 dx dt ≤ P2

(
| log ε|, δ−1,M, {Mk}2s−1

k=0

)
ε̃2/3,

where P1 and P2 are non-negative polynomials.

Proof. We begin by performing the change of variables

(x, t)→
(
x− 4| log ε|2θ

δ4s
t2, t

)
,

which transforms the rectangle (−δ, δ) × (−δ2s/| log ε|θ, δ2s/| log ε|θ) into a
region between the two parabolas x + δ = 4| log ε|2θt2/δ4s and x − δ =
4| log ε|2θt2/δ4s. Define

ũ(x, t) = u
(
x− 4| log ε|2θ

δ4s
t2, t

)
. (4.5)

Then ũ is a periodic solution, with period 1 in x variable, of the equation

ũt + (−1)s∂2s
x ũ+

2s−1∑
k=0

vk(x, t)∂kx ũ+
8| log ε|2θt

δ4s
ũx = 0. (4.6)

Using hypotheses (4.3) and (4.4), we have∣∣∣v1 +
8| log ε|2θt

δ4s

∣∣∣ ≤M1 +
8| log ε|θ

δ2s
(4.7)

for (x, t) ∈ R× (−δ2s/| log ε|θ, δ2s/| log ε|θ) and for all j ∈ {0, 1, . . . , 2s− 1}

|∂jxũ(x, t)| ≤ ε̃ (4.8)

for (x, t) ∈ S, where with S we denote the region

S =
{

(x, t) : −δ ≤ x− 4| log ε|2θ

δ4s
t2 ≤ δ, −δ ≤ x ≤ 4− δ

}
.
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Also, for r ∈ (0, 3] we use the notation

Ol(r) =
{

(x, t) : −δ < x < r,−δ
2s(x+ δ)1/2

2| log ε|θ
< t <

δ2s(x+ δ)1/2

2| log ε|θ
}

and

Os(r) =
{

(x, t) : δ < x < r,−δ
2s(x− δ)1/2

2| log ε|θ
< t <

δ2s(x− δ)1/2

2| log ε|θ
}

for the regions inside the parabolas x + δ = 4| log ε|2θt2/δ4s and x − δ =
4| log ε|2θt2/δ4s, respectively, and to the left of x = r. Define a smooth cut-
off function φ ∈ C∞0 (R2) such that 0 ≤ φ ≤ 1 in R2, φ = 0 in a neighborhood
of R2\Ol(3), and φ = 1 in a neighborhood of Os(11/4). Additionally, we
impose

|∂jxφ(x, t)| ≤ C

δj
, j ∈ {1, . . . , 2s− 1}

and

|∂tφ(x, t)| ≤ C| log ε|θ

δ2s+1
.

for (x, t) ∈ S. Next, we use the Carleman estimate for ũφ ∈ C∞0 (R2)
2s−1∑
k=0

τ4s−2k−1

∫
O

(
∂kx(ũφ)

)2
e2τψ (4.9)

≤ C
∫
O

(
(ũφ)t + (−1)s∂2s

x (ũφ)
)2
e2τψ

for τ ≥ τ0, where O = (−4, 4)2 and the weight function ψ is given by
ψ(x) = −x + x2/100. We estimate the right-hand side of (4.9) from above
by I1 + I2 + I3, where

I1 = C

∫
Os(11/4)

(
(ũφ)t + (−1)s∂2s

x (ũφ)
)2
e2τψ,

I2 = C

∫
S

(
(ũφ)t + (−1)s∂2s

x (ũφ)
)2
e2τψ,

I3 = C

∫
Os(3)\Os(11/4)

(
(ũφ)t + (−1)s∂2s

x (ũφ)
)2
e2τψ.

Using the equation (4.6) and the bounds on the coefficients (4.3) and (4.7),
we obtain the estimate

I1 ≤ C
2s−1∑
k=0

M2
k

∫
Os(11/4)

(
∂kx ũ

)2
e2τψ +

C| log ε|2θ

δ4s

∫
Os(11/4)

ũ2
xe

2τψ
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for the first integral. We can absorb this estimate for I1 in the half of the
left-hand side of (4.9) under the condition

τ ≥ max
{

max
k=0,...,2s−1

CM
2/(4s−2k−1)
k ,

C| log ε|2θ/(4s−3)

δ4s/(4s−3)
, τ0

}
. (4.10)

For the second integral, we use also the hypotheses on the derivatives of φ

I2 ≤ C
∫
S

(
ũt + (−1)s∂2s

x ũ
)2
e2τψ

+ C
2s−1∑
k=0

∫
S

(
∂2s−k
x φ

)2 (
∂kx ũ

)2
e2τψ + C

∫
S
φ2
t ũ

2e2τψ

≤ C
2s−1∑
k=0

(
M2
k +

1
δ4s−2k

)∫
S

(
∂kx ũ

)2
e2τψ

+
C| log ε|2θ

δ4s

∫
S
ũ2
xe

2τψ +
C| log ε|2θ

δ4s+2

∫
S
ũ2e2τψ.

Now, by (4.8) and since |S| ≤ Cδ2s+1/| log ε|θ and ψ < 2δ on S, we obtain

I2 ≤ Cε̃2e4τδ
( 2s−1∑
k=0

M2
k +
| log ε|2θ

δ4s+2

)
|S| ≤ Cε̃2e4τδ

( 2s−1∑
k=0

M2
k δ

2s+1

| log ε|θ
+
| log ε|θ

δ2s+1

)
.

Finally, for the third integral, the assumptions (4.2) and (4.3) imply

I3 ≤ C
∫
Os(3)\Os(11/4)

(
ũt + (−1)s∂2s

x ũ
)2
e2τψ

+ C

2s−1∑
k=0

∫
Os(3)\Os(11/4)

(
∂2s−k
x φ

)2 (
∂kx ũ

)2
e2τψ

+ C

∫
Os(3)\Os(11/4)

φ2
t ũ

2e2τψ

≤ Ce−5τ

(
2s−1∑
k=0

(
M2
k +

1
δ4s−2k

)
M2k!2σ

δ2k
+
| log ε|2θ

δ4s

M2

δ2
+
| log ε|2θ

δ4s+2
M2

)
× |Os(3)\Os(11/4)|

≤ CM2e−5τ

(
2s−1∑
k=0

(
M2
k δ

2s−2k

| log ε|θ
+

1
| log ε|θδ2s

)
k!2σ +

2| log ε|θ

δ2s+2

)
,
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where we used that |Os(3)\Os(11/4)| ≤ Cδ2s/| log ε|θ and ψ < −5/2 on
Os(3)\Os(11/4). Therefore,

τ4s−1

∫
O

(ũφ)2e2τψ

≤ Cε̃2e4τδ

(
2s−1∑
k=0

M2
k δ

2s+1

| log ε|θ
+
| log ε|θ

δ2s+1

)

+ CM2e−5τ

(
2s−1∑
k=0

(
M2
k δ

2s−2k

| log ε|θ
+

1
| log ε|θδ2s

)
k!2σ +

2| log ε|θ

δ2s+2

)
.

Denote R = [1/2, 3/2] × [−δ2s/4| log ε|θ, δ2s/4| log ε|θ]. Then R ⊆ Os(11/4)
and ψ ≥ −3/2 on R. We get

τ4s−1

∫
O

(ũφ)2e2τψ ≥ τ4s−1

∫
R
ũ2e2τψ ≥ τ4s−1e−3τ

∫
R
ũ2

and thus∫
R
ũ2 ≤ Cε̃2eτ(4δ+3)

τ4s−1

(
2s−1∑
k=0

M2
k δ

2s+1

| log ε|θ
+
| log ε|θ

δ2s+1

)

+
CM2e−2τ

τ4s−1

(
2s−1∑
k=0

(
M2
k δ

2s−2k

| log ε|θ
+

1
| log ε|θδ2s

)
k!2σ +

2| log ε|θ

δ2s+2

)
.

The above inequality is true for any τ satisfying (4.10). We choose τ such
that e−3τ = ε̃. Then

1
ε̃2/3

∫
R
ũ2 ≤ C

(
2s−1∑
k=0

M2
k δ

2s+1

| log ε|θ
+
| log ε|θ

δ2s+1

)

+ CM2

(
2s−1∑
k=0

(
M2
k δ

2s−2k

| log ε|θ
+

1
| log ε|θδ2s

)
k!2σ +

2| log ε|θ

δ2s+2

)
= P2

(
| log ε|, δ−1,M, {Mk}2s−1

k=0

)
provided ε̃ satisfies

log
1
ε̃
≥ max

{
3 max
k=0,...,2s−1

CM
2/(4s−2k−1)
k ,

3C| log ε|2θ/(4s−3)

δ4s/(4s−3)
, 3τ0

}
= P1

(
| log ε|, δ−1, {Mk}2s−1

k=0

)
.

Thus, the proof of the lemma is complete.
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5. Proofs of the main results

In this section we prove Theorems 2.1 and 2.4.
Proof of Theorem 2.1. Denote

ε =
supx∈(−δ,δ) |u(x, 0)|
‖u(·, 0)‖L2(Ω)

. (5.1)

Our goal is to show that there exists a universal constant η > 0 such that for
σ ≤ 1 + η, we have either ε > 1/4 or ε ≥ exp(−P (δ−1,M, {Mk}2s−1

k=0 ,K)) for
some nonnegative polynomial P . Let ε ∈ (0, 1/4]. Then by (5.1), we have
that the hypothesis of Lemma 3.1

|u(x, 0)| ≤ ε‖u(·, 0)‖L2(Ω), x ∈ (−δ, δ)

is satisfied. Hence,

|∂jxu(x, t)| ≤ Fj
(
| log ε|, δ−1,M, {Mk}2s−1

k=0

)
‖u(·, 0)‖L2(Ω)

for x ∈ (−δ/2, δ/2) and t ∈ (−δ2s/22s| log ε|θ, δ2s/22s| log ε|θ) with θ ∈ (0, 1),
and j ∈ {0, 1, . . . , 2s− 1}. Next, we denote

K0 = max
j∈{0,...,2s−1}

sup
|t|<δ2s/22s| log ε|θ

δj‖∂jxu(·, t)‖L∞(Ω)

j!σ

and let

ũ(x, t) =
1
K0

u(x, t).

Clearly, the dilated function ũ satisfies the equation

ũt + (−1)s∂2s
x ũ+

2s−1∑
k=0

vk(x, t)∂kx ũ = 0. (5.2)

Also, for all j ∈ {0, 1, . . . , 2s− 1}, we have

|∂jxũ(x, t)| ≤ j!σ

δj
, (x, t) ∈ R×

(
− δ2s

22s| log ε|θ
,

δ2s

22s| log ε|θ

)
(5.3)

and by the assumption (2.3)

|vj(x, t)| ≤Mj , (x, t) ∈ R×
(
− δ2s

22s| log ε|θ
,

δ2s

22s| log ε|θ

)
. (5.4)

Denote

εj = Fj
(
| log ε|, δ−1,M, {Mk}2s−1

k=0

)
, j ∈ {0, 1, . . . , 2s− 1}
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and
ε̃ = max

j∈{0,...,2s−1}
εj .

Then we obtain

|∂jxũ(x, t)| ≤ ε̃, (x, t) ∈
(
−δ

2
,
δ

2

)
×
(
− δ2s

22s| log ε|θ
,

δ2s

22s| log ε|θ

)
(5.5)

for j ∈ {0, 1, . . . , 2s− 1} since

|∂jxũ(x, t)| ≤ 1
K0

Fj
(
| log ε|, δ−1,M, {Mk}2s−1

k=0

)
‖u(·, 0)‖L2(Ω) ≤ εj ≤ ε̃.

Now, we can apply Lemma 4.1 with M = 1. If

ε̃ ≤ exp
(
−P1

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

))
then∫ δ2s/4s+1| log ε|θ

−δ2s/4s+1| log ε|θ

∫ 1

0
ũ(x, t)2 dx dt ≤ P2

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)
ε̃2/3.

Note that the assumptions (2.2) and (2.4) imply

K0 ≤MK‖u(·, 0)‖L2(Ω).

We have

‖u(·, 0)‖2L2(Ω) =
2 · 4s+1| log ε|θ

δ2s

∫ δ2s/4s+1| log ε|θ

−δ2s/4s+1| log ε|θ
‖u(·, 0)‖2L2(Ω) dt

≤ 2 · 4s+1K2K2
0 | log ε|θ

δ2s

∫ δ2s/4s+1| log ε|θ

−δ2s/4s+1| log ε|θ
‖ũ(·, t)‖2L2(Ω) dt.

Thus we obtain

‖u(·, 0)‖L2(Ω)

≤ 2s+2MK2| log ε|θ/2

δs
P2

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)1/2
ε̃1/3‖u(·, 0)‖L2(Ω).

The last inequality holds if

2s+2MK2| log ε|θ/2

δs
P2

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)1/2
ε̃1/3 ≥ 1

or equivalently if

ε̃ ≥ δ3s

CM3K6| log ε|3θ/2
P2

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)−3/2
.
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We conclude

ε̃ ≥ min
{

exp
(
− P1

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

) )
, (5.6)

δ3s

CM3K6| log ε|3θ/2
P2

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)−3/2
}
.

We need to solve the inequality (5.6) for ε. Using the definition of ε̃ and the
expression for Fj

(
| log ε|, δ−1,M, {Mk}2s−1

k=0

)
from Lemma 3.1, we estimate

from above the left-hand side of (5.6) in the following way:

ε̃ ≤ M1/2

δ2s−1
exp

(
− 1

4
| log ε|+ C

(
log
(

1 +
2s−1∑
k=0

Mk

))1/(1−ω))
(5.7)

+
CMK

δ2s−1
exp

(
− 1
C
| log ε|ω log | log ε|

)
≤ 2CMK

δ2s−1
exp

(
− 1
C
| log ε|ω log | log ε|

)
≤ exp

(
log

2CMK

δ2s−1
− 1
C
| log ε|ω log | log ε|

)
.

Next, we proceed by estimating from below the right-hand side of (5.6). We
have

min
{

exp
(
− P1

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

) )
, (5.8)

δ3s

CM3K6| log ε|3θ/2
P2

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)−3/2
}

≥ exp
(
− P1

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)
− log

CM3K6

δ3s

− log | log ε|3θ/2 − 3
2

logP2

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

))
.

We shall find ε from the inequality

log
2CMK

δ2s−1
− 1
C
| log ε|ω log | log ε| (5.9)

≥ −P1

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)
− log

CM3K6

δ3s
− log | log ε|3θ/2

− 3
2

logP2

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)
,

which we get from (5.6) by using the estimates (5.7) and (5.8). Regarding
the polynomials P1 and P2, obtained in Lemma 4.1, we have respectively

P1

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)
(5.10)
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= max

{
3 max
k=0,...,2s−1

C {Mk}2/(4s−2k−1) ,
3C| log ε|2θ/(4s−3)

δ4s/(4s−3)
, 3τ0

}

≤ C
2s−1∑
k=0

M2
k +

3C| log ε|2θ/(4s−3)

δ2

and

P2

(
| log ε|, 2δ−1, {Mk}2s−1

k=0

)
(5.11)

= C
2s−1∑
k=0

M2
k δ

2s+1

| log ε|θ
+ C
| log ε|θ

δ2s+1

+ C

2s−1∑
k=0

(
M2
k δ

2s−2k

| log ε|θ
+

1
| log ε|θδ2s

)
k!2σ + 2C

| log ε|θ

δ2s+2

≤ C
2s∑
k=0

(M2
k + 1)k!2σ

δ2s
+ 3C

| log ε|θ

δ2s+2
≤ C

2s−1∑
k=0

(M2
k + 1)k!2σ

δ2s+2
| log ε|θ.

Now, by (5.10) and (5.11), we rewrite the inequality (5.9) as

log
2CMK

δ2s−1
− 1
C
| log ε|ω log | log ε| (5.12)

≥ −3C| log ε|2θ/(4s−3)

δ2
− log

CM3K6

δ3s
− log | log ε|3θ/2

− 3
2

log

(
C

2s−1∑
k=0

(M2
k + 1)k!2σ

δ2s+2
| log ε|θ

)
− C

2s−1∑
k=0

M2
k .

Finally, (5.12) gives

− 1
C
| log ε|ω log | log ε|+ 3C| log ε|2θ/(4s−3)

δ2
+ 2| log ε|θ/2 (5.13)

≥ −3
2
C

2s−1∑
k=0

(M2
k + 1)k!2σ

δ2s+2
− CM3K6

δ3s
− 2CMK

δ2s−1
− C

2s−1∑
k=0

M2
k ,

by using the well-known estimates log x ≤ Cx1/3 and log x ≤ x. Note that
all the terms on the left-hand side of (5.13) may be absorbed in the first
one, provided ω ≥ 2θ/(4s − 3) and ω ≥ θ/2. We choose ω = 2θ. Since
σ ≤ 1 + θ/16ω, we get σ ≤ 33/32. Then ε ≥ exp(−P (δ−1,M, {Mk}2s−1

k=0 ,K))
for some polynomial P and thus

‖u(·, 0)‖L2(Ω) ≤ exp(P (δ−1,M, {Mk}2s−1
k=0 ,K))‖u(·, 0)‖L∞(−δ,δ). (5.14)



972 Mihaela Ignatova and Igor Kukavica

By Agmon’s inequality, (5.14), and (2.2), we get

‖u(·, 0)‖L∞(Ω) ≤ C‖u(·, 0)‖1/2
L2(Ω)

‖∂xu(·, 0)‖1/2
L2(Ω)

+ C‖u(·, 0)‖L2(Ω) (5.15)

≤ CM1/2

δ1/2
‖u(·, 0)‖L2(Ω)

≤ exp(P (δ−1,M, {Mk}2s−1
k=0 ,K))‖u(·, 0)‖L∞(−δ,δ),

where we denote again by P (δ−1,M, {Mk}2s−1
k=0 ,K) the new polynomial, ob-

tained in the last line of (5.15), with the highest power with respect to δ−1

a constant depending on s.
Proof of Theorem 2.4. We only prove the theorem when σ < 1 + 1/b.
The modifications for the case σ = 1 + 1/b are straightforward. Without
loss of generality, let x0 = 0. Assume that f has n zeros in the interval
[−ρ/2, ρ/2], counting the multiplicity. Let x1, x2, . . . , xk ∈ [−ρ/2, ρ/2] be
the k distinct zeros of f with multiplicities m1,m2, . . . ,mk, respectively,
such that m1 + m2 + · · · + mk = n. By the Hermite interpolation theorem
(cf. [1, p. 878]), there exists a unique interpolation polynomial pn−1 of f , of
degree less than or equal to n− 1, satisfying

p
(j)
n−1(xl) = f (j)(xl), 1 ≤ l ≤ k, 0 ≤ j ≤ ml − 1.

Moreover, for all x ∈ [−ρ/2, ρ/2] there exists ξ ∈ [−ρ/2, ρ/2] depending on
x such that

f(x)− pn−1(x) =
(x− x1)m1 . . . (x− xk)mk

n!
f (n)(ξ)

and consequently

‖f − pn−1‖L∞[−ρ/2,ρ/2]

≤
supx∈[−ρ/2,ρ/2] |(x− x1)m1 . . . (x− xk)mk |

n!
‖f (n)‖L∞[−ρ/2,ρ/2].

Clearly, pn−1 ≡ 0, and from the above inequality, we obtain

‖f‖L∞[−ρ/2,ρ/2] ≤
ρn

n!
‖f (n)‖L∞[−ρ/2,ρ/2].

Now, the hypotheses (2.5) and (2.6) give

‖f‖L∞[−ρ/2,ρ/2] ≤Mn!σ−1 ρ
n

δn
exp

(
a

ρb

)
‖f‖L∞[−ρ/2,ρ/2]. (5.16)

In order for the inequality (5.16) to hold, we need

Mn!σ−1 ρ
n

δn
exp

(
a

ρb

)
≥ 1. (5.17)
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Using nne−n ≤ n! ≤ nn, (5.17) implies

M
(nσ−1ρ)n

δn
exp

(
a

ρb

)
≥ 1,

which is the same as

exp
(
n log(nσ−1ρ)− n log δ +

a

ρb
+ logM

)
≥ 1,

or equivalently

n log(nσ−1ρ)− n log δ +
a

ρb
+ logM ≥ 0. (5.18)

Let n0 be the largest integer such that n0 ≤ K, where K is defined in (2.8),
and let

ρ =
(2a)1/b

n
1/b
0

. (5.19)

Then

ρ =
(2a)1/b

n
1/b
0

≤ (2a)1/b

(4b+1a/δb)1/b
=

21/ba1/bδ

41+1/ba1/b
≤ δ

4
.

Also,

nσ−1
0 ρ ≤ (2a)1/bδ

((4b+1a)1/(1+b(1−σ)))1/b−σ+1
=

(2a)1/bδ

41+1/ba1/b
≤ δ

4
. (5.20)

Therefore, by (5.18) with n replaced by n0 and (5.20), we get

n0 log(nσ−1
0 ρ)− n0 log δ +

a

ρb
+ logM = n0 log

nσ−1
0 ρ

δ
+
a

ρb
+ logM

≤ n0 log
1
4

+
a

ρb
+ logM =

(
−n0

2
+
a

ρb

)
+
(
−n0

2
+ logM

)
.

The first term on the far right vanishes by (5.19), while the second is less
than zero by the definition of n0. Therefore the number n = n0 does not
satisfy (5.18) and thus also does not satisfy (5.17). Hence, f has less than n0

zeros in [−ρ/2, ρ/2], where ρ is defined in (5.19). Therefore, f has at most
C(a, b)n1/b+1

0 zeros in [−1/2, 1/2].
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